108

' generalization is an important one, although the ter-
minology tends to separate the subject from an area
that is well established in the statistical literature: the
theory of maximal invariance. Thus a shape in this
generalized sense is also a maximal invariant under
the action of the group . Such maximal invariants
for data on riemannian manifolds are not uncommon
in statistics. For example, data in directional statistics
live on a one- or two-dimensional sphere for which
the most useful group to generate transformation
models is the rotation group. For models in which the
rotation group generates a nuisance parameter, ques-
tions involving the testing of a concentration param-
eter in the absence of knowledge of the nuisance
parameter require the reduction to the maximal rota-
tion invariant. Fraser (1968) has emphasized the im-
portance of transformation models and the fibers of
data sets equivalent under the action of a group. Some
relationships with the statistics of shape are developed
in Small (1983).

I would like to close these comments with some
remarks of a more specialized technical nature. The
elegance of D. G. Kendall’s theory of shape is espe-
cially clear for data sets in dimensions 1 and 2. In
higher dimensions, singularities start to emerge. Al-
though these singularities are not obviously detrimen-
tal to a theory of shape, they do detract from the
elegance of the representation. Even in dimensions 1
and 2, the shape spaces are more easily constructed
and represented than the corresponding size and shape
spaces. The reason for the elegance of the shape space
for the cases where m = 1, 2 is that in these cases a
shape preserving transformation can be uniquely de-
composed into two transformations that correspond
to multiplication and addition in the real line and
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complex plane for the respective dimensions. For both
m = 1 and m = 2 the group of shape preserving
transformations is a solvable group with a dimension
(i.e., number of degrees of freedom), which is an in-
tegral multiple of m. But in dimension m = 3 this fails
to be the case. The group of shape preserving trans-
formations is of dimension 7, which is not a multiple
of m.

Let me conclude my remarks by congratulating
David Kendall on some very interesting work. The
new directions that are sketched in this paper seem to
be promising for the analysis of geometric data of
various kinds and from various sources. I hope that
much more is forthcoming.
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Comment: Some Contributions to Shape

Analysis

Kanti V. Mardia

There are no words to express the profound depth
of Kendall’s work. I have been working in this area
intermittently since 1976 and I believe his fundamen-
tal work (as well as Bookstein, 1986) has opened up
the field.

Kanti V. Mardia is Professor and Head, Department
of Statistics, University of Leeds, Leeds LS2 9JT,
England.

Bookstein (1986) has used the model for shape
analysis assuming that the points are distributed in-
dependently as N,(u;, ¢2I),i =1, 2, ---, p. Consider
p = 3. Let x be the point in Kendall’s spherical shape
space from these three points with # representing the
corresponding point in Kendall’s space from u,’s. Let
i be their mean vector. Then using Mardia and
Dryden (1989), it can be shown that the probability
element of x is given by

1+x('x+1)}e"*dS, x€S8,,
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where v = 0, 7 € S, and dS is the uniform measure
on S,. In fact, » = ¥, | w — 2|?/(46?) where | - |
denotes the Euclidean norm. This distribution on
Kendall’s space will be written as K(/, %). It has a
mode at # and for » = 0, it is uniform on S,. Further,
as x — o, we have bivariate normality, and as » — 0,
we have uniformity. The distribution K(/, %) is, of
course, not the Fisher distribution F (/*, »*), but it
belongs to the class of rotationally symmetric distri-
butions as one would have expected. On equating the
first order moments, this distribution (see Figure 1),
is found to be very similar to the Fisher distribution
with 7* = /. As we would mostly expect large » for
biological shapes, it seems we can carry out inference
for the triangle case using the Fisher distribution.
Note that because K (7, %) is not in the exponential
family, inference is somewhat more complicated for
this distribution than for the Fisher distribution. One
possible advantage of this approach for p = 3 may be
as follows. It can be shown that for the variables in
Bookstein’s space, the second moments are infinite
(Mardia and Dryden, 1989), although here all the
“moments” are finite. The statistical implication of
this point needs closer examination but these two
approaches, directional and multivariate, should prove
complementary.
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FIG. 1. The profiles f(9) of the two spherical distributions with
/’'x = cos ¥, 0° < ¥ < 180°. —, exact distribution (x = 1); - - -,
Fisher distribution (x* = 1.47).

Let o, a2 and a; be the three angles of the triangle
and suppose the “handedness” of the triangle is ig-
nored. In passing, we note that Mardia (1980) obtained
the p.d.f. of two angles «; and a; for ¢ — o (or u;’s
equal),

6S/{x(3 — C)*

with S = 2 sin 2«;, C = Z cos 2¢; saying “it is uniform
in a certain sense” but could not see its implication.
Of course, it now dawns that this is uniform in
Kendall’s spherical space.

It has been assumed that the landmarks are known
but in practice they may not be. The determination of
biological landmarks relies on expert opinion in cre-
ating homologous points. However, we emphasize
mathematical landmarks that are some extremal
points on the outlines (e.g., points of maximum cur-
vature). These points can also be obtained by fitting
poly-lines recursively. For example, for the palm shape
in Figure 2, using any standard algorithm, we get the
landmarks P;, - - -, Ps (not necessarily in that order)
with base P, P,. How many landmarks one should take
for a given shape depends on the problem. For discrim-
ination, we can carry out tests of dimensionality on
shape variables recursively to select the number of
landmarks (see Mardia, 1986). However, there are
many problems in making sure that there is corre-
spondence of the landmarks within and between the
groups. If the fingers are not abducted, only the point
P; will be very unstable and it may be necessary to
select the threshold to be large in the poly-lines fitting
algorithm. In such cases, a suitable model for the
points must be independent N (u;, 67I) where the o’s
are not necessarily equal (see Mardia and Dryden,

1 —d 2

FiG. 2. Landmarks estimation for a palm shape.
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1989). The problem of shape change seems to be more
difficult.

Nowadays, one can work with video-digitized im-
ages and the outline in Figure 3A gives a digital
reconstruction of a T'1 mouse vertebra bone (see
Johnson, O’Higgins, McAndrew, Adams and Flinn,
"1985). An algorithm to estimate landmarks, developed
jointly with Ian Dryden, works as follows. The digi-
tized outline is represented by a set of points (here
over 300 points) and the local absolute curvature
maxima are found (about 30 points here). Then a
poly-line fitting algorithm is applied to this subset of
points and the vertices of the resulting polygon are
taken as landmarks (which are the points ¢ of maxi-
mum curvature in Figure 3B). Some further land-
marks are located at either side of each landmark, at
points of low absolute curvature (* in Figure 3B). We
will call them pseudo-landmarks and they provide
useful local shape information. Thus for the T'1 ver-
tebrae we obtain four landmarks and eight pseudo-
landmarks as finally mapped onto the outline in
Figure 3A. Consistency of the landmarks is verified
by applying the algorithm to all the bones, and for the
T1’s we have a reasonable correspondence both within
and between the three groups. The algorithm is not
straightforward for more complicated shapes like the
T2 bone in Johnson, O’Higgins, McAndrew, Adams
and Flinn (1985). It is expected that significant devel-
opments will take place in the estimation of land-
marks, especially for shape change. Again, the work
developed in the paper will play an important role.
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Coming to the Central Place Theory application,
Mardia (1977) also mentioned the use of the distri-
bution of the circumradius R in addition to the shape
variables when the size is relevant but now I am
convinced by the practical reasons put forward here.
I agree, the method of eliminating the edge effect is
effective. Indeed, it was used in simulations for Mardia
(1977). “One method of eliminating boundary effects
is to neglect those triangles whose circumcircles are
not wholly within the sampling window.” (See
Edwards, 1980, pages 107 and 108.) In particular, the
table below shows for n = 44 (mimicking the Iowa
data) for 1000 simulations, the effect of boundary on
the area A of the shape of Delaunay triangles in a
rectangle with sides in the ratio 1:2.

Simulated Corrected Miles’ Dist.
E(A) 1.52 1.57 1.57
var(A) 0.46 0.45 0.45

As expected, the correction process throws out the
long thin triangles with low values of A but in this
case there is little effect. Even if we assume the
independence of Delaunay’s triangles, it has been
pointed out that we will need a powerful test for the
hypothesis of “equilateralness” under Delaunay’s tes-
selations versus that under Central Place Theory. One
new plausible approach is as follows. It can be shown
that if we approximate Miles’ density with K(#, %) by
equating the mode and the strength of the mode for
the two distributions on the half-lune then /' =
(0,0, 1), » = 1.73 = %o, say. We can now test this null

B

FIG. 3. A, reconstructed T'1 bone from video-digital image with estimated landmarks (°), psuedo-landmarks (+). O indicates the start point
together with its direction for B. B, curvature k(s) versus arc length s for A, and the corresponding positions of estimated landmarks.
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hypothesis » = %, against x > %, because under Central
Place Theory, » will be very large under H;. Note that
under both hypotheses, we have 7’ = (0, 0, 1).

Under the Fisher approximation to K(/, %), we
could use under H,

. _ _ 1 _
270("/ - Ezi) ~ X%ny 701 = %01 - g %03,

where (x;, v, ), i = 1, ---, n, are the n spherical
coordinates for Delaunay’s triangles specified on
the half-lune as in Kendall (1983). The critical region
is the lower tail of the distribution. Note that in
terms of Bookstein’s shape variables for the triangles
(Qliy QZi)y 1= 11 <+, N, We have

2= V3Qu/(Q% + Q% — Qu + 1).

There is considerable room to improve the test. For
example, we could estimate the percentage points of
the test by simulating the Poisson process. Also, we
could carry out a test for the non-nested hypothesis
of the Miles’ distribution versus K(/, ») without any
approximation. All these ideas require further inves-
tigation. Another approach when the size of the tri-
angles is important is to use the mean area of triangles
like Mardia (1977) but now without normalizing to
R = 1. Its mean and variance are known under the

Comment

Wilfrid S. Kendall

David Kendall has been my close collaborator from
the very start of my scientific career, and so it gives
me great pleasure to add to the discussion of this
paper. I take as my theme the application of computer
algebra in statistics and probability. As evidenced
from the paper, some of the first instances of this have
occurred in the statistical theory of shape. I shall make
some remarks on the general application of computer
algebra in statistical science, and- then turn to the
specific application (to the diffusion of shape) with
which I have been involved recently.

1. COMPUTER ALGEBRA IN STATISTICS AND
PROBABILITY

The reader will have noticed several references to
the use of computer algebra (CA) in the investigations

Wilfrid S. Kendall is a Lecturer in Statistics, Depart-
ment of Statistics, University of Warwick, Coventry,
CV4 7AL, England. He is also David Kendall’s son.

Miles’ distribution and thus we can test the null
hypothesis. Of course, testing H, is only a small part
of the main problem; the shape and size summary
statistics themselves are revealing, e.g., in investigat-
ing comparative evidence of Central Place Theory for
various different data. It would be interesting to see a
detailed analysis of the Wisconsin data along the lines
given in the paper.

Finally, let me say that I found the paper very
stimulating and look forward to reading the forthcom-
ing book. ‘
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reported in the paper. To my knowledge this usage
represents one of the first substantial applications of
CA in the fields of statistics and probability. The
others known to me are my own related work on shape
diffusions (referred to in the paper as W. S. Kendall,
1988), which was encouraged by the success of CA in

" investigating the geometry of shape and is discussed

further below; and the work on asymptotics in density
estimation as described by Silverman and Young
(1987). (I would be most grateful to hear of further
instances.)

At present the use of CA in statistical science is in
its infancy, although many exciting possibilities
beckon. The emergence of readily available and pow-
erful personal workstations gives reason to hope for
rapid progress in the next few years. The wide screens,
multiple tasking facilities and cut - and - paste editing
of these workstations combine to yield a most produc-
tive environment for CA.

In what sort of areas might we anticipate CA’s
profitable employment? At the time of writing it seems



