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Comment: Are Ozone Exceedance Rates

Decreasing?

Adrian E. Raftgry

In this excellent paper, Professor Smith has synthe-
sized a range of powerful methods for the analysis of
extreme values. The point process of cluster peaks
over a high threshold provides a remarkable conden-
sation of the massive data set that he analyzes. It
involves little loss of relevant information and permits
fairly simple analyses. The methodology is sure to find
wide application.

Nevertheless, I find it hard to think of physical
explanations for the conclusion that there has been a
downward trend in the extreme values without any
accompanying decrease in the overall levels of the
ozone series. Here I try to reassess the evidence in
terms of a comparison between competing models for
the intensity of a Poisson process. The analysis sug-
gests that there is some evidence for a decreasing
trend in exceedance rates but that it is rather weak.
If there is a trend, it seems more likely to consist of a
fairly abrupt change than a gradual decrease. The
possibility that such a change is due to an improve-
ment in measurement technology is discussed. I also
consider the possibility of long-memory dependence
and discuss the clustering method used.

1. ARE OZONE EXCEEDANCE RATES
PECREASING?

The evidence in the paper for decreasing exceedance
rates consists mainly of the fact that the estimated
trend was downward in all the models that incorpo-
rated a trend. However, these models did not appear
to fit better than models that did not incorporate a

trend. For example, the likelihood ratio test statistic .

for splitting the data was 16.6 with 18 degrees of
freedom.

This may be due more to the large number of degrees
of freedom than to the absence of an effect. It might
be worth, for example, fitting a model of the form
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(4.1), but with Mij = o + ﬁéi, where 6;=0 for 1973-80
and §; = 1 for 1981-86. One could then test the
hypothesis that 8 = 0, which involves only one degree
of freedom rather than 18. There are many other
parsimonious possibilities.

Nonhomogeneous Poisson Process Models for
Exceedances

Professor Smith’s conclusion corresponds to a de-
creasing rate of occurrence in the point processes of
exceedances above high thresholds. This process was
not fully observed, and the proportion of time moni-
tored varied over the period, increasing gradually but
significantly. I therefore expressed times of occurrence
in terms of monitored time since the start of the data,
rather than calendar time. Also, ozone levels are highly
seasonal. I estimated the seasonal effect as piecewise
constant within each of the six 61-day periods and
deseasonalized the data by transforming the time axis
(Cox and Lewis, 1966). The resulting series of events
are shown in Tables 1 and 2. I denote by T the period
of observation and by t = (¢;, - - - , t,) the event times.

If there is no trend, the data in Tables 1 and 2 are
very nearly from a homogeneous Poisson process; we
denote this model by M,. This assumes that any short-
term correlation has been removed by considering only
cluster peaks. An alternative hypothesis is that the
exceedance rate has been decreasing smoothly and
gradually. This may conveniently be represented by
the log-linear Poisson process, M;: A(s) = pe ™, where
A(s) is the rate of occurrence at time s. Another
possibility, suggested by the splitting of the data in
the paper, is that the exceedance rate decreased fairly
abruptly within a short time period. This may be
represented by the change-point Poisson process,
My: Ns)=MifO0<s<rtandAs)=Nifr<s=<T.

Model Comparison

The three competing models, My, M, and M,, may
be compared using the Bayes factor, or ratio of pos-
terior to prior odds for M; against M;, B;;, for each
pairwise comparison. It has been argued that Bayes
factors are better measures of evidence than P values
(Berger and Sellke, 1987), and they are also more
readily applicable to the comparison of nonnested
models. ‘
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TABLE 1
Times of occurrence of exceedances above threshold level 16

TABLE 3
Model comparison results

62 511 913 1442 -1760 2168 2890 3550
71 539 934 1484 1774 2204 2976 3565
88 5556 1006 1506 1830 2245 3051 3636
114 585 1022 1527 1893 2363 3079 3685
122 596 1043 1554 1924 2417 3153 3827
146 610 1057 1585 1986 2465 3257 3846
184 627 1138 1617 2007 2535 3302 3891
219 662 1184 1621 2045 2568 3325
235 740 1231 1624 2076 2608 3346
285 779 1318 1642 2099 2705 3403
327 847 1409 1742 2122 2791 3421

In monitored days from the start of the data, deseasonalized (read
down the columns).

TABLE 2
Times of occurrence of exceedances above threshold level 20

71 327 1057 1624 1986 2122 2705 3079

88 555 1442 1642 2045 2417 2791 3550
122 847 1484 1830 2076 2465 2890 3846
285 913 1585 1893 2099 2608 2976

In monitored days from the start of the data, deseasonalized (read
down the columns).

With vague prior information, the Bayes factor for
M, against the log-linear Poisson process, M, is

0 n—1
(1) B()1 = 0645(n - 1)/f e—RyI:_l—_—] dy9
0 1—e™

where R = Y t;/T (Akman and Raftery, 1986a). The
Bayes factor against the change-point Poisson proc-
ess, M,, is

4/xT(n + %)
PoTGE+ %)T(n— 1+ WI;

(Raftery and Akman, 1986). In (2),

(2) By, =

Uity
I = f x—(i+1/2)(1 _ x)——(n—-i+‘/z) dx,
u,

where u; = t;/T.
A classical test statistic for M, against M, is U =
(R — Y%2n)/+vn/12, which has approximately a standard

normal distribution under M, (Cox and Lewis, 1966).
A test of M, against M, may be based on the quantity

8) A=n"2 max {lgG—1, w)l, |G, w) |}

Ol=sy;=.

1-—
- (-0 \/—.
u 1-u

The approximate 5% critical value for this test is 3.29
(Akman and Raftery, 1986b).

where

g, u) =1

Threshold level
16 20
10gloBol 1.69 1.11
U —1.02 -0.97
logmBoz —0.44 —0.30
A 2.33 2.15

B,, is the Bayes factor for the homogeneous Poisson process against
the log-linear Poisson process given by (1); U is the corresponding
classical test statistic. By, is the Bayes factor for the homogeneous
Poisson process against the change-point Poisson process given by
(2); A is a corresponding classical test statistic given by (3).

In Table 3 there is evidence against a gradual de-
crease in exceedance rate of the form specified by M;.
The posterior odds for the change-point Poisson proc-
ess are 2.7:1 and 2:1 at threshold levels of 16 and 20,
respectively. In the words of Jeffreys (1961), this
constitutes evidence against the homogeneous Poisson
process, but it is not worth more than a bare mention.
In addition, the result of the classical test based on
(3) is not significant.

Checking the Homogeneous Poisson Process

Since the evidence for a trend appears weak, it
seems worth checking the homogeneous Poisson proc-
ess model itself. One way of doing this is to compare
the observed evolution with those of several data sets
simulated from the model. Since the homogeneous
Poisson process is time-reversible, we can do the same
with the time-reversed data set. Ripley (1977), who
pioneered this approach, used point estimates of the
model parameters in the simulations, but this may
lead to simulated bands which are too narrow. Here,
uncertainty about the parameter \ of the homogene-
ous Poisson process is incorporated as follows (Rubin,
1984; Raftery, 1988). First, generate a value of A from
its posterior distribution, taken here to be Gamma
(n + %, T'), and then proceed as before.

The result is shown in Figure 1. The data do not go
outside the simulated bands except very briefly in
Figures 1(b) and 1(d). Once again, the evidence against
the homogeneous Poisson process does not seem
strong. The simulated bands may still be too narrow
because they do not take account of uncertainty about
the estimated seasonal effect, and so the evidence may
be even weaker than it appears.

Analysis of the Change-Point Poisson Process
Model

The analysis so far suggests that, if there is a trend,
it is better represented by a change-point than by a
gradual decrease. The posterior distribution of the
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F1G6. 1. Diagnostic checking for the homogeneous Poisson process.
In each graph, the solid line represents the data and the dotted lines
are the outer envelopes of 19 simulations from the model, as described
in the text.

change-point is given by equation (2.3) of Raftery and
Akman (1986) and is shown in Figure 2. At threshold
level 20, the posterior distribution is less diffuse than
at level 16. The posterior mode is April 11, 1984, which
is at the beginning of the 1984 “ozone season.” This
result reflects the fact that there was only one exceed-
ance above level 20 in each of 1984, 1985 and 1986,
compared with 28 such exceedances in the previous
10 seasons. The posterior mode at threshold level 16,
which is less marked than at level 20, is June 25, 1981.

The analysis here is tentative in many ways. In.

particular it seems important to include relevant co-
variates, especially temperature, as emphasized by
Davison and Hemphill (1987). It would be interesting
to know if there were any events which could have
caused an abrupt change, such as legislation, changes
in Federal standards, highway development, or
changes in data collection, checking and reporting
practices.

My colleague Peter Guttorp has suggested the fol-
lowing as a possible explanation. In the past, hourly
ozone measurements were often based on 25-minute
averages. Now it is more usual for measurement to be
continuous, so that hourly measurements are based
on 60-minute averages. Such a change in instrumen-
tation would not have changed the overall level of the
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FIG. 2. Posterior distribution of the change-point in the change-
point Poisson process model. Time in monitored days, deseasonalized.
(a) Threshold level 16; (b) Threshold level 20.

series, but it might well have reduced its variability,
and hence the exceedance rate, because the measure-
ments are based on more data. This would have been
an abrupt change rather than a gradual one, and so
seems consistent with the results here and in Professor
Smith’s paper. It would be interesting to know if there
was such a change in instrumentation in Houston
during the period covered by the data. If so, it would
suggest that we are not seeing an improvement in
compliance with the Federal standard, but rather a
change in measurement technology.

2. OTHER ISSUES

Long-Memory Dependence

Long-memory dependence is known to be a feature
of at least some climatic variables (Haslett and
Raftery, 1989, and references therein). Climate influ-
ences ozone levels, so it is possible that ozone levels
may also exhibit long-memory dependence. This is
characterized by small but nonnegligible autocorre-
lations at long lags, an infinite spike at zero in the
spectrum or “cycles of all periods,” and high variability
of the sample mean and other statistics. It is hard to
detect but can dramatically affect statistical analyses.

Is there any evidence of long-memory dependence
in the ozone data? How could it be detected? Would
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it affect the analysis of extreme values? If so, how
could it be incorporated into the analysis? I would
welcome Professor Smith’s views on these questions.

The Clustering Method

The method for forming clusters used in the paper
is essentially the single link method. This has the
possible disadvantage that two clusters six days apart
with a single exceedance between them could be
merged (Gordon, 1981). An agglomerative sum of
squares method might be preferable given that the
aim is to obtain compact clusters. Inspection of the
dendogram could help with the choice of a cluster
interval.
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Comment

David Fairley

Iread Dr. Smith’s analysis with great interest. I was
unfamiliar with the point-process approach and was
impressed by how elegantly it encompasses the other
extreme value theory methods. At the same time, I
was impressed by how hard it is to apply this theory
to the problem at hand. Beyond his expertise in ex-
treme value theory, Dr. Smith has clearly taken great
pains to take the practical issues like dependence and
seasonality into account. Nevertheless, the results ap-
pear somewhat weak given the power of the theory
that went into them.

My work at the San Francisco Bay Area Air Quality
Management District (affectionately known as the
BAAQMD) has given me an applied orientation to the
analysis of ozone trends, so most of my comments are

David Fairley is the statistician at the Bay Area Air
Quality Management District, 939 Ellis Street, San
Francisco, California 94109.

Disclaimer: The opinions expressed here are the au-
thor’s own and not necessarily those of the Board of
Directors or staff of the Bay Area Air Quality Manage-
ment District.
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directed more toward specific practical problems than
at theoretical ones. However, some of the practical
considerations involved in ozone trend detection sug-
gest ways in which the theory might be usefully
extended.

In Section 2, I will try to define the underlying
problem as clearly as possible. This leads to several
possible ways to extend the analysis and make it more
powerful (Section 3). Beforehand, though, I will sug-
gest several reasons why the data appear to me even
messier than Dr. Smith suggests.

1. MORE COMPLICATIONS

Dr. Smith dealt with some important practical dif-
ficulties, including the short-term dependence, sea-
sonality and missing values. Several other factors
complicate the picture.

Measurement error is generally overlooked in ozone
trend studies, but it can affect the results substan-
tially. The instrument measuring ozone can only mea-
sure to the nearest pphm, so the actual data are
discrete. There has been more than one method for
measuring ozone. The instruments used at the
BAAQMD up through the mid ’70’s measured all



