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Comment

Max D. Morris

The authors have provided an interesting and read-
able account of a statistical approach to the problem
of approximating an unknown, deterministic com-
puter model. The approximation of unknown func-
tions, of at least a few arguments, has received
considerable attention in other specialty areas of
mathematics, but is relatively new to statistics. A
statistical approach brings a unique potential for deal-
ing with uncertainty in the problem. In particular, it
can lead to measures of quality for each prediction,
and a structure on which to base the design of efficient
experiments. Techniques which are relevant for ap-
proximating computer models are particularly timely,
because the scientific and technical professions are
quickly becoming reliant upon these as research tools,
and this manuscript reports some of the first serious
efforts to make statistics relevant to these activities.

THE CLASSICAL APPROACH

At the end of Section 3, the authors give their basic
argument for treating this problem statistically:
“Modeling a computer code as if it were a realization
of a stochastic process . .. gives a basis for the quan-
tification of uncertainty . . .” Following this, Section 4
outlines their strategy which seems clearly classical
(as opposed to Bayesian) in form; it is what a classical
statistician would do if the computer model actually
had been generated as a realization of the stochastic
process. While this strategy does provide a mathe-
matical structure for dealing with uncertainty, classi-
cal statisticians who like to motivate their analyses
with fictional accounts of random sampling and hy-
pothetical replays of an experiment may find this an
uncomfortable setting. After all, unless one random-
izes the experimental design, there will not be a cred-
ible frequentist probability structure in this problem.
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(My own usual preference for classical procedures is
heavily dependent on credible frequentist models. In
this problem, the Bayesian approach seems somewhat
more direct to me.)

A classical statistician, in order to proceed, will need
to be more pragmatic, by saying that a credible fre-
quentist model is unnecessary so long as the method
works. The first test of whether the method works is
whether it produces good approximations to computer
models. These authors, and others they have refer-
enced, have assembled a body of evidence that indi-
cates that this and similar methods have the potential
to produce good approximations. The second test,
which should be of particular concern to statisticians,
is whether it produces good (useful, dependable, mean-
ingful?) measures of uncertainty. Passing this second
test will be important if we are to take seriously any
claims of quantified prediction uncertainty or design
optimality. It is encouraging that the mean square
errors of prediction calculated in the example of
Section 6 seem to behave as we would hope.

CHOICE OF CORRELATION FUNCTION

As the authors point out in Section 4, the hopes of
the pragmatic classical statistician will be pinned on
the supposition that the computational model “though

_ deterministic, may resemble a sample path of a (suit-

ably chosen) stochastic process ...” So, choosing a
suitable stochastic process, presumably one for which
y would be a “typical” realization, becomes an issue.
This is particularly true for preliminary design pur-
poses (before data are taken from which a correlation
structure can be estimated). Some guidelines for this
selection process are well-known; the authors note
that p = 2 processes produce smoother realizations
than p = 1 processes. Also, a tentative value of § must
be chosen for preliminary design purposes; the authors
use 6 = 2 in the example of Section 6.

When selecting a process in several dimensions,
some attention should probably be paid to the degree
of interaction among inputs for typical realizations.
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The following may be useful in thinking about what
the product correlation form of equation (9) and a
particular value of # imply about these interactions.
Using the unit cube design space [—Y, +Y2]¢, suppose
we set all but two inputs (say inputs 1 and 2) to
arbitrary constant values, and denote by Y., Y.,
Y_., and Y__ the process at (x;, x2) = (+%, +%),
(+%, =), (—%, +%), and (—Y4, —%), respectively. Let
W, and W_ be the effects of the second input at the
high and low values of the first input, respectively:

W+ = Y++ - Y+_
W— = Y—+ - Y__

If the process is stationary, i.e., the linear model piece
of equation (1) is omitted except for an intercept, with
Corr(Y,., Y,.) = Corr(Y,_, Y__) = e”? = p, then
E(W,) = E(W_) = 0, and Corr(W,, W_) is also p.
When W, and W_ are of different sign, increasing
input 2 increases the response at one level of input 1
and decreases it at the other, a two-factor interaction
generally considered to be rather serious and hoped to
be rather rare in most modeling contexts. § values of
5.0, 0.5 and 0.05, lead to p values of 0.01, 0.61, and
0.95, which are associated with “prior probabilities” of
about 0.50, 0.30, and 0.10, respectively, that two inputs
will have this kind of interaction on any such square
region in the design space. By itself this seems to
suggest that, unless fairly complex interaction pat-
terns are expected in y, small values of § (perhaps %2
or less) are reasonable. When the linear model portion
of the authors’ equation (1) is included, weaker cor-
relations can be used without implying a prior pref-
erence for these effect-reversing interactions.

Of course, other issues must also be addressed in
choosing preliminary correlation values for design
purposes. In particular, using the relatively small val-
ues of f suggested above may lead to stronger-than-
desirable correlations in each dimension individually.
Sacks, Schiller and Welch (1989) suggested picking a
preliminary 6 value based on robustness considera-
tions, while Currin, Mitchell, Morris and Ylvisaker
(1988) conservatively chose a weak correlation to limit
the inference which could be drawn at one site from

-data observed nearby. Knowing how to pick a corre-
lation structure, and when to change it, will be criti-
cally important steps in hardening this methodology
for general use.

OPTIMAL DESIGN

In Section 7.4, the authors pose a number of impor-
tant questions including: “How important is optimal-
ity in this setting? Are there cheap-to-construct
alternatives that perform reasonably well?” Answers
will be important in this problem, because real com-
puter models often have more inputs (larger d) than

is customary in many physical experiments, and so
full-scale design optimization will be a numerical
problem of large dimension. The 16-run design used
in the first stage of the example of Section 6 was
computed by minimizing IMSE, assuming the corre-
lation function of equation (9) with § = 2 and p = 2.
Construction of the design required 11 minutes of
time on a Cray X-MP computer, and the resulting
value of VIMSE was 0.6347 (arbitrarily fixing ¢% = 1).
I looked at a few cheap-to-construct 16-run alterna-
tives, including the two-level resolution 4 fractional
factorial design generated by I = ABCD = CDEF,
centered in the design space and scaled so that the
absolute value of each element in the design matrix
varied from 0.05 to 0.5 in increments of 0.05. Assuming
9 = 2 and p = 2 as the authors did,vIMSE values for
these designs are shown in Table 1. (Values are also
given for p = 1 for comparison.) In particular, the
design scaled so that each input takes values —%4 and
+Y4 is nearly as good, with respect to IMSE, as the
authors’ design. Further, this design produces IMSE
values similar to those of the optimal design for dif-
ferent values of # and p (Table 2), suggesting that
cheap-to-construct near-optimal designs may share
any process-robustness properties the optimal design
may have. Finally, since the authors’ optimal design,

TABLE 1
VIMSE for various scalings of a 16-run fractional factorial design
vIMSE
Scaling* p=2 p=1
0.05 0.9061 1.1976
0.10 0.8389 1.0985
0.15 0.7527 1.0426
0.20 0.6798 1.0138
0.25 0.6508 1.0021
0.30 0.6773 1.0011
0.35 0.7432 1.0059
0.40 0.8213 1.0131
0.45 0.8913 1.0200
0.50 0.9446 1.0254

I = ABCD = CDEF
* Absolute value of each element in the design matrix.

TABLE 2
VIMSE for the optimal design of Section 6 and the resolution 4
fractional factorial on (+%)® for several values of 0, and p = 2, 1

] . Fractional
_ Optimal design _ fatorial
9 p=2 p=1 p=2 p=1

8.0 0.9795 1.0306 0.9798 1.0306
4.0 0.8548 1.0275 0.8601 1.0283
2.0 0.6347 0.9982 0.6508 1.0021
1.0 0.4011 0.8851 0.4239 0.8935
0.5 0.2265 0.7008 0.2470 0.7146
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like the optimally scaled fractional factorial, places
many input values about halfway between the center
and edge of the design region, I was curious about how
much of the optimality could be credited to this prop-
erty alone. So I generated 100 random 16-run designs,
where each element of the design matrix could be +%
or —% with equal probability (the only restriction on
the randomization was that no two runs could be
identical), and evaluated the criterion for each of
these. For § = 2 and p = 2, the smallest and largest
values of VIMSE for these designs were 0.6743 and
0.7138, not as close to optimal as the shrunken frac-
tional factorial, but also not too bad, and surprisingly
(to me) consistent.

Of course, one example does not prove that there
will always exist a cheap, simple, nearly optimal de-
sign. Also, as the authors note, it may not be so
important to save 11 minutes of supercomputer time
generating an optimal experimental design if the com-
puter model itself requires even more time per run.
But computing costs aside, I believe that a sizable gain
in design simplicity and symmetry is often worth a
small price in optimality.

Another related issue is how designs generated by
different optimality criteria compare. Using the en-
tropy criterion described in Currin, Mitchell, Morris
and Ylvisaker (1988), I generated a locally optimal
16-run design for the problem of Section 6, again using
6 = 2 and p = 2. This design is almost entirely in the
corners of the design space; only 4 of the 96 entries in
the design matrix are other than +% or —v%. vIMSE
for this design is 0.9343, which is not much different

Comment

Robert G. Easterling

The authors, referred to hereafter as SWMW, are

to be commended for their pioneering work in bringing

statistical thinking and methods to the design and
analysis of computer experiments. Critical decisions
are being made and conclusions drawn based on com-
plex computer models. Data may be lurking about, so
it is natural and vitally important that statisticians
get involved, and even when data are not lurking or
visible, SWMW show that statistical ideas can be
profitably used.
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from that of the largest fractional factorial considered
above. Just as in experimental design for linear
models, there is no reason to believe that two “good”
criteria should lead to exactly the same design. How-
ever, these two criteria are motivated by the same
general goal—that of relatively good prediction of y in
an overall sense—and it is somewhat disturbing to me
that the results of these approaches seem so dramati-
cally different. Somewhere along the line, I expect to
learn either that the approaches are not as similar as
I've assumed, or that the designs are not as different
as they appear.

CONCLUSION

In summary, I think that both the approach outlined
in this paper and the Bayesian alternative described
by Currin, Mitchell, Morris and Ylvisaker (1988) are
promising tools for approximating computer models.
A number of issues, such as selection of a stochastic
process and criteria against which designs may be
measured, must eventually be addressed in consider-
ably more detail. However, this paper marks an excel-
lent beginning, and the authors are to be congratulated
on a job well done.
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The authors address prediction in the sense of de-
veloping an interpolating function that can be used
economically as a surrogate for the computer model
in, e.g., finding the region in the input space that
optimizes the output. But computer models are also
used to make predictions in the more conventional
sense of statements about a possible future outcome,
such as the greenhouse effect, nuclear winter or the
temperature reached in the core of a nuclear reactor
in the event of a hypothesized accident. Inputs to such
calculations can be based on data, such as reliability
data pertaining to nuclear power plant safety systems,
so the output of the computer calculation is a statis-
tical prediction—a function, at least in part, of data.
For informed decision-making, we need to be able to
say something about the statistical and other uncer-



