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this clear, I will express the same recursions in
network terms. .

The network consists of nodes and arcs over & + 1
stages labeled 0,1, ..., k. The nodes at stage j are
ordered pairs of the form (j, m;), where m;eA;.
The set S(j, m;) defines the successor nodes to the
node (j, m;), while the set P(j, m;) defines its par-
ent nodes. If we start with an initial node (0, 0) at
stage 0, and apply (2.1) systematically to all the
nodes created at each stage, we end up with a
single terminal node (k, m,) at stage k. Each
successor to node (j, m;) is a node of the form
(J+1,m;,). It is connected to (j, m;) by an
arc of length, w;, ,(m;,, — m;) and probability
niql/(m;, — mpl(n; q — m; . + myl. A path
through the network is a sequency of directed arcs
connecting the initial node (0,0) to the terminal
node (k, m;). Its length is the sum of lengths, and
its probability the product of probabilities, of the
arcs constituting the path. Through this specifica-
tion, each path through the network represents one
and only one table x eT'. Its length is given by (1.1)
and its probability is given by (1.2). The problem of
. generating the distribution (1.6) is now equivalent
to generating the distribution of the lengths of all
paths through the network. The set Q(j, m;) repre-
sents the distribution of the lengths of all the paths
from node (0, 0) to node (j, m;). The recursions (2.4)
and (2.5) amount to expressing the distribution of
lengths at node (j, m;) in terms of the distributions
of lengths at its parent nodes P(j, m;). Also, com-
puting SP(j, m;) and LP(j, m;) amounts to com-
puting the lengths of the shortest and longest paths,
respectively, from node (j, m;) to the terminal node
(k, m;). These may be obtained by backward induc-
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tion on the network (Mehta, Patel and Senchaud-
huri, 1992) or by more formal integer programming
theorems (Joe, 1988; Agresti, Mehta and Patel,
1991).

In our research papers, although not in this dis-
cussion, the network representation of a computa-
tional problem has always preceded its algebraic
representation. It is certainly elegant to express
the computational problem directly in terms of re-
cursions like (2.4) and (2.5). However, it is not so
easy to gain the necessary insight to write out the
recursions in the first place. Nor is it clear how one
implements them on a computer once they are
written down. We regard the network approach as
a general technique for deriving these recursions,
guiding us in selecting appropriate data structures
for computer implementation, and solving the nec-
essary integer programming problems. We have
used this approach for 2 x k tables, stratified 2 X &
tables, r X c tables and logistic regression.

In summary, this discussion has attempted to
show, through a detailed dissection of the 2 x &
problem, that the basic ingredients of an efficient
numerical algorithm for permutational inference
comprise of, recursive generation of the distribu-
tion of the test statistic, good data structures for
storing intermediate distributions through all
stages of the recursion and the use of integer pro-
gramming to generate a truncated distribution. The
network paradigm is a useful aid for carrying out
these steps. In particular, forward processing of the
network is a general way to conceptualize and im-
plement complicated recursions, whereas backward
induction on the network is a general way to solve
the integer programming problem.

gency tables. Since Fisher proposed his exact
method of analysis for the 2 x 2 table in 1934, the
amount of literature produced on the subject and
the resulting debates have reached immeasurable
proportions. (Yes, this pun intended!) Whether
dealing with the accuracy of various asymptotic
techniques in small sample situations, the diverse
possible factors of correction for continuity, or
the conditional, unconditional and Bayesian al-
ternatives, the ensuing research has definitely
contributed to our increased knowledge of the situ-
ation and has motivated imaginative developments
in computing algorithms. Professor Agresti pre-
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sents us with an elegant synthesis of this literature
and guides us masterfully through the maze of
research generated by the topic.

A noticeable observation from this survey is that
the conditional approach is the preferred method of
inference among investigators, and for very valid
reasons. Indeed, it is based on rigorous theoretical
considerations and results in well-behaved manage-
able and computationally feasible distributions,
thus making the approach increasingly practical,
for even complex designs. In addition, it has been
the recipent of recent remarkable advances in com-
puting algorithms that have expanded the scope of
application of exact inference and highlighted its
importance vis-a-vis its relatively inaccurate
asymptotic counterparts. Nevertheless, in spite of
these tremendous theoretical properties and practi-
cal possibilities, the conditional approach leaves
open some considerations of a significant practical
nature, some of which are at times disturbing by
the dilemmas they pose. I will address three of
these; namely, the questions of power, two-sided
significance testing and interval estimation.

Although the attained significance level ( p-value)
is unquestionably preferable to a nominal signifi-
cance level, such as the prominent and at times
infamous “a = 0.05,” it is unfortunately not possi-
ble to use it when designing a study on the basis of
its power. At the design phase, maximum accept-
able levels of the magnitude of type I and type II
errors must be set a priori to determine the sample
size necessary to conduct this investigation. The
common practice is to use « at the design stage and
to report the p-value at the data analysis step.
Thus, o becomes essential when power is discussed.

In evaluating the power of the conditional test,
the unconditional power function is used, since the
observed value of the statistic on which condition-
ing is performed is not known at this point of a
trial. A feature of this unconditional power func-
tion is that it is averaged over all conditional criti-
cal regions that are inherently highly discrete, most
particularly for the small sample situations that
call for exact methods. This feature, compounded
with the fact that exact unconditional p-values are
generally lower than the corresponding conditional
ones, has led to important differences in power
comparisons between the two. These power evalua-
tions and exact sample size determinations have
been generated for the unconditional approach in
both the independent binomial and matched pairs
2 x 2 tables (Suissa and Shuster, 1985, 1991), and
contrasted with the corresponding conditional ones.
A result of these investigations is the greater power
of the exact unconditional approach, uniformly
across all situations considered.

Although the differences found between the con-
ditional and unconditional sample sizes do not at
first appear to be of much practical significance,
they turn out to be very much so in real life stud-
ies, particularly in the small sample situations for
which exact inference is indicated. As an example,
the McGill Cancer Centre was planning a trial
evaluating a special feeding formulation designed
to reduce the risk of acute radiation damage to the
small bowel in patients with bladder cancer. This
damage from radiation greatly complicates the con-
ventional subsequent surgical treatment of this
cancer, thus the need for testing this dietary pre-
ventive measure. The logistical difficulties in-
volved in making this a multicenter trial mitigated
against this strategy, and the study was therefore
conducted in a single center. Of course, the incon-
venience of this latter approach is that the pool of
study subjects is now smaller, thus highlighting
the sample size determination operation. To detect
the large anticipated effect in this study, namely a
rate decrease of 0.40 from the current damage rate
of 0.45, with « = 0.05 and 80% power, the trial
would require 17 subjects per arm under the exact
conditional approach or 13 subjects per arm under
the exact unconditional approach. The additional
eight required subjects resulting from selecting the
conditional method over the unconditional one rep-
resent a significant 30% increase in the number of
eligible subjects, accrual time, human resources,
etc.; basically, a 30% increase in all facets of the
study. This was deemed excessive by all investiga-
tors involved in the trial. Such power benefits of
the exact unconditional approach have also been
noted in the context of the matched-pairs design.

The second consideration of this commentary
deals with two-sided significance levels. As briefly
noted by Agresti in the context of Fisher’s exact
test, there are different ways of forming two-sided
p-values, three of which are presented. He com-

- ments on the fact that various techniques may lead

to diverse results and illustrates this point with a
numerical example. It may be useful to comple-
ment the presentation with some results and obser-
vations noted in the context of research on the
unconditional approach to exact inference. For the
example used by Agresti, namely that of contrast-
ing 10/100 with 20/100, the exact unconditional
two-sided p-value under the Pearson chi-square
statistic is 0.054, in contrast with 0.073 under all
three approaches for the conditional test. When the
data are slightly modified to 10/101 versus 20/100,
the exact unconditional p-value becomes 0.048, as
compared with the reported 0.069 and 0.050. As
expected, the unconditional method leads to lower
p-values than the conditional ones. The fact,
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however, that the three conditional approaches to
two-sided significance testing may lead to differing
p-values is not surprising. Indeed, each will lead to
different orderings of the sample space and, in
turn, will likely produce different p-values. These
variations are, therefore, understandable.

There are, however, other discrepancies in two-
sided conditional testing that may occasionally lead
to disturbing results. For all subsequent compar-
isons, we only use Agresti’s second approach to
two-sided p-values, namely the one based on order-
ing the sample space according to the hypergeomet-
ric probability of each table. The anomalies
discussed have been indicated in Cormack (1986)
and Shuster and Suissa (1990). The first illustra-
tion contrasts 4/35 with 0/35, which produces a
conditional p-value of 0.114, whereas the uncondi-
tional p-value is 0.042. When the second rate is
modified to 0/36, the conditional p-value drops to a
“significant” 0.054, whereas the unconditional one
becomes 0.041. Another numerical example of this
situation is in the contrasts of 2/171 versus 9/172
and 2/172 versus 9/171, where the conditional p-
values are 0.061 and 0.035, respectively, whereas
the unconditional ones are very similar at 0.036
and 0.032. In both examples, the declines in the
conditional p-value associated with such practi-
cally insignificant changes in the data are a source
of concern among users of the method. Indeed, such
minute alterations in the sample size should not
affect the p-values to this extent. The discreteness
imposed by the conditional approach and the
magnitude of the jumps in the p-value are often
significant, most particularly in the small sample
situations it is specifically indicated for. This phe-
nomenon is not observed with the exact uncondi-
tional approach.

The second illustration contrasts 7/14 versus
1/14 and 6/12 versus 1/14. The odds ratios of these
tables are equal to each other (= 13), as are all
other measures of association. Yet, the correspond-
ing exact conditional p-values are 0.033 and 0.026,
whereas the unconditional ones are both 0.014. The
drop in p-value under the conditional approach is
counterintuitive as a reasonable rule of the “evi-
dence” in these data should diminish (it does re-
main the same for the unconditional approach); it
should not, however, increase.

The third consideration deals with the question
of interval estimation. A limitation of the exact
conditional approach in 2 X 2 tables is its inability

to estimate anything but measures of association
that are functions of the odds ratio. Consequently,
the conditional approach becomes ineffective in a
field like epidemiology, where relevant measures of
association are often the rate ratio and rate differ-
ence (ratio and difference of two binomial propor-
tions or Poisson rates). Although some attempts
have been made to estimate these, they have proven
futile because of this limitation of the exact condi-
tional approach. This obstacle could form the basis
of research on alternative approaches to the restric-
tive conditional technique in resolving the problem
of exact estimation in this context.

In summary, Professor Agresti’s presents us with
a superb synthesis of the extensive research con-
ducted on the exact analysis of data from contin-
gency tables. The review particularly highlights
the extremely popular exact conditional approach
that is unquestionably a highly potent technique.
Moreover, the spectacular advances in computing
algorithms have made the conditional approach at-
tractive from the practical standpoint. We pre-
sented, in the context of the 2 x 2 table, three
aspects of the conditional approach that may put in
perspective its practical effectiveness. First, condi-
tional tests are found to be significantly less power-
ful than their exact unconditional counterparts.
Second, exact conditional two-sided p-values dis-
play an inefficient discrete behavior and, at times,
lead to inconsistent results, thus rousing suspicion
from the users of this approach. These two aspects
are accentuated when the sample size is particu-
larly small, the precise circumstance where exact
methods are indicated. The final concern lies with
the inability of the exact conditional approach to
estimate relevant measures of association other
than functions of the odds ratio.

In essence, although the conditional approach is
a formidable tool for the exact analysis of categori-
cal data, it has limitations that are not always

" apparent nor understood. Consequently, research

on exact alternatives must continue, not only to
offer a wider range of possibly more efficient tech-
niques, but also to alleviate the concerns and doubts
raised by the inquisitive consumer of these statisti-
cal tools.
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