418

Comment

Matthew Goldstein

Mark Schervish is to be applauded for providing
readers an opportunity to reflect on how far multivar-
iate analysis has come while at the same time giving
us his thoughtful views on the direction theoreticians
and practitioners of statistics appear to be headed. To
take a body of knowledge as vast as multivariate
analysis and attempt to distill its most salient features
in the limited space of his article, takes, at the very
least, much courage. By restricting his universe of
material to that contained within the pages of the two
books forming the basis of his discussion, he success-
fully presents a balanced overview of many of the
important developments in multivariate analysis. Al-
though I am pleased by the selection and in particular
of his generally kind words of the text by Dillon and
Goldstein there are critically important omissions. An
article at least the size of that presented by Schervish
would be required. Because this is not practical I will
limit my remarks to just a few areas.

1. DISCRIMINANT ANALYSIS

Schervish comments on the sparse treatment that
error rate analysis is given (by both books) within the
context of the classification problem. Aside from
rather ad hoc methods like cross-validation and a rich
body of material using asymptotic methods to approx-
imate the actual and apparent error estimates of the
true error (assuming a multivariate normal structure),
most of the interesting work until quite recently as-
sumed discrete multivariate data. Readers of Dillon
and Goldstein were referred to an earlier book (1978)
by the same authors where a full chapter was devoted
to error rate analysis for the discrete classification
problem. Recent work has added new insights and
results.

Suppose we observe a set of data given as

2 = (ty, y1), x2 = (tz, ¥2) . crs X = (tn, Yn),

where the t; are observed p-dimensional covariate
vectors and the y; are independent binary variables
such that y; ~ B(w;). Let us further assume that the
binomial parameters w; are given by the logistic for-
mula

(1.1) = =1/(1 + exp(t/a)) i=12,...,n,
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where a is an unknown p-dimensional vector of pa-
rameters. Estimates w; can be found by plugging in
the maximum likelihood estimates for a. In the clas-
sical discrimination problem a new observation t, ., is
observed and a choice needs to be made regarding
the value of y,.1, that is, if y,4+; = 1, we say that the
covariates come from group 1, otherwise from
group 2.

Consider the sample-based prediction rule 5 given

by
. 1
771 0

for some given cutoff point C. The proportion of times
this rule is in error is

(1.3) Err = # {y: # n:}/n.

if #>C,

1.2) i #<C

Err is commonly referred to as the apparent error rate.
It is well known that the apparent error is optimisti-
cally biased because the data that are used to construct
the rule are the same as those used to evaluate how
well it performs.

Gong (1986) considered estimates of the excess er-
ror, the difference between the true and apparent
errors. By using simulated and real data, she compared
three estimates of the excess error—the jackknife,
cross-validation and the bootstrap. Although the jack-
knife and cross-validation showed little improvement,
the bootstrap substantially reduced the size of excess
error.

Efron (1986), in the most far reaching and unified
treatment to date, derived among other estimates, an
estimate for the expected excess error w(w) assuming
the logistic formulation. His estimate is

(1.4)

=1

wﬁ)=wn§ﬁu—@wQ%)JZ

where ¢ (-) is the standard normal,

C: = log(C/(1 = C)) — t!&,
L=t/ $t, $=3 &l —#)tt].
=1

w(w) has the usual asymptotic optimality properties
of maximum likelihood estimates. A small sampling
experiment showed that w(#) is nearly unbiased for
w(w) with quite small standard deviation. Practition-
ers using (1.2) can better assess the magnitude of the
optimistic bias of Err by using w (7).
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2. PROJECTION PURSUIT METHODS

I was somewhat surprised to see that projection
pursuit (PP) methods were not mentioned in Dr.
Schervish’s paper. In 1985, Huber pulled together
many of the ideas of PP in a clear and cogent manner
and established the beginning of a theoretical frame-
work to study such methods.

Authors commenting after Huber’s paper are quite
valuable and some of their ideas are included here. PP
techniques are tools for multivariate data analysis
useful for finding interesting and useful low dimen-
sional projections of higher dimensional data by max-
imizing (or minimizing) a certain projection index.
Advocates of these tools proclaim their virtue in part
because of the claim that it is one of the few multi-
variate methods able to bypass the “curse of dimen-
sionality” caused by the fact that high dimensional
space is mainly empty, manifesting itself in less ro-
bustness, increasing mean square error or slowing
down convergence to limiting distributions. A further
claim is that some PP methods are able to ignore
information-poor variables giving them an advantage
over methods based upon interpoint distances like
multidimensional scaling and most clustering algo-
rithms. Others refute these claims stating that the
sample size may need to be very large relative to
dimensionality to avoid the vexing problems associ-
ated with extreme sparseness. Secondly, although PP
methods might be able to deal more effectively with
“noisy” variables than interpoint distance methods, it
does not appear to be the solution for handling large
numbers of variables simultaneously.

A linear projection from R“ to R* is any k X d matrix
A of rank k:

Z=AX, XE€ERY ZE€ER~

The projection is orthogonal if the row vectors of A
are orthogonal to each other and have length 1. If X
is a d-dimensional random vector then Z is a k-
dimensional vector. Denote its induced distribution
function by F,,. When k = 1, A reduces to a row vector
a’ and we represent the distribution function by F,.
Projection pursuit searches for a linear projection A
maximizing a certain projection index @ (AX).

An interesting observation is that a number of clas-
sical multivariate techniques are special cases of PP
including principal components, discriminant analysis
and multiple linear regression. In the case of principal
components suppose that X ~ F is a p-dimensional
random vector with covariance matrix V. Let a’ be a
p-dimensional random vector and let the linear pro-
jection a’X have distribution function F,. Denote the
eigenvalues of V by vy, vs, .. ., v, and let o (F,) be the
standard deviation of a’X. Recall that the first prin-
cipal component is that linear projection a’X which

satisfies
o(F,) = max ¢(F,) = max (a’va)'/?
la|=1 la|=1
and that ¢*(F,) = ajva, is the largest eigenvalue v,
associated with a,. Further, the second principal com-
ponent is determined by

o(F,,) = max o(F,)

|la|=1,ala,
or
0'2(Faz) = Daq.

Thus, the search for principal components is the
search for low dimensional linear projections that
maximize the projection index.

In projection pursuit regression (PPR) the vector
directions a;, a,, ..., ay are given and we wish to
find projection functions, fi, f2, . . . , fir that minimize
the expected residual sum of squares

M 2
(2.1) E(ry) = E<Y -2 fj(ajlx)> .

It is straightforward to see that (2.1) is minimized if
foreachk=1,2,..., M
a,x = z)

arx = z) = fu(2).

M
E(Y|asx =2) = E<E fi(a;x)

or

E<Y— Y fila/x)
J#k

This is a system of linear equations for the f; that can

be solved by using Gauss-Seidel.

Friedman’s comments after Huber’s paper relating
to implementation of projection pursuit procedures
are particularly valuable. He emphasizes quite
thoughtfully that the performance judgment of a new
method will be based upon how well the complete
implementation performs, and as “data algorithms
become more complex, this problem becomes more
acute. The best way to guard against this is to become
as literate as possible in algorithms, numerical meth-
ods and other aspects of software implementation.” In
some sense the jury is still out on how profound the
impact PP methods will be in analyzing multivariate
data. Statisticians have to broaden their experience
with these tools, examining and reflecting upon their
advantages and disadvantages with a variety of real
data and simulated problems.

3. DENSITY ESTIMATION

Nonparametric estimation of density functions is
an important problem finding useful and interesting
applications in nonparametric regression, classifica-
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tion and hypothesis testing. Perhaps the best known
and most widely studied are a class of estimates called
kernel estimates defined for x € R¢ by

1

(3.1) ACE ) K(x - xi>

where the kernel K(-) is an arbitrary density and {h,,}
is a sequence of positive numbers often referred to
as smoothing parameters or bandwidths having the
properties

h,—0 and nh®—0 as n — o.

For a good overview see Devroye and Gyorfi (1985)
and Silverman (1986). Most of the research on kernel
estimates revolve around conditions under which the
sequence f,(-) satisfies different consistency proper-
ties, “optimal” choices for the kernel K(.) and
smoothing parameters h,. Different regularity condi-
tions ensure that f,(-) is a consistent sequence of
estimates in the sense that the L, error tends to zero
in different modes. Perhaps the most critical problem
is choosing the smoothing parameters, changes to
which have profound impact on the estimate. Kernel
estimates require large sample sizes especially for high
dimensional problems, otherwise they may be severely
biased.

Huber claims that some of the problems using ker-
nel estimates can be avoided by using projection pur-
suit density estimation. The literature is quite limited
in this regard and much more experience will be
needed before more definitive comparisons can be
made. For a good discussion see Friedman, Stuetzle
and Schroeder (1984). Their estimates take the form

M
32 Pu( =P Il fulanx)

where Pj, is the current density estimate after M
iterations; P, is a given multivariate density function
to be used as the initial model; a;, is a vector of
directions in R and f,, is a univariate function. In
their examples P, was chosen as a multivariate normal
with sample mean vector and sample covariance ma-
trix. From (3.1) they use the recursive relation

(3.3) Py(x) = PM—I(X)fM(aI,VIX)-

Thus, given Py—;(X) we seek a new model P, (X)
to serve as a better approximation to the data
density P(X). Relative goodness of fit is measured
by the cross-entropy term of the Kullback-Leibler
distance.

CONCLUSION

A basic criticism whether overt or below the surface
of Anderson and Dillon and Goldstein is what Scher-
vish calls the “« level mindset.” I couldn’t agree more.
Once tests are available for hypotheses of interest
there appears to be a propensity for the procedure to
assume a life of its own with almost a preordained
script to follow depending on the calculated p-value
associated with a given test statistic. I would like to
believe that most statisticians do not follow such
myopic tendencies. However, with the wide availabil-
ity of “packaged” programs to do most of the common
multivariate techniques, we are at the very least set-
ting ourselves up for benign abusive behavior. Not-
withstanding some obvious lapses in tight writing that
Dr. Schervish picked up (already corrected for a 2nd
edition), I believe many of us who teach this subject
matter should be mindful of how easy it is to go astray.
I am however hopeful that, with students better
trained in computation techniques, there will be a
greater likelihood of individual experimentation and
not sole reliance on neatly packaged techniques that
for the uninitiated convey the impression that a set of
values spewed out of a printer is the whole story.
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