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Comment

Bent Jorgensen

del Pino is to be congratulated for his extensive
survey of iterative least squares methods. In particu-
lar, I welcome the emphasis on the parallel between
statistical properties of the model and the structure
of the algorithm. This is where statistical computing
distinguishes itself from the general area of optimi-
zation. An example of this is the role of orthogonality
of parameters (cf. Cox and Reid, 1987), which implies
an exact or approximate block diagonal structure of
the Hessian of the log-likelihood function, with con-
sequent simplification of the calculations. Another
example is the discussion in Jgrgensen (1984) of
marginal and conditional maximum likelihood
calculations.

Actually, I think that this marriage between algo-
rithms and statistical theory will be taken much fur-
ther in the future, and-while, at the moment, iterative
weighted least squares algorithms are probably the
best general class of statistical algorithms available, I
predict that the use of iterative least-squares methods
will soon be changing. One of the driving forces in this
development is the theory related to Barndorff-
Nielsen’s formula (cf. Barndorff-Nielsen, 1988; Reid,
1988 and references therein) and associated methods,
such as saddlepoint approximations, modified profile
likelihoods and so on. It is possible that these devel-
opments, in particular their geometric aspects, will
lead to new and improved statistical algorithms.

To illustrate the potential influence of statistical
theory on computing habits, consider the fact that the
iterative weighted least-squares algorithm effectively
ignores the second derivative of the model function h,
denoted E(B) by del Pino. On the other hand the
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theory associated with Barndorff-Nielsen’s formula is
effectively the systematic exploration of high-order
derivatives of the likelihood, which certainly involves
quantities such as E(8). Hence, the advantage of
iterative weighted least-squares methods, that E(B3)
need not be calculated, will soon become unimportant,
because E(8) is needed for other purposes. In conclu-
sion, statistical calculations involve much more than
just the maximization of the likelihood or of some
other objective function, and future statistical com-
puter systems will to a larger extent than is the case
today, involve a complete system of procedures for
answering various types of inferential problems con-
cerning the data. No doubt, automatic execution of
symbolic mathematical calculations will play a crucial
role in these developments.

In the meantime, I would like to mention some
aspects of iterative weighted least-squares methods
considered in Jgrgensen (1984). There, I considered
what I call the delta algorithm, which is nothing more
than the iterative weighted least-squares algorithm
with a general A-matrix, concentrating mainly on the
case of a separable structure for the likelihood, and

"the possibility for implementing the algorithm in

GLIM. The paper discussed the relation with various
other algorithms and mentioned the algorithm for
robust estimation considered by del Pino in connec-
tion with (3.10), which I referred to as the case of
“score weights.” In fact, this algorithm may be used
in connection with any objective function and is not
specific to robust estimation. Among other choices for
A considered in Jgrgensen (1984) was the case (re-
ferred to as “deviance weights”), which, in the lan-
guage of generalized linear models, corresponds to a
data-dependent link function, such that the objective
function g becomes exactly quadratic. In other words,
all the nonlinearity of the model is “thrown” into the
link function. The point here is that there exists a
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range of possible choices for A, which allows the
construction of good algorithms for many different
types of statistical models.

This brings me to the question of choice of algo-
rithm, or, in the case of iterative weighted least
squares, the choice of the matrix A. The choice of
algorithm depends very much on the expected use of
the algorithm, and there is a world of difference be-
tween an all-purpose algorithm and an algorithm tai-
lored for a specific application. For example, the
Fisher scoring algorithm may be considered a good
general algorithm. However, in many specific appli-
cations, it is easy to find better algorithms, for example
the algorithms based on the deviance weights or score
weights mentioned above. Another example is the case
of a convex objective function, for which the Newton—
Raphson algorithm is the natural choice for a general
algorithm. However, if the objective function is close
to being nonconvezx, as is the case for example for the
hyperbolic distribution mentioned in Jgrgensen
(1984), the Newton-Raphson algorithm may become
unstable, and, again, one of the two algorithms men-
tioned above may offer a more stable performance. An
extreme case of this is L,-estimation, where the New-
ton-Raphson algorithm fails, whereas the algorithm
with score weights may be used.

Finally, I want to point out that our understanding
of the relative performance of algorithms is still, at
best, incomplete. I believe that the study of conver-
gence, as practiced in the mathematics of optimiza-
tion, is a fairly crude and incomplete tool for the
understanding of the performance of algorithms, at
least for statistical algorithms. For example, I have,
until now, never seen a satisfactory explanation of the
fact that Fisher’s scoring algorithm works extremely

Comment

Peter McCullagh

TERMINOLOGY

del Pino draws a distinction between iteratively
weighted least squares (IWLS), in which the response
vector Y is assumed to have a diagonal covariance
matrix V, and iterative generalized least squares
(IGLS), in which V is an arbitrary covariance matrix.
For purposes of exposition this distinction seems
rather inconsequential, and, to'my mind, insufficient
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well in the case of generalized linear models, as ex-
emplified by GLIM. I have rarely seen an example of
a generalized linear model where the algorithm di-
verges, in spite of the fact that no steplength calcula-
tion is performed (in GLIM), and the number of
iterations to convergence is, in the majority of cases,
around three to five. This is in contrast to the case of
more general, non-exponential, models where the
Fisher scoring algorithm may become excruciatingly
slow, even when a steplength calculation is included.
To draw a parallel, the simplex algorithm for linear
programming is known to perform much better in
praxis than expected on the basis of a worst-case
analysis. Not surprisingly, at least to a statistical
audience, a more complete understanding of the effec-
tiveness of the simplex algorithm was obtained only
after a probabilistic analysis of the algorithm was
performed (cf. Borgwardt, 1987 and references
therein). Similarly, I suspect that our understanding
of the performance of iterative weighted least-squares
algorithms will remain incomplete until a probabilistic
analysis of the algorithm has been undertaken.
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to justify the usage of two four-letter acronyms. For
numerical purposes, however, the savings in compu-
tational effort and organizational overhead resulting
from the assumption of independence are very sub-
stantial. Thus, as the title suggests, the most useful
distinction relates to computational organization
rather than to conceptual issues.

ESTIMATING EQUATIONS VERSUS
MINIMIZATION CRITERIA

del Pino is correct in his claim that the generaliza-
tion of Gauss-Markov estimation is most naturally



