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P. JAGERS

Comment: The Geographical Structure of

Populations

Stanley Sawyer .

Peter Jagers has given an excellent description of
population models of branching process type and of
how easy it is to obtain information about popula-
tion structure in branching process models. Al-
though Jagers has not done so explicitly, one can
handle geographical structure as well by including
the position of an individual in its “genotype.”
Then a movement or “migration” is modeled as a
death together with the birth of an offspring at a
nearby location, and in this way one can model the
geographical distribution of a population as well as
geographically dependent “life patterns.” It is use-
ful to use the term “branching random field” (BRF)
for a branching-process description of a population
distributed in space.

Perhaps the main reason why branching process
models are not more widely used is the assumption
that individuals (and their offspring) must develop
independently of their sibs (and their offspring).
Thus there is no easy way to model interactions
between sibs, for example those caused by the finite
carrying capacities of environments. When think-
ing about population models in biology, I like to
think about the distribution of rabbits in my subur-
ban neighborhood. Most yards in my area have
enough shrubbery to easily support 5-10 rabbits. If
the number of rabbits in any yard grew much
larger than that, the homeowner (or local preda-
tors) would take an interest, and in any event there
may not be enough forage. Occasionally there are
no rabbits, due perhaps to either an especially cold
winter or to a visit by an especially effective preda-
tor. The yard will then remain empty until it is
recolonized from the outside.

While local extinction and recolonization are nat-
urally modeled in a branching random field, the
effect of local carrying capacity is not. Local popu-
lation bursts of arbitrarily large size can occur in
branching models. The purpose of this comment
will be to try to compare their effect on the distri-
bution of populations, in comparison with models
which have strict local carrying capacities built in.
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The conclusion will be that the branching random
field is a good approximation for some purposes and
might be preferable in those cases because of the
ease of analysis. A second conclusion will be that
the instabilities associated with critical branching
random fields (i.e., Malthusian parameter « = 0)
may not be as bad an approximation to nature as
one might otherwise suspect.

Migration models in the genetics and ecological
literature are often versions of the “stepping stone”
model of Kimura and Malécot (see, e.g., Nagylaki
1986, 1989; Sawyer, 1976a). Stepping stone models
assume a fixed array of “colonies” and are essen-
tially branching random fields conditioned on the
events that each colony always has a fixed prede-
termined size. One is then interested in the distri-
bution of similarity as a function of distance, or in
the distribution of subtypes within the larger popu-
lation. In the sense of a constraint on total popu-
lation size, the “stepping stone” analog of the
Galton-Watson process without geographical struc-
ture is the Wright-Fisher model. For definiteness,
we consider a stepping stone model whose colonies
are the d-dimensional lattice J¢ with nearest-
neighbor migration but positive probability of stay-
ing put, and assume the simplest type of branching
random field for comparison: (a) there is only one
type, (b) surviving individuals die and have off-
spring at constant Poisson rates, (c) individuals are
distributed in d-dimensional Euclidean space R¢,
(d) the “migration” process is Brownian motion
(i.e., individuals follow independent Brownian mo-
tion processes between birth events) and (e) the
initial state of the branching random field is a
Poisson random field with mean density r > 0.

Suppose we are interested in the distribution of
the surviving offspring of a typical individual whose
offspring have survived. Equivalently, assume that
the individuals are initially of distinct types, and
consider the size and spatial distribution of a typi-
cal surviving type at time ¢. For a stepping stone
model, this can be measured by the probability
I(¢,0, x) that two individuals chosen randomly at
time ¢, one at 0 and one at x, belong to the same
subtype. Then for dimensions d < 2

(1) lim I(¢,0,x) =1 all xeJ% d <2
t—oo
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(Sawyer, 1976a), indicating that clumps of larger
and larger size form naturally as time progresses.
If d > 2, the limit is strictly between zero and
one.) It follows from the argument that Jagers
quotes that each individual clump or lineage has
finite lifetime and must eventually die out. Never-
theless, the lineages that exist at time ¢ can be
quite large. As an indication of their size,

2 =)
I(t70’ xc(t))_’ V - / efy2/2 dy
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2) for x,(t) ~ AcVt,d=1,¢> 0,
I1(¢,0, x (t))~1 - ¢
for | x(¢)] ~t/?,d=2,0<c<1,

as t = o (Sawyer, 1977). The corresponding results
for branching random fields depend on the Malthu-
sian parameter «. The results for a« = 0 are closest
to the stepping stone case. Then (1) holds for di-
mensions d < 2, indicating that clumps also form
in BRF’s for d < 2. The size of the branching
process clumps is indicated by the relations

I(t,0,x,(¢)) = ¢

for x (t) ~ /2tlogt,d=1,0<c<1,
1(t,0, x.(t)) = ¢

for | x(¢)| ~AVt,d=2,0<c<1,

for large t (Sawyer, 1976b). The similarity of (2)
and (3) suggests that the lack of a bound on local
carrying capacity has only a small effect on the
extent of these clumps. However, the density of
individuals within the branching-process clumps
becomes infinitely large. Let wq(t, x) dx be the
expected number of individuals at x of the same
type as an individual at 0. Then w(¢, x) ~ CVt for
fixed x if d=1 (¢=0) and ~Clogt if d =2
(Sawyer, 1976b). If N(A, t) is the number of indi-
viduals at time ¢ in an arbitrary bounded set A C
R4, then N(A,t)— 0 in probability at ¢t — o for
d=<2.Ifd=1, N(A,t) > 0a.s. (i.e., A eventually
becomes forever empty), but a.s. A is visited at
increasingly rare large times if d = 2 (Sawyer and
Fleischman, 1979). Also, VtP(N(A,¢t) > cVt)—
Ai(c) for d=1 (c>0), and log tP(N(A,t) >
clog t) = Ay(c) for d = 2 (Fleischman, 1978).

As Jagers suggests, the population structure of
branching random fields for o > 0 is quite regular,
and, with geographical structure, no large irregu-

(3)

lar clumps or open spaces appear. Nevertheless, the
stepping stone results suggest that the clumping
that occurs with o = 0 may be an important part of
nature, although the arbitrarily high local densi-
ties is probably not.

As another point of comparison, assume that in-
dividuals mutate to a new subtype at a constant
rate u > 0, as in Taib’s (1987) model. Each new
type is new to the population and has the same
birth-and-death and migration behavior. Let
I(t,0, x) be the probability that individuals found
at time ¢ at positions 0 and x have the same type.
Then I(t,0, x) = I(0, x) as ¢t — o in the stepping
stone model, where 0 < I(0, x) < 1. The asymptotic
behavior of I(0, x) for large x gives the likelihood
that distant individuals can have the same geno-
type without providing evidence for selective
advantage. However, in the BRF model,
lim, , I(t,0, x) = 0 for all x if either o« > 0 or
a =0, d=<2 (Sawyer, 1976b). The reason for the
BRF results is as follows. If o > 0, a constant
proportion of initial individuals have surviving off-
spring, and each kinship becomes increasingly
uniformly distributed in space. Thus a randomly
chosen pair of individuals is likely to have no com-
mon ancestors, since time ¢ = 0, and as ¢ — o can-
not be the same type. Similarly, random pairs of
individuals in a high-density local clump have rela-
tively ancient common ancestors in a critical BRF.

It is comforting to know that Kimura’s result
that, for neutral mutations, the population-wide
substitution rate is the same as the individual
mutation rate also holds for these very general
branching population models. Taib (1987) and
Jagers correctly identify Kimura’s result as the
equivalence of a backwards and a forwards muta-
tion rate. Nevertheless, it is interesting to note
that, in their models with « > 0, there is no such
thing as a population-wide substitution rate: A ran-
domly chosen pair of individuals from a supercriti-
cal branching process will have common ancestors
only in the first few generations of the process
(Biihler, 1971), and so will tend to share no muta-
tions that were not present when their species
began. Most biological models assume that contem-
porary individuals are more closely related to one
another than to the common ancestor of the species,
but this may not be correct for a rapidly expanding
population.



