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not only when these are observational. We agree that
the graphs suggested by Glymour and Spirtes could
possibly be chosen as another description of our nonde-
composable models but we do not regard them as
indicating useful potential processes to generate the
data, the point of our distinction.

In a recent paper, Stone (1993) elucidates require-
ments for particular causal interpretations. He also
examines critically strongly ignorable treatment alloca-
tion. Pearl in his contribution gives an important
graphical interpretation exactly of this assumption,
this facilitating the judgement of the effects of inter-
ventions in a hypothesized causal process.

Several contributors mention the role of latent vari-
ables, including as a special case the occurrence of
measuring errors. We agree that their use, preferably
sparingly, especially in elucidating nondecomposable
models, needs further study. For instance, the tetrad
conditions studied by Spirtes, Glymour and Scheines
(1993) for linear relations become relevant as well for
binary variables having a quadratic exponential distri-
bution. This distribution has some of the properties of
the multivariate normal distribution and provides ex-
act or approximate answers to Hill's question about
graphical theory for binary distributions and to Whit-
taker’s comments on complete independence.

Dempster favours shrinking estimates toward zero
as opposed to setting parameters exactly to zero. We
agree when empirical prediction is the objective, but
not where essentially qualitative understanding via
simple representations is involved, and the latter is
our main concern.

The issue, raised by Whittaker, of labelling the edges
of a graph can be solved in various ways if a single
degree of freedom is attached to each edge (by partial
correlation coefficients or by standardized regression
coefficients, for instance). The introduction of graphs
with dashed edges has, however, a different objective,
because it leads to structures of independence different
from those discussed by Whittaker, thus enriching the

class of graphical chain models, as pointed out by -

Hill. Whittaker’s graphs (ai) and (aii) do not represent
., the multivariate regression of our Figure 1c because
the essential association between the two responses is
omitted.

Rejoinder
David J. Spiegelhalter, A. Philip Dawid, Steffen
We are grateful to the discussants for their thoughtful

comments: since our paper is already quite long enough
we shall try to restrict our responses. We shall first deal
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Whittaker points out the relation of the Schur com-
plement to partial correlations and inverse covariance
matrices. An early treatment of this in the statistical
literature is by Cramér (1946, subsections 22.7, 23.4 and
23.5). The connection between partial correlation and
canonical parameters in the exponential family has
opened the road to defining analogous independence
structures for discrete variables and for mixed discrete
and continuous variables, known now as block regres-
sion (full edge) chain models.

In general distributional assumptions are necessary,
in addition to the independence graph, for a full speci-
fication of a statistical model. Indeed some research
hypotheses may not be possible for a particular joint
distribution of specified form. For example, X _||
Y|A cannot hold without additional independences if
the joint distribution is given by the linear logistic
regression of the binary variable A on the bivariate
normal variable (X, Y). Similarly if (X, Y) are condition-
ally bivariate normal given the discrete variable A,
then marginal independence of X and Y is possible only
with additional independences. See Cox and Wermuth
(1992b) for further details.

We were glad to see that Sobel regards our introduc-
tion of multivariate regression (dashed edge) chain
graphs as a step toward more traditional analyses in
the social sciences. In fact, it was one of our purposes
to provide simple examples which help one to recog-
nize similarities and distinctions between different ap-
proaches, the latter being explicitly appreciated by
both Sobel and Dempster.

Because of the particular focus of our paper, we have
put little emphasis on such issues as description of
sample selection, checking data quality, testing model
adequacy, examining the need of data transformation
and comparison of the fits of different kinds of models.
All of these are a normal if often difficult part of ap-
plied statistical work. From our present perspective,
whether the formal aspects to the analysis are in fre-
quentist or Bayesian terms is a secondary issue.

A special topic for further work concerns the role
of graphs with both kinds of edge, for example, in
representing the regression for multivariate binary
data studied by Zhao and Prentice (1990) and by Fitz-
maurice and Laird (1993).

L. Lauritzen and Robert G. Cowell

with representations of causality, followed by some
technical points on zero probabilities. Automatic model
construction will then be considered, and whether a

£
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network or tree representation is appropriate in the
example in our paper and in general. Finally, we shall
discuss the practical use of DAGs.

Before starting on particular themes we should reit-
erate the essential benefits of graphical models. Many
of the discussants describe the general value of a repre-
sentation of structural independence assumptions, and
its power for communicating important ideas with sub-
ject matter specialists. Normand and Dempster point
out that exact inference is only possible in restricted
circumstances, but as graphs become complex either
through size or distributional forms we may adopt
simulation techniques to derive the appropriate poste-
rior or predictive distributions. Fortunately the recent
development of Markov Chain Monte Carlo (MCMC)
methods [see, e.g., Gelfand and Smith (1990)] means
that this is not a great restriction, and hence attention
can properly shift away from purely computational
issues towards the more important themes of what the
model represents, and how it may be constructed and
criticised. Incidentally, in answer to a question from
Hill, DAGs with both discrete and continuous vari-
ables have been considered by Lauritzen (1992).

1. CAUSALITY AND DIRECTED ACYCLIC GRAPHS

Pear], Glymour and Spirtes all emphasize the poten-
tial in DAG models for representing causality and
causal thinking.

We have no fundamental disagreement with the idea
that DAGs are objects suitable for description of
causal structure and that causal structure is of funda-
mental importance, in particular when discussing inter-
ventions. There has been a fascinating development in
recent years and a number of authors, including the
discussants, have seriously taken up the fundamental
challenge of tackling causality issues in a systematic
and illuminating way, where just a few years ago this
seems to have been considered too difficult a subject.

Our approach has been relatively modest, emphasiz-
ing that even if a clear causal understanding is not
present, DAG models or the more general chain graph
models may be helpful. Of course, if a causal model can
be established with reasonable reliability, this would be
more useful than the more descriptive models we have
discussed in our paper.

It does, however, seem appropriate to point out that
phenomena in the world surrounding us may some-
times be described more clearly and directly by associa-
tion rather than causation, for example in terms of
constraints that must be satisfied in equilibrium states
of various systems. There may be an underlying causal
explanation, but it is conveniently used to derive the
association constraints rather than being explicitly rep-
resented in the model.

Below we have some more specific comments to is-

sues raised by the discussants concerning causal inter-
pretation of DAG models.

1.1 Specific Issues: Pearl

We find the discussion of directed acyclic graphs
with intervention nodes most illuminating and clear.
It may be worthwhile pointing out that in this context
conditional independence formally needs an asymmet-
ric interpretation; as described in Dawid (1979a), there
is an inherent asymmetry between interventions and
random variables since the former do not have probabil-
ities attached to them. However, all arguments given
in the contribution seem to remain correct under this
interpretation.

We believe the condition for equivalence of external
intervention to passive observation in (7) is sufficient,
but not necessary as it is stated. For example, if we
have a network with three variables I, J and K and we
study the effect of the intervention set(J = j), we have

piik) = 2 p(k|j,ip)

2up(kj, p(li)pl)
2upGlpl)

However, the equality of these two expressions does
not imply that K || I |J as (7) would suggest.

Finally some readers may find it simpler to use sepa-
ration in moral graphs of ancestral sets (Lauritzen et
al., 1990) to investigate the conditional independence
statements in (9).

whereas

plk|j) =

1.2 Specific Issues: Glymour and Spirtes

The authors seem to have misinterpreted our com-
ments concerning reciprocal causation and chain graphs,
made in connection with the specific link between Birth
Asphyxia? and Disease?. This was not meant as a gen-
eral suggestion for representing mixtures of DAGs by
undirected links and chain graphs. Rather we wanted
to point out that the direction on this particular link
did not have a causal interpretation and an undirected
link would have been a way of representing this.

Generally we find it questionable to represent feed-
back or reciprocal causation without having a small
time delay between effect and feedback. In an idealised
world, the time delay becomes infinitesimally small
compared to the general delay in “causal time,” so that
distributions can be assumed to reach an equilibrium.
Causal chain graph models represent such equilibrium
systems. This is seen most easily in the case where all
links are undirected: modern MCMC methods precisely
exploit this fact to calculate probabilities in such mod-
els by simulating dynamical “DAG”-systems with the
correct equilibrium distribution.

Certainly, as also demonstrated clearly by the com-
panion paper of Cox and Wermuth, there is an abun-
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dance of other types of independence structures where
chain graphs are not helpful and other graphical repre-
sentations of the structure are illuminating.

2. CONDITIONAL INDEPENDENCE

Hill points out the virtues of the various graphical
representations of conditional independence, but-con-
trasts their seductive simplicity with the complexity
of detail in interpretation of Markov properties when
the probabilities involved are not everywhere positive.

For application in expert systems it is mandatory
that cases of zero probabilities are covered by the
theory, since the aim is to extend classical logic to
cope with uncertainty. We find the statement that “no
results exist for distributions with zero probabilities”
to be somewhat inaccurate. For DAGs, positivity plays
no role at all for the intérpretation of the Markov
property (Pearl, 1988; Dawid, 1979a; Lauritzen et al.,
1990) and if Hammersley and Clifford had considered
directed graphs instead of the more complicated —but
seemingly easier—case of undirected graphs, much
might have looked different today.

But even in the undirected case there is some clarity
for nonpositive distributions, partly due to Moussouris
(1974). Define the following types of Markov properties
for a finite and undirected graph G:

Factorization: P € Mp(G) if P(x) = IT, ¥.(x,), the prod-
uct ranging over all complete sets.

Limit Markov: P € Mg(G) if there exists a sequence
P, € Mr(Q) such that P, = P for n > oo;

Global Markov: P e Ms(G) if A Il B | S[P] when-
ever S separates A from B in G;

Local Markov: P € M(G) if o Il V\ cl(@) | bd(a)[P];

Pairwise Markov: P e Mp(Q) if & 1l 8| V\ {a,B}[P]
whenever o + S.

If we let M.(G) denote the strictly positive distribu-
tions that obey the pairwise Markov property, it is not
difficult to show that

M+(G) C MHSG) C ME(G) C Mo(G) C Mwu(G) C Mp(G).

All inclusions are strict in general but may turn into
equalities for special types of graphs. Hill also men-
tions (Theorem 1*) that Mr(G) = Ms(G) for decompos-
able graphs G (Dawid and Lauritzen, 1993) and not
otherwise. Analogous results hold for other of the prop-
erties (Matus, 1992b).

Some points are unclear to us concerning split graphs.
Hill probably assumes that the triplets of conditional
independence necessarily involve all variables, else
Theorem 3+ must be incorrect as stated. The split
graph of the conditional independences {A | B |
(C,D), C LD} is surely the chordless 4-cycle, but the
independence C || D | (A, B) does not follow from the
first two. Also it is not clear whether “implied by”

should be understood as implication from semigra-
phoid axioms (Dawid, 1979a; Pearl, 1988), probabilistic
implication, graph separation implication or multival-
ued dependency implication. In general such implica-
tions can be quite different (Studeny, 1992; Matus,
1992a; Matus and Studeny, 1993; Studeny, 1993). Simi-
larly we doubt that positive probabilistic independence
is graph-generated in full generality; see the same refer-
ences.

3. MODEL CONSTRUCTION

Glymour and Spirtes raise a number of issues con-
cerning automatic data-based model construction. We
agree that there is a need for a systematic and thorough
investigation of these issues and believe that much
activity is to be expected in this area in the near future.

The problems involved are, however, quite difficult,
although some impressive experimental results have
appeared. Wedelin (1993) seems to be inaccurately
quoted. Although DAGs are discussed in his paper,
the part of his algorithm identifying directions is not
discussed in depth and he searches in effect for an
undirected structure. It is this undirected structure
that his method would in principle find asymptotically.
The last statement is less interesting than it sounds.
It demands an infinite database and an infinite amount
of computer time and this asymptotic correctness is
shared by many other methods.

BIFROST would simply not be able to deal with the
Alarm network which is so impressively reconstructed
by Wedelin’s and other methods. BIFROST uses a
backward search strategy, searching from the fully
connected network and trying to simplify, and is not
designed to deal with large networks. However, BI-
FROST is only a master program for CoCo (Bads-
berg, 1991). Using CoCo directly, with an initially
forward strategy that exploits sparseness of the net-
work, reconstructs the (moral graph of) Alarm network
at a level similar to but not quite as well as Wedelin.
The results are, however, not fully comparable. The
Minimum Description Length criterion needs calibra-
tion (this is easier for simulated data where the true
network is known), and the results reported by Wedelin
were based on a calibrated run. The CoCo reconstruc-
tion which we refer to was performed on Wedelin’s
simulated data using an uncalibrated BIC criterion
which is asymptotically equivalent to MDL. But is
10,000 close to infinity?

Anyway, it is clear that many of these recent simu-
lation experiments seem to indicate the possibility of
reconstructing network structures of a size and com-
plexity that hitherto would have been unthinkable. A
point of caution may be appropriate: the simulation
experiments tell little about the behaviour of automatic
methods in real situations, trying to find structures
that may only be there in an approximate sense.
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4. TREES OR NETWORKS?

Glymour and Spirtes, Dempster and Hill all contrast
the diagnostic performance of the network models with
that of the hand-crafted algorithm reported in Franklin
et al. (1991). First we should say that the domain of
paediatric cardiology appears well suited to algorith-
mic solution—particular configurations of well-defined
features pointing strongly to specific diagnoses. We
are investigating data-based algorithms using the tree
command in S (Chambers and Hastie, 1992), and find-
ing prospective performance equivalent to the expert-
based classification trees. However, in defence of the
network models, we should emphasize that Table 6
reports performance while the network is being sequen-
tially trained. When the penalized-EM procedure is
used for batch learning (see subsection 7.1) and then
reapplied to the training set of 168 cases, the (admit-
tedly slightly optimistic) accuracy is 137 compared to
the expert-algorithm’s 132. As mentioned in subsection
5.4, fully prospective evaluation of trained networks
gives similar performance.

Nevertheless, we should not be surprised if a tree-
based approach gives better classification, since it is
solely designed for that task. In contrast, a graphical
model is just that: a full model for the relationship
betweea all variables, without Disease? being singled
out as particularly important, and thus a network can
be used for prediction of any quantity. A classification
tree can be thought of as knowledge compiled for a
particular purpose: indeed a classification tree can be
derived from a network by introducing, for example,
an entropy-based mechanism for selecting successive
questions to ask. If users are solely interested in classi-
fication then we might- recommend tree-based proce-
dures particularly since, as Dempster emphasizes, they
often fit within the recognized pattern of teaching and
discourse. The network models appear more appro-
priate when an underlying mechanism is postulated,
and interest is in the interacting components of a whole
system.

5. GENERAL ISSUES IN USING DAGs

‘ Dempster makes some important comments on the
explicit consideration of context in the structuring of
the model, particularly with regard to selection of
cases. Dawid (1976) contrasts direct modelling in the
diagnostic direction, from disease to symptoms, to the
sampling models we use in the paper. The former
should be more robust to variations in patient selection
on the basis of their clinical findings, providing further
support for tree-based structures if interested only in
classification. Within the network paradigm we could
explicitly model the selection process by including a
node indicating Included in sample? which has as par-
ents those clinical features that influence referral. A

classic occurrence of selective reporting is in the con-
text of adverse drug reactions: Cowell et al. (1993)
provide an example of explicitly representing the re-
porting process within a graphical model. Unfortu-
nately the construction of conditional independence
graphs is complicated by selective reporting, since in
general conditional independence properties may be
somewhat different within selected and unselected pop-
ulations.

We fully agree with Dempster that subject matter
expertise should be exploited wherever it is available,
but that it should be subject to as much critical evalua-
tion as given to data. The ability to create parsimoni-
ous and yet realistic models using evidence from a
variety of sources is a skill that is difficult to formalise,
and clearly different strategies exist. Dempster feels
our approach has been too “discrete,” and more smooth-
ing may be possible through hierarchical modelling,
Within our context this could mean, for example, not
assuming “local independence” when learning and in-
stead regarding the underlying frequencies exchange-
able over different parent configurations. We have
admittedly somewhat constrained ourselves to seeing
how far we can push analytic methods, but in practice
we would support the use of hierarchical models where
appropriate, using MCMC techniques for learning and
evidence propagation. We do, however, diverge from
Dempster with regard to belief functions, and do not
agree that the (now essentially solved) computational
issues have been the main hindrance to their use. We
still have strong reservations regarding the essential
interpretation of these quantities, their elicitation and
use in initialising directed structures, their criticism in
the light of data, and in particular their interface with
external environments involving calibration or decision
making.

Madigan discusses the practical issues in using net-
works in AT applications. We agree that only a limited
type of knowledge can be directly represented by a
graphical model, and integration into hybrid systems

-is often appropriate. The specification of a joint distri-

bution, even in a transparent and computationally
efficient manner, can only be one component in a solu-
tion to a complex problem. We look forward to the
development of general toolkits for graphical models,
which should incorporate tools for model criticism as
well as construction. As Normand points out, such
criticism is a complex matter and difficult to automate,
although standard statistical ideas of residuals, influ-
ence and fit all carry over.

Madigan also suggests averaging predictions over
models when there is uncertainty concerning structure.
As we show in subsection 5.2, our global monitors
based on scoring rules may be transformed into Bayes
factors for model comparison, which can in turn be
transformed to posterior probabilities on alternative
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structures. These posterior probabilities could then
weight predictions on common nodes. As Madigan
and others have shown, such weighted predictions can
often perform well, and perhaps should have been in-
cluded in our evaluation.

ADDITIONAL REFERENCES

ALmoND, R. G., BRaDpsHAW, J. M. and MabpiGaN, D. (1993). Reuse
and sharing of graphical belief network components. In Pro-
ceedings of the Fourth International Workshop on Artificial
Intelligence and Statistics. To appear.

BartHOLOMEW, D. (1987). Latent Variable Models and Factor
Analysis. Oxford Univ. Press.

Bekeri, C., Facin, R., MaiEr, D. and YanNNakAKIs, M. (1983).
On the desirability of acyclic database schemes. J. Assoc.
Comput. Mach. 30 479-513.

BeEeri, C. and KiFer, M. (1986a). An integrated approach to
logical database design of relational database schemes. ACM
Trans. Database Systems 11 134-158.

Beeri, C. and Kirer, M. (1986b). Elimination of intersection
anomalies from database schemes. J. Assoc. Comput. Mach.
33 423-450.

BeEeRi, C. and KiFeR, M. (1987). A theory of intersection anoma-
lies in relational database schemes. J. Assoc. Comput. Mach.
34 544-5717.

BEINLICH, 1., SuERMONDT, H., CHAVEZ, R. and CooPER, G. (1989).
The ALARM monitoring system: A case study with two
probabilistic inference techniques for belief networks. In
Proceedings of the Second European Conference on Artificial
Intelligence in Medicine 247-256.

BeRrNARDINELLI, L. and MonTomoLl, C. (1992). Empirical Bayes
versus fully Bayesian analysis of geographical variation in
disease risk. Statistics in Medicine 11 983-1007.

Bravrock, H. (1961). Causal Inferences in Nonexperimental Re-
search. Univ. North Carolina Press.

Brabpsuaw, J. M., Cuapman, C. R., SuLLivan, K. M., ALMOND,
R. G., MapiGaN, D., ZarLEY, D., GavVRIN, J., NiMs, J. and
Bush, N. (1993). KS-3000: An application of DDUCKS to
bone-marrow transplant patient support. In Proceedings of
the Seventh Annual European Knowledge Acquisition Work-
shop, Toulouse, France. To appear.

BrabpsHaw, J. M., CoviNngTON, S. P., Russo, P. J. and Boosk,
J. H. (1991). Knowledge acquisition techniques for decision
analysis using AXOTL and AQUINAS. Knowledge Acquisi-
tion 3 49-717.

BREESE, J. S. (1989). Construction of belief and decision net-
works. Technical Memorandum 30, Rockwell Palo Alto Labo-
ratory, 444 High Street, Palo Alto, CA 94301.

CaspacLi, M. (1992). Chaos and deterministic versus stochastic
non-linear modelling. J. Roy. Statist. Soc. Ser. B 54 303-
,328.

CHAMBERS, J. M. and HasTig, T. J. (1992). Statistical Models in
S. Wadsworth, Belmont, CA.

CHENG, B. and TirtErRINGTON, D. M. (1993). Neural networks
and statistical perspectives. Unpublished manuscript.

CoweLL, R. G., Dawip, A. P., HurcHinsoN, T. A., RopEN, S. and
SPIEGELHALTER, D. J. (1993). Bayesian networks for the
analysis of drug safety. The Statistician To appear.

CraMER, H. (1946). Mathematical Methods of Statistics. Princeton
Univ. Press.

Dawip, A. P. (1976). Properties of diagnostic data distributions.
Biometrics 32 647-658. .

Dawip, A.. P. (1979b). Some misleading arguments involving
conditional independence. J. Roy. Statist. Soc. Ser. B 41 249~
252.

DEMPSTER, A. P. (1990). Causality and statistics. J. Statist.
Plann. Inference 25 261-278.

DEeMPSTER, A. P. and Kong, A. (1988). Uncertain evidence and
artificial analysis. J. Statist. Plann. Inference 20 355-368.
[Reprinted in G. SHAFER and J. PEARL, eds. (1990). Readings
in Uncertain Reasoning 522-528. Morgan Kaufmann, San
Mateo, CA.]

DEMPSTER, A. P., Scuarzorr, M. and WErMuUTH, N. (1977). A
simulation study of alternatives to least squares. J. Amer.
Statist. Assoc. 72 77-91.

Donowno, D. L., JounsToNE, I. M., HocH, J. C. and STERN, A. S.
(1992). Maximum entropy and the nearly black object. J.
Roy. Statist. Soc. Ser. B 54 41-81.

DraPER, D. (1993) Assessment and propagation of model uncer-
tainty. Technical report, Interdivisional Program in Statis-
tics, Univ. California, Los Angeles.

Epwarps, D. and KREINER, S. (1983). The analysis of contingency
tables by graphical models. Biometrika 70 553-565.

Facin, R., MeEnNDELZON, A. O. and UrLLMmaN, J. F. (1982). A
simplified universal relation assumption and its properties.
ACM Trans. Database Systems T 343-360.

FisHER, F. M. (1970). A correspondence principle for simultane-
ous equation models. Econometrica 38 73-92.

Fisuer, R. A. (1951). The Design of Experiments. Oliver and
Boyd, Edinburgh.

FirzMAURICE, G. M. and Lairp, N. M. (1993). A likelihood-based
method for analysing longitudinal binary responses. Biome-
trika 80 141-151.

GEIGER, D. (1990). Graphoids: a qualitative framework for proba-
bilistic inference. Ph.D. dissertation, Univ. California, Los
Angeles.

GiLks, W. R., CrayToN, D. G., SPIEGELHALTER, D. J., BEsT,
N. G., NcNEe1L, A. J., SHarpLES, L. D. and Kirsy, A. J.
(1993). Modelling complexity: applications of Gibbs sampling
in medicine. J. Roy. Statist. Soc. Ser. B 55 39-52.

GoLpMAN, R. P. and BReESE, J. S. (1992). Integrating model
construction and evaluation. In Uncertainty in Artificial
Intelligence (D. Dubois, M. P. Wellman, B. D’Ambrosio and
P. Smets, eds.) 8 104-111. Morgan Kaufman, San Mateo,
CA.

GoLpmaN, R. P. and CuAarNiak, E. (1992). Probabilistic text
understanding. Statistics and Computing 2 105-114.

GoLpszmIDT, M. and PEARL, J. (1992). Default ranking: A practi-
cal framework for evidential reasoning, belief revision and
update. In Proceedings of the Third International Conference
on Knowledge Representation and Reasoning 661-672. Mor-
gan Kaufmann, San Mateo, CA.

HAMMERSLEY, J. M. (1974). Comment on “Spatial interaction and
statistical analysis of lattice systems” by J. Besag. J. Roy.
Statist. Soc. Ser. B 36 230-231.

HaRrrison, P. J. and STevENs, C. F. (1976). Bayesian forecasting.
J. Roy. Statist. Soc. Ser. B 38 205-247.

Hivr, J. R. (1991). Relational databases: A tutorial for statisti-
cians. In Computing Science and Statistics: Proceedings of
the 23rd Symposium on the Interface (E. Kerimidas, ed.) 86-
93. Interface Foundation, Fairfax Station, VA.

Hobges, J. S. (1987). Uncertainty, policy analysis and statistics
(with discussion). Statist. Sci. 2 259-291.

HoLranp, P. W. (1986). Statistics and causal inference (with
discussion). J. Amer. Statist. Assoc. 81 945-970.

HovrtzMAN, S. (1989). Intelligent Decision Systems. Addison-
Wesley, Reading, MA.

KADANE, J. and SEIDENFELD, T. (1992). Statistical issues in the
analysis of data gathered in the new designs. In Toward a
More Ethical Clinical Trial (J. Kadane, ed.). Wiley, New
York. To appear.

Kass, R. E. and RAFTERY, A. E. (1993). Bayes factors and model



282 D. R. COX AND N. WERMUTH /D. J. SPIEGELHALTER ET AL.

uncertainty. Technical Report 571, Dept. Statistics, Carnegie
Mellon Univ.

Karz, B. P. and Hui, S. L. (1989). Variance estimation for medical
decision analysis. Statistics in Medicine 8 229-241.

Kuveri, H. and Seeep, T. P. (1982). Structural analysis of
multivariate data: A review. In Sociological Methodology,
1982 (S. Leinhardt, ed.) 209-289. Jossey Bass, San Francisco.

Lairp, N. M. and WAaRE, J. H. (1982). Random effects models
for longitudinal data. Biometrics 38 963-974.

Lianeg, K. Y., ZEGER, S. L. and QaqisH, B. (1992). Multivariate
regression analyses for categorical data (with discussion). J.
Roy. Statist. Soc. Ser. B 54 3-40.

LinpLEY, D. V. and SmiTH, A. F. M. (1972). Bayes estimates for
the linear model. J. Roy. Statist. Soc. Ser. B 34 1-18.

Mabican, D. and RaFteRY, A. E. (1991). Model selection and
accounting for model uncertainty in graphical models using
Occam’s window. Technical Report 213, Dept. Statistics,
Univ. Washington.

Mabican, D. and York, J. (1993). Bayesian graphical models.
Technical Report, Dept. Statistics, Univ. Washington.
Mason, S. (1956). Feedback theory: Further properties of signal

flow graphs. Proc. Inst. Radio Eng. 44 920-926.

MaT6s, F. (1992a). Ascending and descending conditional inde-
pendence relations. In Transactions of the 11th Prague Confer
ence on Information Theory, Statistical Decision Functions
and Random Processes, 189-200. Kluwer, Dordrecht.

Martus, F. (1992b). On equivalence of Markov properties over
undirected graphs. J. Appl. Probab. 29 745-749.

Margs, F. and StupeEnY, M. (1993). Conditional independences
among four random variables 1. Unpublished manuscript.

Morgis, C. N. (1987). Comment on “The calculation of posterior
distributions by data augmentation” by M. A. Tanner and
W. H. Wong. J. Amer. Statist. Assoc. 82 542-543.

Moussougris, J. (1974). Gibbs and Markov random systems with
constraints. J. Statist. Phys. 10 11-33.

NormaND, S. L. and TritcHLER, D. (1992). Parameter updating
in a Bayes network. J. Amer. Statist. Assoc. 87 1109-1115.

PeARL, J. (1993a). Belief networks revisited. Artificial Intelli-
gence 59 49-56.

PEARL, J. (1993b). From conditional oughts to qualitative deci-
sion theory. In Proceedings of the Ninth Conference on Un-
certainty in Artificial Intelligence (D. Heckerman and
Mamdani, eds.) 12-20. Morgan Kaufmann, San Mateo, CA.

PEARL, J. (1993c). Aspects of graphical models connected with
causality. In Proceedings of 49th Session, International Sta-
tistical Institute: Invited Papers. To appear.

PraTT, J. and SCHLAIFER, R. (1988). On the interpretation and
observation of laws. J. Econometrics 39 23-52.

RAFTERY, A. E. (1988). Approximate Bayes factors for general-
ized linear models. Technical Report 121, Dept. Statistics,
Univ. Washington.

RAFTERY, A. E. (1993). Bayesian model selection in structural
equation models. In Testing Structural Equation Models
(K. A. Bollen and J. S. Long, eds.). Sage, Beverly Hills, CA.

ReIcHENBACH, H. (1956). The Direction of Time. Univ. California
Press, Berkeley, CA.

RipLEY, B. O. (1993). Statistical aspects of neural networks. Proc.
Semstat.

RopcERrs, R. and MaranTo, C. (1989). Causal models of publish-
ing productivity in psychology. Journal of Applied Psychol-
ogy 74 636-649. .

RoseEnBAUM, P. and Rusin, D. (1983). The central role of propen-
sity score in observational studies for causal effects. Biome-
trika 70 41-55. )

Rusin, D. B. (1974). Estimating causal effects of treatments in
randomized and non-randomized studies. Journal of Educa-
tional Psychology 66 688-701.

Rusin, D. B. (1977). Assignment to treatment groups on the
basis of a covariate. Journal of Educational Statistics 2
1-26.

Rusin, D. B. (1978). Bayesian inference for causal effects: The
role of randomization. Ann. Statist. 6 34-58.

Rusin, D. B. (1980). Comment on “Randomization analysis of
experimental data: The Fisher randomization test” by D.
Basu. J. Amer. Statist. Assoc. 75 591-593.

SHAFER, G. (1976). A Mathematical Theory of Evidence. Princeton
Univ. Press.

SHAFFER, C. (1993). Selecting a classification method by cross-
validation. Fourth International Workshop on Artificial In-
telligence and Statistics. To appear.

SimoN, H. (1954). Spurious correlation: a causal interpretation.
J. Amer. Statist. Assoc. 49 467-479.

SiMon, H. A. (1977). Models of Discovery: and Other Topics in
the Methods of Science. Reidel, Dordrecht, Holland.

Skuck, D. (1991). A frame-like knowledge acquisition tool inte-
grating abstract data types and logic. In Principles of Seman-
tic Networks (J. Sowa, ed.) 543-563. Morgan Kaufmann,
San Mateo, CA.

SmiTH, J. Q. (1988). Models, optimal decisions and influence
diagrams. In Bayesian Statistics 3 (J. M. Bernardo, M. H.
DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 765-776.
Oxford Univ. Press.

SoBeEL, M. E. (1990). Effect analysis and causation in linear
structural equation models. Psychometrika 55 495-515.
SoBEL, M. E. (1992). Causation and spurious correlation: A reex-

amination. Unpublished manuscript.

SoBEL, M. E. (1994). Causal inference in the social and behavioral
sciences. In A Handbook for Statistical Modeling in the
Social and Behavioral Sciences (G. Arminger, C. C. Clogg
and M. E. Sobel, eds.) Plenum Press, New York. To appear.

SpirTES, P. (1992). Building causal graphs from statistical data
in the presence of latent variables. In Proceedings of the
Ninth International Congress on Logic, Methodology, and
the Philosophy of Science (B. Skyrms, ed.) Uppsala, Sweden.

SpirTES, P. and GLYMOUR, C. (1993). Inference, intervention, and
prediction. In Fourth International Workshop on Artificial
Intelligence and Statistics. To appear.

SpPIRTES, P., GLYMOUR, C. and ScHEINES, R. (1991). An algorithm
for fast recovery of sparse causal graphs. Social Science
Computer Review 9 62-72.

SpirTES, P., ScHEINES, R., MEEK, C. and GLymouR, C. (1993).
Tetrad II: Tools for Discovery. Erlbaum, Hillsdale, NJ. To
appear.

SpirTES, P. and VErMA, T. (1992). Equivalence of causal models
with latent variables. Philosophy, Methodology and Logic
Technical Report 33, Carnegie Mellon Univ.

4 StonE, R. (1993). The assumptions on which causal inferences

rest. J. Roy. Statist. Soc. Ser. B 55 455-466.

StroTZ, R. H. and WoLp, H. O. A. (1960). Recursive vs. nonre-
cursive systems: An attempt at synthesis. Econometrica 28
417-4217.

StupeNt, M. (1992). Conditional independence relations have no
finite complete characterization. In Transactions of the 11th
Prague Conference on Information Theory, Statistical Deci-
sion Functions and Random Processes 377-396. Kluwer,
Dordrecht, Holland.

Stupent, M. (1993). Structural semigraphoids. Internat. J. Gen.
Systems. To appear.

SuprEs, P. (1970). A Probabilistic Theory of Causality. North-
Holland, Amsterdam.

Szorovits, P. and PAUKER, S. G. (1978). Categorical and probabi-
listic reasoning in medical diagnosis. Artificial Intelligence
11 115-144.

U.S. NucLeAr REGuLATORY CoMMIssION. (1990). Severe Accident



LINEAR DEPENDENCIES / BAYESIAN ANALYSIS IN EXPERT SYSTEMS

Risks: An Assessment for Five U. S. Nuclear Power Plants.
Final Summary Report (NUREG-1150). Washington, D.C.
VERMA, T. and PEARL, J. (1990). On equivalence of causal models.
Technical Report R-150, Dept. Computer Science, Univ. Cali-
fornia, Los Angeles.
Voros’Ev, N. N. (1962). Consistent families of measures and their

extensions. Theory Probab. Appl. 7 147-163.
WEeEDELIN, D. (1993). Discovering causal structure from data.

283

Technical Report, Dept. Computer Science, Chalmers Univ.

of Technology, Sweden.

WINER, B. J. (1971). Statistical Principles in Experimental De-
sign, 2nd ed. McGraw-Hill, New York.

Zuao, L. P. and PreNTICE, R. L. (1990). Correlated binary regres-
sion using a quadratic exponential model. Biometrika 77

642-648.



