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translation parameter 6, and make use of the Kolmo-
gorov-type statistic D,(g, P) based on the shell func-
tion g(x) = (1 — | x|?™. Let 2 = {P’: § € R?} be the
translation family of probability measures defined by
P’(A) = P(A — 0). Suppose one wishes to estimate 0
by the minimum distance estimator, §,, defined as
that value of § € R which minimizes the distance

Da(g, P") = sup | Prg(- —t) — Pg(- =t — )]

Under the assumption that the true parameter is 6, =
0, it appears that the asymptotic distribution of 4,
may be the same as that for Pollard’s estimate, 7,,, the
value of ¢ at which P,g(- — t) is maximized, even
though the minimization problems are different. Let
me offer as a third test of the author’s methodology
the question of determining the limiting distribution
of n'/2,. This type of problem is similar to one con-
sidered by Blackman (1955), except that he used a
Cramér-von Mises distance rather than a Kolmogorov
one; in Pyke (1970) this simpler problem was used to
illustrate the applicability of the “weak implies strong”
methodology mentioned above.

Although I have directed my comments on the paper
towards statisticians as users of this theory, I would
stress that the paper is also of great value to those
doing research in the area. From both viewpoints I
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There are also other powerful contemporary tools
available for tackling asymptotic problems of mathe-
matical statistics. The ones we have in mind are strong
and weak approximations (almost sure and in proba-
bility invariance principles) for empirical and partial
sum processes based on various forms of the Skorohod
embedding scheme, or on various forms of the Hun-
garian construction. The quoted book of Shorack and
Wellner (1986) is also an excellent source of infor-
mation on these methods. For further references on
the methods and their applications, we mention the
books of Csorgd and Révész (1981), Csorgd (1983),
and Csorgd, Csorgo and Horvath [CsCsH] (1986). For
an insightful overview of strong and weak approxi-
mations we refer to Philipp (1986) (cf. also the review
of Csorgd (1984)). Concerning Hungarian construc-
tions, for those who are really interested, the papers
of Bretagnolle and Massart (1989), and Einmahl
(1989) are most recommended readings.

Here we make use of the first problem discussed by
David Pollard to illustrate what we mean by strong
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and weak approximation methods and by their direct,
straightforward application to this problem. Let X;,
X,, --- be independent, identically distributed ran-
dom variables with distribution function F on the real
line. Let

F,x)=n"#Hl=si=n: X; < «xj}

and
an(x) = nY*(F,(x) — F(x)), xE€ER,

be the empirical distribution function and the empirical
process, respectively, of the first n of these random
variables. Let us first take it for granted that we
have constructed a sequence of continuous Gaussian
processes {B,(t), 0 = t < 1} on a probability space
(2, &, P) on which X;, X,, ---, and B, live to-
gether so that P{X; = x} = F(x), B, is a Brownian
bridge for each n = 1, 2 ---, i.e., a real valued,
mean zero Gaussian process with covariance function
EB, (s)B,(t) = min(s, t) — st (thus, for each fixed t €
(0, 1), B,(t) is a N(0, t(1 — t)) random variable) and,
as n — %, we have

(1) sup | an(x) — B.(F(x)) | = 0p(1),

—oo<< x <00
and, on assuming that EX? = [2, x® dF(x) < «, we
have also

2 .L, | an(x) = Bu(F(x)) | dx = op(1).

The statements (1) and (2) are examples of what
we mean by weak approximation (invariance principle
in probability). They are conceptually simpler than
the notion of weak convergence (functional central
limit theorem). Also, (1) actually is a stronger form of
Donsker’s theorem; it implies the corresponding clas-
sical Donsker functional theorem. From the point of
view of this remark, which may very well coincide with
that of the statistician in general, it is irrelevant how
exactly the construction leading up to (1) and (2) is
carried out. For details we may refer to Chapters 2
and 3 of CsCsH (1986), and for (2) in particular
to Lemma 3.2 of the latter monograph. Here we
will simply use them as if one were using a central
limit theorem, only more directly however, as
building blocks in the process of obtaining our
weak approximations.

As in the Pollard exposition, for t € R we let

G,,<t>=n-1_2|x,-—t|=,f | 2= t] dFa(x),

i=1

G(t)=J: |x—t|dF(x)

and define, what he calls the standardized difference,

8. by
Bn(t) = nV4(G,.(t) — G(¢))

=J: |x—t] da,(x).

The statistic G,(X,) = n™ ' X%, | X; — X, | is the first
of the two problems discussed in Section 2 of Pollard’s
work. Going at it from the weak approximation point
of view, the definition of 8, and (1) immediately
suggest that for large n the process 8,(t) in ¢t € R
should be close to the sequence of Gaussian processes

T(¢) = f |x—t|dB.(F(x), tER,

which have the same distribution for each n. Indeed,
we have the following simple invariance principles in
probability. With all due respect to many in statistics
who cannot stand theorem-proof like presentations,
we have found it most economical to summarize our
view exactly that way.

Proposition 1. If EX? < «, then as n — © we have

3) sup | Bn(t) — Tu(t) | = op(1).

—co<t<oo

Proof. Integrating by parts, using the assumption
EX2 < o, we have, writing sup, for sup_w<;<c«,

sup [ B.(t) — Tn(t) |

=sup lex—tl d(an(x) = B, (F(x))) l

t

= sup J:w (an(x) =B, (F(x)))d|x—t|

t

= sup J:(a,,(u+t)—B,,(F(u+t)))d|u|

t

=sup | — J: (a,(u+t)—B,(F(u+t)))du

t

+J; (an(u+t) —B,(F(u+t)))du
<sup {I | an(x) — B, (F(x)) | dx
+f |a,,(x)—Bn(F(x))Idx}

= J:w | an(x) — Ba(F(x)) | dx=0p(1),

on account of (2), where the equality obtained by
integrating by parts holds with probability one for
each n.
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The result of (3) for each fixed ¢t rhymes with Pollard
saying that if F has a finite variance, the standardized
difference 3, is asymptotically normal, for each fixed
t, namely

@ BOST@):= f _|x—t|dB(F ),

where B is a Brownian bridge. Of course (3) implies
also a weak convergence version of the latter conver-
gence in distribution result.

We can write X, = [“. x dF,,(x), and similarly to
Proposition 1, (2) implies

= OP(]-),

(6) | nAX,—p) —J: xdB,(F(x))

where y = EX; = (2, x dF(x).

One of the points made in Pollard’s work is, of
course, the asymptotic normality of nY%(G.(X,) —
G(u)). In terms of our weak approximation language,
the latter reads and easily established as follows.

Proposition 2. If EX? < « and F is continuous in a
neighborhood of u, then as n — % we have

n'2(G,(X,) — G(w)

(6) — {I‘n(u) + @F(w - 1) J:w X dBn(F(x))} l

= OP(]-) )
and hence also

n2(G,(X,) — G(w)

) @ ”
— I'(w) + 2F(w) — 1) | dB(F(x)).

Proof. An elementary calculation yields
8) G'(t) = 2F(t) — 1.
We write
n*(Gn(X,) — G(w)
= Bn(Xn) + nVA(G(X,) — G(u)).

It is easy to see that I',(¢) is almost surely continuous
at u for each n (cf. (17)), and therefore (3) and (5)
yield

9

I Bn(Xn) - Fn(l-‘) I
(10) = I Bn(Xn) - Pn(Xn) I + I Fn()_(n) - Pn(/“') I
=0P(1),

ie., 6.(X,) = nY*G,.(X,) — G(X,)) has the same
limiting normal distribution as 8,(x) = nV3(G,(x) —
G(n)), namely 8,(X,) > I'(x). Now the mean value
theorem, the assumed continuity of F around u, (5),

and (8) result in

nA(G(X,) — G(w)

(11) =
- @2F(w - 1) J:w x dBn(F(x)) = op(1).

A combination of (9), (10), and (11) implies the result
in (6).

We note that (11) spells out exactly what the con-
tribution of n'/?(X,, — u) is to the limiting distribution
of n¥*(G,(X,) — G(x)) in (6). This asymptotic contri-
bution of nY/%(X, — u) vanishes if F(u) = %, i.e., if u
were also a median of F, for then 2F(u) — 1 = 0. This
brings us to the natural proposition of replacing X,
by the sample median m,,, or by any other consistent
sequence of estimators of a population median m of F.
This is also mentioned of course in Pollard’s work,
who notes also that the choice of m,, for the centering
leads to another measure of spread, inf, G,(t), for the
sample. In this particular example the solution is easy.
Indeed, arguing as in the proof of Proposition 2 we
have the next, obvious from the weak approximations
point of view, result.

Proposition 3. If EX} < « and F is continuous in a
neighborhood of m and m, — m = op(1), i.e., m, is a
weakly consistent sequence of estimators for m, then
as n — o we have

(12) | nY*(G.(m,) — G(m)) — T',(m)| = 0p(1),
and hence also
(13) nY2(Gn(m,) — G(m)) —> T'(m).

Next, in addition to (1) and (2), let us take it for
granted that, on an appropriate probability space, as
n — oo, we have already established

sup |an(x) = Bu(F(x)) |
~w<z<w (F(x)(1 — F(x)))*™

(14)
_ JOp(n™% log n), if v =1,
“ 10p(n™), ifo<v<.

This is Lemma 7 in Cs6rgd and Horvath (1988a), and
it is based on earlier versions in Csorgd, Csorgo,
Horvath and Mason (1986), Csoérgd and Horvath
(1986) and Mason and van Zwet (1987). Given (14)
and some slight conditions on F, we can restate our
invariance principles in probability so far with rates of
convergence attached this time around, and watch how
new conditions present themselves in a most natural
way for the job at hand.

Proposition I1*. If

J(—z—):=f (F(x) 1 —=F(x)) > "dx <
1—-2v o
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for some v € (0, ¥4), then as n — «
(15) sup | B.(t) — Tn(t)| = Op(n™).
—oo<Lt <00

Proof. First we note that J(2/(1 — 2»)) < « implies
E|X,|*%%) < o for some » € (0, %), a stronger
moment condition than that of Proposition 1. This
follows from extending the discussion in the Appen-
dix of Hoeffding (1973). Hence EX? < o and, on
integrating by parts we get, as in the proof of Propo-
sition 1,

sgplﬁn(t) - T.(t)|

f_w (an(x) = Bn(F(x))) d|x—¢|

= sup
t

= iw Ian(x) _Bn(F(x)) I dx

= oo L@ =B (F@) |
=SSP F@A-F@)”

. J: (F(x)(1 = F(x)))*™ dx,
and hence (14) implies (15).

We note that by the Appendix of Hoeffding (1973)
it is easy to give a sufficient moment condition for the
finiteness of J(2/(1 — 2v)) of Proposition 1*. For
example, if

E{]1 X, | (log(1 + | X; )2} < o,

then J(2/(1 — 2»)) < o (cf. also Section 3 of CsCsH
(1986) for related material).

Proposition 2*. If J(2/(1 — 2»)) < o for some v €
(0, ¥2) and F possesses a bounded density f in a
neighborhood of u, then as n — o

nV%(G,(X,) — G()

(16) —{I‘n(y)+(2F(/.t)—1) f den(F(x))H

= Op(n_").

Proof. First, along the lines of the proof of Proposi-
tion 1, we observe that we have with probability one
for each n and all ¢

Fn(t)=[ Bn(F(x))dxtf B.(F(x)) dx.

Hence we have with probability one for each n and
all s, ¢ :

(I7) | Tn(t) = Thls) | =2|t—s| sup|B.(F(x)) |,

and note also that, instead of (5), we now have

=0p(n7),

n(%, ) = f _xdB,(F(x)

(18)
v € (0, 1),

similarly to Proposition 1* by (14). With an eye on
(9), from (15), (17) and (18) we conclude

[ 8n(Xn) = Tn(n) |
=|Ba(X,) = Tw(X,) | + | Tn(Xn) — Tl |
(19) =|B8n(X,) —Tn(X,) |
+2| X —pl sup | B, (F(x)) |

=0p(n”)+0p(n™*)=0p(n™),
while a two-term Taylor expansion gives
n(G(X,) - G(w)
=(2F (W) — Dn"* (X, — ) +f(£)n* (X, — 1)?,

where min(X,, x) < £, < max(X,, x). Hence by (18)
and the assumed boundedness of f around u we get

(20)

n2(G(X,) — G(w)

(21) _ - @QFw -1 Lﬁ x dB,(F(x)) l

= 0p(n™) + Op(n™?)

= O0p(n™).
On account of (9), (19) and (21) we now have also
(16).

For the sake of a similar version of Proposition 3
we estimate the median m of F by the sample median

m,, = inf{x: F,(x) = %}.

Proposition 3*. If J(2/(1— 2v)) < o for some v €

(0, %), and F possesses a density f in a neighborhood

of m and f is positive and continuous at m, then
(22) |n"*(Gn(m,) — G(m)) — Ta(m)| = Op(n™).

Proof. It is well known (cf., e.g., Csérgo (1983, Sec-
tion 1.5) or Serfling (1980, Section 2.3.3)) that under
the given conditions on f we have, as n — ,

(23) n"(m, — m) 2> N(0, 1/(4f*(m))).
As in (9)
n*(G,(m,) — G(m))

= B.(m,) + n**(G(m,) — G(m)),

and a two-term Taylor expansion gives (compare

(24)
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with (20))
(25) nYAG(m,) — G(m)) = f(n,)n'*(m, — m)?,

where min(m,, m) < 5, < max(m,, m). By (15), (17)
and (23) we get, as in (19),

(26) | B2(m,) — Tn(m) | = Op(n™),
while (23) and (25) combined yield

(27) n'*(G(m,) — G(m)) = Op(n™"?).
Now (24), (26) and (27) result in (22).

This also concludes what we wish to say about quick
and easy applications of weak approximation methods
(invariance principles in probability) to the first prob-
lem discussed by Pollard. There are of course similar-
ities between the two approaches taken. Pollard too
uses approximation arguments, but to make them
precise he puts the onus on probabilistic bounds on
the oscillations of the empirical process in shrinking
neighborhoods of a point (like ¢ or m above), while
we work with approximating the whole empirical proc-
ess instead (as in (1), (2) and (14)), and then use the
approximating Gaussian sequences as building blocks
in the process of replacing the empirical parts by
Gaussian ones and thus piecing together asymptotic
representations (identifications in the limit) for the
sample processes at hand.

As to the nature of the results of the above propo-
sitions, they are similar to those obtained for the
empirical process with parameters estimated (cf.
Burke, Csorg6, Csorgdé and Révész, 1979; Durbin,
1973a, b) in that they are also asymptotically distri-
bution dependent. Hence computations for the desired
asymptotic distribution functions are difficult to come
by. These results, however, can be bootstrapped by
resampling the data. For tools of bootstrapping em-
pirical functionals, we refer to Bickel and Freedman
(1981), CsCsH (1986, Chapter 17), and for a successful
execution of bootstrapping the empirical process when

the underlying parameters are estimated we refer to

Burke and Gombay (1988).

We have also promised to illustrate strong approxi-
, mation methods on the above discussed first problem
of Pollard. Let {K(y,t);0<y=<1,0=<t<x}bea
Kiefer process, that is, a real valued, mean zero, two-
parameter Gaussian process, with covariance function
EK(y, t)K(u, s) = min(t, s)(min(y, u) — yu) (thus in
t, K(y, t) is like a Brownian motion, and it is like a
Brownian bridge in y), which we accept to have been
constructed for a, on an appropriate probability space
so that, as n — o, )

sup |an(x) — n72K(F(x), n) |

(28) —00lx<<00
' £ O((log n)*/n*?).

This is an example of strong approximation (strong
invariance principle) and a famous one at that (cf.
Komlés, Major and Tusnady (1975) for the original
result, or Theorem 4.4.3 in Cs6rgd and Révész (1981)).
The empirical process a,(x) is approximated almost
surely (a.s.) as a two-parameter process in x and n by
a single two-parameter Gaussian process K(F(x), n).
In addition to weak laws, via (28) «,(-) inherits also
strong laws, like for example the law of the iterated
logarithm (LIL), from K(-, -). Here, using (28) along
the lines of the proofs of Propositions 2* and 3%,
combined with appropriate LIL laws like Theorem
1.15.1 of Cs6rgd and Révész (1981), under the respec-
tive conditions of Propositions 2* and 3* one easily
obtains immediate respective LIL laws as follows:

1/2
0 < lim sup (iog;lm) | Go(X,) — G(p) |

n—oo
<o a.s.

and

1/2
. n
0 < lim sup (W) | Gr(m,) — G(m) |

n—o
<o a.s.

For multivariate generalizations of (1) and (28) with
rates, and with an arbitrary distribution function F
on RY d = 2, we refer to Philipp and Pinzur (1980),
Borisov (1982), and Csérgé and Horvath (1988b).
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Rejoinder

David Pollard

I find myself in the position of a man who has just
pointed out how one can balance a checkbook using a
high-powered graphics workstation. Professor Dudley
responds by suggesting some further applications in
the same spirit. Professors Giné and Zinn point out
that one can also use the machine for high speed
interactive graphics. Professor Pyke mentions other
uses more suited for a piece of high technology, while
suggesting (perhaps tongue in cheek) that my par-
ticular checkbook might also be balanced using a
hand-held calculator. Professors Csorgoé and Horvath
demonstrate that their super parallel processor can
also balance checkbooks.

In large part I agree with, and welcome, the com-
ments of this distinguished group of discussants. But
to maintain the correct atmosphere of contrariness
and provocation, I will find some way to disagree with
all of them. )

Professor Dudley suggests that Fréchet differentia-
bility, with the right choice of norm, should be used
in preference to compact differentiability. As he has
convincingly argued in his 1989 preprint, this new
viewpoint does free Fréchet differentiability from the
uncomfortable constraint of distribution functions on
the real line. However, compact differentiability (with
derivative A,) of a functional T'.is enough to imply

V[T + 2,/Vn) — T(x)] = A, - 2z, + o(1)

for each convergent sequence {z,}, a property that is
ideally suited to application of Dudley’s (1985) almost

KoMLOs, J., MAJOR, P. and TUSNADY, G. (1975). An approximation
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uniform representation theorem. Gill (1987) has ex-
plored this aspect of compact differentiability.

Dudley also suggests substitution of the smooth
convex p(x) for | x|, to eliminate the problems caused
by nondifferentiability of | x | at the origin. As a device
to simplify the asymptotic theory this is unnecessary
(Pollard 1989a); Tchebychev’s inequality, the CLT for
bounded (vector-valued) summands, and an elemen-
tary convexity argument can handle the estimator,
even for ¢ = 0.

Professors Giné and Zinn quite properly point out
some of the beautiful general theory—in particular,
the work of Talagrand—that I failed to mention. I feel
that conditions expressed in terms of limiting Gauss-
ian processes will not appeal to many potential users
of empirical process theory, even though there are
excellent theoretical reasons for preferring their ap-
proach. At this stage in the history of the world, I feel
it is more important that potential users be enticed by
small examples of empirical process ideas rather than
be impressed and intimidated by the full force and
elegance of the latest theory. Times will change. More
papers along the lines of Giné and Zinn (1988) will
convince us all that sample path properties of abstract
Gaussian processes are relevant, even for popular top-
ics such as the bootstrap.

Jain and Marcus (1975, inequality 2.30) did use the
idea of dominating a process involving Rademachers
by a related Gaussian process, but Giné and Zinn are
right concerning the role of the inequality in the



