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areas can be highly misleading if viewed as quantita-
tive evidence against a hypothesis?

I find, overall, that there is little I can add to the
paper and little I can question. As I read the paper,
I time and time again found myself saying—“That’s
a very good point; I couldn’t agree more!”

Comment

David L. Banks

Jack Good’s overview of the statistics/philosophy
interface is delightful, informative and provocative.
As usual, he combines substance with a great deal of
engaging style and many scattered pearls. It is regret-
table that his topic is so broad, for this sometimes
forces him to treat major ideas with telegrammatic
brevity; I hope that readers will be sufficiently in-
trigued to seek epexegesis in the references.

Over the years Good has started many hares at the
border between statistical inference and the philoso-
phy of science, and the article provides a partial syn-
opsis of this facet of his research career. Although it
is difficult for me to generate much disagreement with
his principle views, I shall attempt to delineate aspects
that make me either uneasy or eager for more devel-
opment. Because the paper is rather a scattershot
of topics, my comments are divided into thematic
categories.

THE TYPE Il WELTANSCHAUUNG

A major contribution is Good’s development of
dynamic probabilities. His overview emphasizes the
relation between dynamic probabilities and partially
ordered subjective probabilities, but I do not think his
discussion carries the implications far enough. Good’s
point is that subjective probabilities change as one
thinks, without new experimental information. In ap-
plications, one can only think so much, and thus one’s
subjective probabilities are necessarily approximate.

As an example, when someone states the Bieberbach
conjecture, it sounds implausible and a good subjectiv-
ist might assign it a low probability. Further thought
discovers numerous analytical functions that corrob-
orate conjecture, inclining one to revise the probability
upward. With a great deal of additional thought, a
supremely clever person might rediscover de Branges’
proof of the conjecture. Thus one’s stated subjective
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probability depends on the amount of introspection
spent upon the problem.

If a person is immortal, infinitely intelligent, per-
fectly sane (coherent) and reluctant to lose imaginary
money, then she can construct an infinite sequence of
hypothetical wagers that enables her to define her
subjective probabilities with arbitrary precision. In
practice, such perfect priors cannot be specified, and
it behooves robust Bayesians to investigate the influ-
ence of errors induced by finite time, limited intelli-
gence and insanity.

If error is caused only by Type II rationality (i.e.,
finite time), then it may be feasible to attempt a
reasonably precise sensitivity analysis. For illustra-
tion, let’s posit perfect intelligence and sanity, and
assume that if one had infinite time, the prior chosen
would be F. Let | - | be some reasonable metric on
the space of measures (say L?[—o, ©], 1 < p < ), and
take 6 > 0. Then one method of prior elicitation is
to consider a sequence of distribution functions G,
Gy, ... such that for any 6 > 0 and any cdf H, there
exists some n such that |G, — H| < 6 (on the line,
one such sequence consists of step functions that place
rational mass on the rational numbers; these are then
ordered in analogy with Cantor’s proof of the count-
ability of the rationals). First one decides whether G,
or G, is closer to one’s prior with respect to the metric;
then one considers each element of the sequence in
turn, deciding whether the new element is closer to
one’s prior than the best cdf previously considered.
After a fixed amount of time, one stops; let G denote
the best cdf discovered, and G,, the last considered.
Then F must lie in the region consisting of all cdfs
closer to G, than to Gy, . . ., G,.. If one can search this
region (and computer-intensive techniques are begin-
ning to make this practical), then in principle one can
either

e discover the prior that yields the most pessi-
mistic analysis, or

e sample priors from the region and examine the
distribution of inferences made from these.
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Of course, this program may be difficult to implement,
but it does suggest that one can incorporate the effect
of finite time into the analysis.

A second sort of error is introduced by limited
intelligence; it is related to Type II rationality in that
if one had infinite time, then the mistakes could be
discovered and corrected. These mistakes can take
many forms (e.g., gross errors of the kind termed
“blunders” by surveyors, as distinct from ordinary
imprecision in measurement), but the most interesting
relates to Good’s assertion that the human mind can-
not appreciate weights of evidence much smaller than
a deciban. This graininess in the perceived weight
of evidence imposes equivalence classes on the
space of priors, so one cannot hope to specify one’s
beliefs too finely. One possible resolution is to use
e-contaminated priors of the sort discussed in Huber
(1973) and Berger and Berliner (1986). Thus one
makes the most intelligent decision one can about
one’s prior, and then incorporates additional uncer-
tainty by permitting that prior to be contaminated
with another cdf from some sensible set (perhaps the
set of all measures, or all unimodal measures, etc.).
The usual formulation requires one to specify the
amount of contamination as ¢, but it seems reasonable
to borrow another tool from Good’s tool kit and put a
hyperprior over the parameter e.

A third sort of error arises from the possibility of
insanity. We all know highly intelligent people who
are not strictly sane, and some are aberrant in rather
subtle ways; thus a good Bayesian might put positive
probability upon the proposition “I am not entirely
sane” (this dovetails with Good’s point that solopsism
is not falsifiable; because one can imagine situations
that corroborate solopsism, then a thoroughgoing
Bayesian should give it weight). But if one admits the
possibility of insanity, then the prior finally chosen
may be entirely at odds with one’s other beliefs; hence
the stated prior may be arbitrarily distant from that
obtained by a saner self. This type of error suggests
that one must describe one’s prior by a nonatomic

measure upon the space of all measures, and the final -

analysis might resemble one based upon Ferguson’s
* (1973) Dirichlet process formulation for nonparamet-
ric Bayesianity.

Good’s general solution to these problems is to
regard probabilities as partially ordered, taking values
as intervals with vague end points. However, there are
methods of analysis that explicitly respond to the
three sorts of error listed above, and perhaps these
enable a more structured analysis in practical prob-
lems. Surely increased attention should be paid to the
influence of various sorts of error on approximate
priors, and one hopes for the development of methods
robust to all three sources of error. Also, one suspects
that a thoughtful examination of Type II rationality

could generate something like an uncertainty principle
for Bayesian statistics, and this would be enormously
interesting. Wenige wissen, wieviel man wissen muss,
um zu wissen, wie wenig man weiss.

Incidentally, Good makes at least two testable state-
ments at the border of psychology, philosophy and
statistics. The first, already mentioned, is that a de-
ciban is about the smallest weight of evidence humans
can distinguish. The other is that people are better at
assessing final probabilities than prior probabilities.
One hopes that these intuitions will be followed up by
some experimentalist.

DOOGIAN DOGMA

The partially ordered probabilities lead Good to
sketch basic aspects of the Bayes/non-Bayes compro-
mise or Doogianism. Unfortunately, the present treat-
ment is so terse as to border on amputation, and I
urge readers to refer at least to Good (1983f, Chapter
4). Basic tenets of Doogian dogma are:

1. In many cases, frequentist procedures can be
used to approximate a Bayesian inference.

2. If a statistical procedure doesn’t violate one’s
prior belief as developed under Type II ration-
ality, then it can be used in an analysis.

3. Analysis implies paralysis (cf. Hamlet). If one
thinks hard enough, then a corollary of Type
II rationality is that anything you do must
violate your beliefs.

The unhappy dilemma of the third point is salvaged
in practice by the fact that one rarely has time or
impetus to think really hard. So mainline frequentist
procedures are often not excluded by the problem, and
experience suggests that in many cases, they work well
enough to serve. This is particularly true if one follows
Good’s lead in using frequentist methods to generate
approximately Bayesian inferences.

However, this Doogian compromise seems some-
what ad hoc. Both Bayesian and frequentist proce-
dures develop in natural and largely self-consistent
ways, given separate starting points (i.e., as Good
asserts, the archetypal Bayesian thinks he has point-
valued prior probabilities, and the orthodox frequen-
tist behaves as though all his priors have the interval
value [0, 1], except for those used in modeling). But
the Bayes/non-Bayes compromise position says that
any analysis that is not contradicted by one’s cursory
examination is permitted. This does not generate a
natural body of tests and procedures, which is unap-
pealing. Also, different Doogians have even less cer-
titude than Bayesians that the same experiment will
lead to similar conclusions.

For example, let us assume that Jack Good has a
secret monozygotic twin (which might explain his
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prolific output). They have spent their lives together,
they have read the same books, and are in fact zwei
Seelen und ein Gedanke. Specifically, they share the
same subjective probabilities. Give them both the
same data and the same problem. The Doogian for-
mula implies that they will come to different conclu-
sions for two different reasons.

1. IJG may have more time to introspect upon
the problem that IJG’, so that the twins settle
upon different interval-valued probabilities.

2. Even if the twins decide upon the same inter-
vals, there may be several sorts of analysis that
do not contradict these beliefs; thus IJG and
IJG’ could pursue different analyses and reach
different conclusions.

The first problem is intrinsic to the Type II view; the
second problem is what seems most awkward for the
Bayes/non-Bayes compromise. One needs a basis for
deciding when enough thought has given to the prob-
lem, and a protocol for choosing among equally justi-
fied analyses.

CAUSALITY AND CASUISTRY

Probabilistic causality is an elegant piece of argu-
ment, and the concept seems potentially important,
but it is not yet clear that the subject will be relevant
to statisticians. After rereading the expanded treat-
ment of the subject given in Good (1983f, Chapters 21
and 22), I am left with the fear that this is a case of
molto fumo e poco arrosto. The philosophical side of

Rejoindér

l. J. Good

I’'m most grateful to the discussants for their com-

ments, both the generous and the critical ones. All
four discussants seem to approve of some form of
Bayes/non-Bayes compromise and with some other
things I've said, but they have raised various issues
that demand some response. I shall respond in the
order in which the contributions are printed, but I
deal first with probabilistic causality because three of
the discussants have commented on it.

1. PROBABILISTIC CAUSALITY

The notation Q(E:F) is an abbreviated notation,
and, as I mentioned, the full notation mentions “the

the house seems very pleased with it, but one should
note the historical tendency for a subject to split off
from philosophy as soon as it becomes respectable
(e.g., cosmology, mathematics, decision theory, etc.).

Good’s rationale for the statistical value of proba-
bilistic causality rests on the fact that Q(E: F) agrees
with a measure of association in contingency tables,
and that it can be used to interpret the expected
influence of a change in the regressor variables in
linear regression. This does establish a connection
with statistics, but I look forward to future develop-
ments in this area that will be more compelling. One
possible application that enjoys the advantage of top-
icality is a plot over time of the estimated value of
Q(E: F), the tendency of smoking to cause lung cancer,
based on the data available to the tobacco industry in
1945, 1950, .. ., 1985.

A similar comment applies to explicativity, in that
it isn’t clearly crucial to modern statistics. There is
the possibility of important connections with model
selection, and Good mentions the work of Akaike
(1974) and Schwarz (1978), but the key comparisons
have yet to be made. This is another area in which
one hopes that Good’s article will strike sparks.
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true laws of nature” (and other things) as given (to
the right of a vertical stroke). When there are two or
more scientific theories there will therefore be two or
more estimates of Q(E:F), and at most one of those
estimates can be correct. This is my reply to one of
the comments by Suppes where he described two
different theories of learning only one of which can be
(approximately) true.

I agree with Suppes’s analogy with regression the-
ory, in fact it is somewhat more than an analogy. If
much of some other science is taken into account in a
statistical or philosophical project, then the project is
no longer regarded as just statistics or just philosophy.
A physicist usually wants a better explanation of his
data sets than can be provided by regression theory



