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with (5). In comparison, only Wald- and score-type
estimation procedures attend the estimating equations
(3). We suspect that this distinction is rather elusive
since likelihood ratio procedures and parametric vari-
ance formulas, for example, are unlikely to possess the
robustness to model misspecification that provides a
key motivation for the estimation procedures under
discussion.

As a final argument in favor of the use of (3), one
can note that even though the paper of FLR and our
comments above focus on mean parameter estimation,
there are a variety of problems in which response vari-
ances, as well as means, are of substantive interest.
These include, for example, studies of the dependence
among disease rates in pedigree cohort studies, and
studies of recombination rates in genetic linkage analy-
sis, and even some problems in longitudinal data analy-
sis. It seems apparent that equations of the form (2)
or (3) will be more useful than equations of the form
(5) for covariance estimation and covariance model
building.

MISSING RESPONSE DATA

As mentioned above, we commend FLR for drawing
attention to the missing response data problem, which
is common in longitudinal data and in other multivari-
ate response data settings. The missing completely at
random (MCAR) special case is typically easily accom-
modated by available statistical procedures, as it is
here by the estimating equations (3). However, the

Comment:

estimate of the mean parameter § from (5) generally
ceases to be consistent if elements of y, are MCAR,
owing to the lack of reproducibility of (4), as FLR
acknowledge.

The estimation problem becomes conceptually much
more difficult if response variables are missing at ran-
dom (MAR), but not completely at random. Now it is
no longer sufficient to specify marginal moments (i.e.,
means and covariances) as conditional moments for
missing components of the response vector, given the
value of the corresponding observed components, are
required. If each element of the response vector is
subject to MAR, there seems little alternative but to
fully specify a model for the joint distribution of y:
and use parametric likelihood procedures as FLR have
done. One can nevertheless ask which parametric
model is likely to be most convenient and useful with
MAR data. For example, what advantages or disadvan-
tages would the authors’ proposed method based on
(4), with cilyz, A) = wiA, have relative to the application
of likelihood procedures to (1), with cx(yz) = 0 or some
other specified value. Neither method could ensure
consistency of f-estimation under model misspecifica-
tion. Model specification would presumably be easier
based on (1) for reasons described above (i.e., parameter
interpretation). There may be differences in computa-
tional convenience or in properties such as bias and
efficiency. We would like to encourage FLR to pursue
such comparisons in order to yield a better understand-
ing of data analysis options in MAR situations.

Scott L. Zeger, Kung-Yee Liang and Patrick Heagerty

We congratulate Fitzmaurice, Laird and Rotnitzky
(hereafter FLR) for their interesting overview of recent
work on statistical models for regression analysis with
longitudinal binary responses. The paper adopts what
we have termed the marginal approach to regression
where the marginal expectation rather than the condi-
tional expectation given other responses in the vector
for an individual is modelled as a function of explana-
tory variables. Whereas, previous work (e.g., Liang and
Zeger, 1986; Prentice, 1988) has focused on the first
two moments of the response vector, FLR propose a
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method in which the entire likelihood is specified. They

- study a mixed model in which the regression parame-

ters describe the marginal means but the association
is measured in terms of conditional pairwise odds ratios
given the other responses. Alternatively, association
can be measured in terms of pairwise correlations or
marginal odds ratios. FLR correctly point out the limi-
tations of measuring association between binary obser-
vations in terms of correlations.

FLR compare their likelihood approach to a multi-
variate analogue of quasi-likelihood called generalized
estimating equations or GEE in which only the first
two moments are specified. FLR show that their likeli-
hood formulation leads to using the same GEE with a
particular weighting matrix. They compare the asymp-
totic efficiency of GEE using their weighting matrix
and one in which pairwise correlations are assumed to
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be constant across individuals. They argue that GEE
with correlations can be highly inefficient, whereas
using conditional odds ratios tends to be more efficient.
Finally, they explore the effects of missing data on
inferences using GEE derived from the full likelihood
as opposed to GEE using pairwise correlations.

We briefly summarize our comments on the following
three topics:

1. Likelihood justification for GEE with binary data:
One important contribution of this paper is to
give a fully parametric justification of the GEE
approach for the analysis of multivariate binary
data. FLR have shown that the score equations
for the marginal regression coefficients f in the
log-linear model with a particular parameteriza-
tion are identical to the equations used in the
GEE approach. Hence, the full power of the likeli-
hood paradigm can be invoked in problems where
the FLR parameterization is appropriate as dis-
cussed further below.

2. Parameterizing Var(Y;) in GEE: The variance ma-
trix V; in equation 9.1 can be parameterized in
terms of pairwise correlations, conditional odds
ratios or marginal odds ratios. We concur with
FLR that the use of correlations to measure asso-
ciation among binary responses can be problem-
atic because the marginal means constrain the
space of possible correlation values. The most
serious limitation of using conditional odds ratios
is that they make sense only for block designs in
which the observation times are the same for
all subjects. For many problems, marginal odds
ratios may be a sensible compromise.

3. Efficiency results: We disagree with the implica-
tions of the efficiency discussion in subsection
3.1. The range of conditional odds ratios where
GEE with constant correlations does poorly is
somewhat unrealistic as we shall illustrate below.
On the other hand, the challenge put to the FLR
approach is much weaker.

The remainder of this discussion expands upon points
2 and 3.

PARAMETERIZING VAR(Y) IN GEE

FLR study the estimation of regression coefficients
B using GEE where the covariance matrix V; used to
weight the residual vector Y; — y; is parameterized in
terms of conditional odds ratios w;z = OR(yy, yir | yu =
0,1 # j, k) and analogous higher order conditional mo-
ments. These parameters Q are the natural parameters
in the log-linear model for contingency tables.

The first significant advantage of this approach is
the availability of a likelihood function. This permits:
appropriate modelling of non-ignorable missing values;

likelihood ratio tests and intervals as alternatives to
Wald inferences; and goodness of fit tests. A second
important advantage is that the parameter space for
Q is unconstrained by the marginal means u and as-
ymptotically the estimates of 8 and Q are independent.

A major disadvantage is that the interpretation of
the elements of Q is specific to the sampling design
and in particular the number of observations per per-
son. This is clear since for example, OR(yi1, yi2 | yis =
0) # OR(Yi1,yi2 | ¥i3s = yu = 0). Hence, the same
parameters cannot be used to measure association be-
tween y;; and y;; if some people have three observations
while others have four. The application of the FLR
approach is therefore limited to studies with observa-
tions collected (when not missing) at the same times
for every individual. A second related issue is the
interpretation of the conditional odds ratios. When
the association is itself the focus of the investigation,
conditional odds ratios may be less useful because of
their dependence on the number of observations per
subject.

Using correlations is one alternative but FLR cor-
rectly point out the problems with measuring associa-
tion between binary observations with correlations.
The range of possible values can be severely constrained
by the means of the binary responses as detailed by
Prentice (1988) and Carey (1992). The constraints be-
come more severe as the absolute difference between
the means increases and as the means deviate from
0.5. For example, when the means for two binary re-
sponses are 0.5 and 0.1, their correlation must lie in
the range from —0.33 to 0.33 (Carey, 1992).

In a regression context where the marginal means
are assumed to change across individuals with their
changing x’s, the assumption that the pairwise correla-
tions are constant is easily violated since the range of
the correlations may itself be changing. This is espe-
cially a problem when the correlation is very high.
The solution is either to model the dependence of the
correlation on x as suggested by Prentice (1988) or to
use another measure of association.

One possibility which avoids the limitations of the
conditional odds ratios and some of the constraint
problems associated with correlations is to parameter-
ize V; in terms of marginal odds ratios. This has been
suggested by Lipsitz, Laird and Harrington (1991)
and Liang, Zeger and Qaqish (1992). Carey, Zeger and
Diggle (1993) show how to easily implement GEE mod-
els so that both the marginal mean and odds ratios
can be expressed as a function of covariates.

EFFICIENCY RESULTS

We are not convinced by evidence presented in Sec-
tion 3 that determining the covariance matrix V; from
the likelihood expressed in terms of conditional odds
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ratios and analogous higher order moments leads to
greater efficiency than some other approach to estimat-
ing V. As the authors point out, the proposed likeli-
hood estimator is a GEE estimator with a particular
choice of variance matrix to weight the residuals. If the
assumed variance matrix is close to the true variance
matrix, the estimator will be nearly efficient; the degree
of inefficiency is a simple function of the degree of
misweighting as detailed in the paper.

In Figure 1, FLR present the degree of inefficiency
that results from assuming the correlation is constant
across individuals when it is not. First note that the
conditional log odds ratio w ranges from 0 to 10 in
this illustration so that the odds ratios range between
1 and 22,026. Also, the third order term is fixed at
x = 3 so that the pairwise correlations are substantial
at every value of w. For example, the correlation be-
tween the first two observations p;; ranges as a func-
tion of the x values between 0.43 and 0.55 when w =
0 and between 0.60 and 0.98 when w = 6. Note in
Figure 1 that assuming constant correlation with w =
0 (true correlations between 0.43 to 0.55) gives a nearly
efficient estimate. This is because the correlations do
not vary substantially and so the working variance
matrix is nearly correct. Assuming the correlations are
constant when they vary as a function of x between
0.6 and 0.98 (w = 6) leads to inefficient estimates. This
should be no surprise. When correlations are this high
and vary so dramatically with x, they must be modelled
as a function of x to get reasonably efficient inferences
as has been done in Liang, Zeger and Qaqish (1992)
and Carey, Zeger and Diggle (1993).

To produce the high degree of correlation and depen-
dence on x, we believe an unrealistic dependence struc-
ture has been assumed. FLR have set the third order
term x = 3. This means that when w = 0, OR(y;1, y;2 |
yis = 0) = 1 and OR(yi1, y2 | yi3s = 1) = exp(3) = 20.
Hence there is no association between the first two
observations if the third value is 0 but an enormous

Rejoinder

Garrett M. Fitzmaurice, Nan M. Laird and Andrea G.

We thank all of the discussants for their contribu-
tions. We will restrict most of our comments to four
issues.

MARGINAL REGRESSION MODELS WITH
STOCHASTIC TIME-VARYING COVARIATES

We are in complete agreement with the comments
on the role of marginal models made by Drum and

positive association if the third value is 1. Is this
realistic?

The challenge given to the FLR estimator which
assumes constant conditional odds ratios is to assume
constant correlations that range from 0 to 0.45. Note
that the entire x-axis in Figure 2 corresponds to correla-
tions that are smaller than the left most point of Figure
1 (w = 0). To illustrate the potential inefficiency of the
FLR estimator, we must let the conditional odds ratios
vary with the xs and use an estimator that assumes
they are constant. An arbitrary degree of inefficiency
can be produced in this way.

To recap our comments on efficiency, the FLR likeli-
hood estimator is a special case of the GEE approach
where the variance matrix has been specified in terms
of conditional moments in such a way that the resulting
equation is the score equation for a log-linear model.
As a GEE estimator, it will be efficient when the assumed
covariance matrix is close to the truth and inefficient
when not. The same is true for any GEE estimator
regardless of the approach to specifying the weighting
matrix.

We once again congratulate FLR for their interesting
and important paper. We look forward to the opportu-
nity to use their methodology to analyze balanced data
sets in problems where the regression parameters are
the focus. Clinical trials is an area of application where
this approach can be particularly important. We also
concur with them that ignoring correlation when it is
substantial is problematic even if robust variances are
estimated. Their subsection 3.1 shows that grossly
misspecifying the weighting matrix when using GEE
can lead to inefficient estimates. We look forward to
additional efficiency studies based upon more realistic
data sets. Finally, while we have not addressed the
missing data issue, we are aware of interesting recent
work by one of the authors (Rotnitzky) and coworkers
on handling missing at random data in the general
GEE framework.

Rotnitzky

McCullagh. A related issue is the role of covariates in a
longitudinal study. Our paper focused on nonstochastic
covariates and the discussants’ comments relate to
settings where the covariates are time-stationary.
However, when the covariates are both time-varying
and stochastic, new issues arise regarding the interpre-
tation and the estimation of the parameters of marginal
models. These parameters may not have the implied



