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approximation, we need n operations to discretize
the data into Nz nonempty bins. Thus,
the numerical effort for this method is of order
O(n + NgM).

Of course, the WARPing method introduces a
discretization bias. The bias may be reduced by
joining the obtained discrete step function (see
(3.2)), via a polygon. Breuer (1990) has computed
for m(x) = x sin(27x) + 3x and uniform design the
MSE as a function of x for both the 7y estimator
and the WARPed estimator 7, x.

In Figure 5, the discretization bias is seen to be

Comment

Jeffrey D. Hart

Chu and Marron have provided us with a clear
and thorough account of the relative merits of eval-
uation and convolution type kernel regression
estimators. One is left with the impression
that neither type of estimator is to be preferred
universally over the other. We learn, for example,
that the weights of the convolution estimator some-
times have the unsettling behavior exhibited in
Figures 6b and 7 of Chu and Marron. The authors
make it clear that there are a number of factors,
including type of design (fixed or random), design
density and nature of underlying regression func-
tion, that need to be considered before choosing an
estimator type. Having reading their article, I now
have a slight preference for 7y over m in the
random design case, at least in the absence of any
information about the design density or regression
curve. When the design points are nonrandom and
evenly spaced, I prefer ., since its convolution
form appeals to me, and since boundary kernels are
easy to construct with i, (see Gasser and Miiller,
1979). Below I will mention a modification of .
that I feel is a viable competitor of 725 even in the
random design case.

The authors’ point about the down weighting
phenomenon of the convolution estimator is cer-
tainly well taken. However, I would like to ques-
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quite drastic, although we gained in speed of com-
putation. The linear interpolant has a much better
bias behavior, as is seen in Figure 6. For this
estimator conservative bounds for the numerical
discretization error and its effect on MSE(x) can be
given and are displayed in Figure 6 as long dashed
lines.
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tion an aspect of their comparison of the variances
of my and M. As the authors note in Section 4,
the biases of the two estimators are not compara-
ble, the bias of /5 being smaller in some cases and
that of M, smaller in other cases. It follows that
“good” bandwidths for the estimators will gener-
ally be different. Why then is it sensible to compare
Var(rg) and Var(s) at the same value of A?

A little-used but informative way of comparing
the errors of my and M is to consider the limiting
distribution of

| rg(x) — m(x)]

@) [e(z) ~ m()]

Unlike an MSE comparison, this approach takes
into account the joint behavior of the two estima-
tors. Suppose that Chu and Marron’s assumptions
(A.1)-(A.5) hold and that the design density is
U(0, 1). Suppose further that the bandwidths of
and 71, minimize their respective MSEs. Then it
can be shown that, for each x, the ratio (1) con-
verges in distribution to

o ()

3
as n — o, where (Z;, Z,) have a bivariate normal
distribution with Z, ~ N(0,1), Z, ~ N(0,1) and

Corr(Z,, Z,)

= (;)3/5/ K(z)K((§)1/5z) dz//K2=pK.

Statistical Science. RIKGIS ®

Www.jstor.org



426 C.-K. CHU AND J. S. MARRON

density
0.3 0.4 0.5
1 I 1

0.2

0.1

log of error ratio
Fic. 1. Limiting density functions of the logarithm of an error
ratio. The solid curve is the actual limiting density of log | mg(x)
— m(x)|/ | mc(x) — m(x)|, while the dashed curve is what the
limiting density of the same quantity would be if mg(x) and
me(x) were asymptotically uncorrelated. The vertical line is
drawn at the abscissa 10g(0.85), which is the limiting median of

log | mg(x) — m(x)|/ | mc(x) — m(x)].

The quantity pg is the limiting correlation between
myg and M. For the kernels used in practice, px =
(2/3)%% = 0.784. For the Epanechnikov kernel, that
is, K(z) =0.75(1 — 2*)I_; 1,(2), px = 0.813. The
density function of the random variable R (defined
in (2)) is shown in Figure 1. It is noteworthy that
the median of R, and hence the limiting median of
| g(x) — m(x)]/ | Fae(x) — m(x)], is equal to

y :MSE(mE)I”__(z)”s_
im | ——- =|= = 0.850.
n—w | MSE(71¢) 3

However, we also learn from this analysis that, for
n large,

P(|mc(x) — m(x)| < | mg(x) - m(x)]) = 0.4,

To illustrate the effect of the high positive correla-
tion between riy and 7, Figure 1 also shows the
density of

(3)2”’1 Ui+
Uy +7|

3
where U;, U, are iid N(0,1). This would be the
limiting distribution of, say,

| (%) — m(x)|

| Rg(x) — m(x) |

on the assumption that m,(x) and 7y(x) are
asymptotically uncorrelated and
 MSE(y(x) | MSE(u(x))
lim ———+% = lim ————————+.
n-o MSE(7;(x)) n->e MSE(#(x))

At this point, I would like to suggest a simple
variation of the convolution type estimator that I
have found to be quite useful. This variation uses
an idea proposed by Yang (1981) and studied by
Stute (1984) and Carroll and Hérdle (1989). Define

. 1 iln F(x) - u
ine) =3 500 [ k(T2
(

Jj=1/n

where F is a V/n -consistent estimator of the cdf F
of X;. The T in s, stands for transformation,
since this estimator uses transformed design points
that are evenly spaced on [0, 1]. To ensure that m,
has a pleasingly smooth appearance, one should
take F to be a slightly smoothed version of the
usual empirical cdf F,. Carroll and Hérdle (1989)
suggest using F = F,, but this often leads to esti-
mates of m with a stair-step look. I have also
noticed that 7, can be sensitive to fairly small
changes in F. This property needs to be investi-
gated before 7, can be recommended for routine
use.

One way to motivate 7, is to first introduce
what Parzen (1981) calls the regression-quantile
function m@, where mQ(t) = m[Q(¢¥)], 0<t< 1,
and @ is the quantile function of X,;. Define

the estimator @ by

N 1~ Jj/n t—u
mQt)=—Zy./ K( )du,
=% 5T G-n/in R

. which is simply the convolution type estimator

of mQ(t) based on the nonrandom design points
(J—-1/2)/n, j=1,...,n. Noting that m,(x) =
gQ(F(x)), mp(x) estimates m(x) inasmuch as
mQ(F(x)) = mQ(F(x)) = m(x).

The estimator M, does not have the down
weighting pathology suffered by .. Regardless of
whether the design is fixed or random, the weight
for Y, in mp(X;) is (to a good approximation)
K(0)/(nh). One result of this weighting scheme is
that the variance of r;(x) tends to behave, in all
cases, like that of mo(x) in the case of a fixed,
evenly spaced design. Arguing as in Stute (1984)
and Carroll and Hirdle (1989), it can be shown
that, under technical assumptions much like Chu
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and Marron’s (A.1)-(A.5),

@3) Var(mg(x)) = :—h/zcz +o((nh)7Y).

This implies that 7, with bandwidth 2 has the
same asymptotic variance as iy with the band-
width A, = h/f(x). In particular, the limiting
variances of 71, and riy are the same in a case
highlighted by Chu and Marron, that is, when
X,,..., X, are a random sample from a U(0,1)
distribution.

The bias of 7up(x) has the representation (again
under assumptions akin to (A.1)-(A.5))

Bias(7,(x))

%(mQ)"(F(x))/ u’K + o(h?)

(4) B2 [ m”(x)f(x) — m'(x)f(x) 2
| P |/
+o(h?).

In general, Bias(/y) is different from both
Bias(/z;) and Bias(rc); this is true even if one
allows the bandwidths of 7y and i, to vary with
x ala h, = h/(f(x))* By considering (3) and (4)
above, and Sections 3 and 4 of Chu and Marron,
one finds, not surprisingly, that MSE(#,) is not
comparable with either MSE(72) or MSE(7 ). It
is worth noting, though, that when X,,..., X are
iid U(0, 1), the asymptotic MSEs of i, and my are
identical when the two estimators use the same
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identical when the two estimators use the same
bandwidth.

Introducing the estimator i, certainly does not
settle the mean squared error issue. However, my
is attractive in that it avoids both the random
denominator problem of 7y and the down weight-
ing pathology of 7. Another nice feature of ;. is
that, like 7, it has a convenient form for estimat-
ing m/, so long as F is differentiable. Considering
fp also brings into light the question of estimating
the regression-quantile function m@, an object
whose importance has been stressed by Parzen
(1981). Since it is natural to use a fixed, evenly
spaced design on [0, 1] to estimate m@, the convolu-
tion estimator seems ideally suited for estimating
regression-quantile functions.

My final point concerns the use of kernel meth-
ods to test the adequacy of linear models. I was
glad that Chu and Marron mentioned the problem
of testing for linearity, and the attendant impor-
tance of how 7, and rmy perform when m is a
straight line. I prefer i over rig for purposes of
testing linearity, since, as Chu and Marron point
out, M has smaller bias than my in the straight
line case. Indeed, Hart and Wehrly (1991) show
that a boundary-corrected version of 7. (with
bandwidth &) tends to a straight line as A tends to
infinity. The limiting line is a consistent estimator
of m when m(x) = 8, + 8, x. Higher-order kernels
can be used to obtain kernel estimates that are
polynomials (of any given degree) for large h. Such
kernel estimates are a crucial part of a test pro-
posed by Hart and Wehrly (1991) for checking the
fit of a polynomial.

above all, balanced investigation of the issues in-
volved in choosing between versions of the kernel
regression estimator.

Chu and Marron (henceforth C&M) understand-
ably concentrate on comparing and contrasting the
two kernel estimators probably most widely em-
ployed in the literature: the Nadaraya-Watson
(N-W) estimator, 7y, and the Gasser-Miiller



