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examine the issue of spurious causation. Since spurious
causation is typically defined as a case in which certain
marginal dependencies vanish upon conditjoning, the
results are relevant to literature in graphical modeling
that equates the absence of causation with conditional
independence. The idea behind causation in distribu-
tion is to examine the distribution of the response Y,
when every element of the population has the same
value x on the causal vector (X) and to compare the
distributions as x varies. If the distributions do not
change as x varies, one says X does not cause Y in
distribution and otherwise one says X causes Y in
distribution. For a conditioning set Xz., I show (1)
X Il Y | Xg- does not imply X does not cause Y in
distribution, and (2) X does not cause Y in distribution,
does not imply X 1| Y | Xg.. For example, if Xz is
prior to variable X, and X prior to variable Y, with no
variables intervening between X and Y, the results
state that X may (or may not) “directly influence” Y
(using the sense of directly influence in the graphical
modelling literature), but X may not (may) cause Y in
distribution. Note also there is no path connecting X
to Y in this example. This should suggest that causal
inferences based on the usual conditional independence
relations do not generally sustain a manipulative ac-
count of the causal relation. Sobel (1992) also gives
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Joe Whittaker

It gave me great pleasure to read these articles. Here
we have two papers on the application of conditional
independence: one to the specification of a graphical
model for assessing association in multivariate re-
sponses and the other to message passing on a directed
graph, in a paper which expertly summarises the proba-
bilistic view of dealing with uncertainty in expert sys-
tems. Right at the outset, let me state my own belief
that it is not so much the graphic display but the
notion of conditional dependence and independence and
the idea of a ternary relationship that X, affects (or is
irrelevant to) X, in the presence of X5, which consti-
tutes the fundamental contribution of graphical models
to statistical analysis.

I particularly want to focus on the Cox and Wermuth
(CW) paper, which I believe raises some unresolved
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necessary and sufficient conditions for equivalence of
conditional iiddependence and causation in distribution.

The foregoing suggests more cautious use of the
term “causation” in future work. Not surprisingly, I
do not like the terms “causal network” and “influence
diagrams”; is not influence just another synonym for
causation? The terms employed by Spiegelhalter et
al. (directed graphical model, belief networks) seem
preferable. Finally, I want to briefly take up the term
“irrelevance,” sometimes defined via structures that
satisfy the axioms of generalized conditional indepen-
dence (Smith, 1988). (Smith uses the term “uninforma-
tive” and is always careful to mention the conditioning
set.) From my view, scientists often allow the connota-
tive aspects of words to creep into their use of technical
terms, and this can be detrimental. Thus, one might
want to choose terms whose connotative aspects are
in accord, as much as possible, with the technical defi-
nition. In that vein, relevance seems to encompass
many things, including causation; for example, the
phrase “causally irrelevant” describes one form of irrele-
vance. Even leaving aside causation, adding informa-
tion to the conditioning set of marginalizing over this
set can make “irrelevant” variables become “relevant”;
should these variables have been called irrelevant to
begin with?

issues, and discuss three topics in more detail: the
value of a graphical representation, the distinction
between multivariate and “block” regression and the
role of the Schur complement as a partial variance.

VALUE OF A GRAPHICAL REPRESENTATION

Few practising statisticians can be unaware of the
immediate and powerful impact of visual display in
conveying the results of a statistical analysis to a
consulting client. A tremendous selling point of graphi-
cal models is the graph: a fact which is well known to
statistical researchers in related areas such as path
analysis, causal modelling, factor analysis and struc-
tural equation modelling. The same lesson can be learnt
from the recently expanding field of neural networks,
where statisticians [for instance, Ripley (1993) and
Cheng and Titterington (1993)] are discovering that
neuroscientists and computer scientists have been busy
proposing neural network formulations of nonlinear
statistical classification methods. While perhaps not
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exactly original they are not reinventing the wheel for
the neural net exposition provides a deeper understand-
ing contributing greatly to the upsurge in popularity
of these methods.

There is therefore some pressure to embellish the
conditional independence (CI) graph with additional
information, on top of the essential iconographics for
nodes, edges and directed edges; it is easy to under-
stand the motivation of the authors in introducing
further types of edges, such as the dashed edge. For
instance, it is often suggested that the thickness of
the edge should reflect the strength of the dependence

and I agree that

immediately conveys the information that the (2,3)
dependence is stronger than the (1,2) dependence, thus
helping the data analyst to make sense of possibly
complex interactions.

However, this is not a suggestion which I would
support as it obscures the overriding defining feature
of a conditional independence graph: the edge (1,3) is
missing because X3 _|| X;|X,. It is the absence of an
edge which generates the graph. Admittedly this is a
subtle point and choosing to visually represent a defin-
ing feature by a blank space is perhaps unfortunate.

(%)
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DISTINCTION BETWEEN MULTIVARIATE
REGRESSION AND “BLOCK” REGRESSION

A particular contribution of the CW paper is to
highlight the difference between multivariate regres-
sion and so-called “block” regression and to demon-
strate that graphical modellers have some difficulty in
portraying the former. The reason, of course, is that
graphical modelling interests itself in the analysis of
conditional relationships while multivariate regression
focuses on marginal relationships.

For example, an idea of the distinction can be gained
by asking what parameters have to be zero for an edge
in a CI graph to vanish. In the multivariate regression
of (Y1, Y,) on X, which essentially consists of comput-
ing separate univariate regressions of Y; on X and Y,
on X, the regression coefficient fy,x = 0 eliminates the
edge connecting Y; with X in CI graph (ai). Similarly
Byox = 0 eliminates the edge in (aii). Two separate CI
graphs are required to represent these concepts.

B0,
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: (b)

(aii)

The “block” regression corresponds to CI graph (b).
The edge connecting Y; with X in CI graph (b) vanishes
if the partial regression coefficient By,xjy, = 0. The
techniques may give the same numerical answers in
certain special cases, for instance if Y; || Y;|X or if
Y. Il X, but in general they do not. The same issue
of whether to parameterise in the conditional or in the
marginal distribution arises in the analysis of discrete
data, for example, see the papers of Liang, Zeger and
Qaqish (1992), Laird and Ware (1982). There is no
universal panacea.

The authors attempt to combine the graphs (ai, aii, b)
and extract the best from both worlds by defining the
dashed edges in the graph (c)

()

by the interpretation that if such an edge is missing
it should be concluded that Y; || X rather than
Y: Al X|Y,.

At this point I find I have to take up the cudgels
and put the “purist” view that such an extension leads

‘to difficulties and ambiguities and is even perhaps

unnecessary. I make four points.
1. Liability to misinterpretation: Consider for exam-

ple the graph

)

(d)
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defined by missing dashed edges. To me, the only
possible visual interpretation of graph (d) is that of
complete (mutual) independence of X;, X, and X;.
But of course, there are well-known counter examples
to the assertion that {X; 1l X, Xi Il X3, Xo |l X3}
implies the mutual independence of X;, X, X;. Only
if (X3, X2, X;) are jointly normal could such an assertion
hold, which restriction would violate the attractive
feature of graphical models that it unifies the theories
of discrete and continuous variable dependence.

2. Separation: Key to the construction of CI graphs
is the focus on the joint distribution and the mapping
of the ternary conditional independence relation X,
1l X,|X. to the, similarly ternary, separation prop-
erty of subsets in a graph “a is separated by b from
¢.” Technically this concept is defined by: all paths in
the graph starting from a vertex in a and finishing at
a vertex in b have a nonempty intersection with c.

Marginal independence is a binary relationship be-
tween random variables and so cannot easily map onto
the separation property of nodes in a graph.

3. Coherence: To obtain a coherent picture CI graphs
focus on a single joint distribution, fis3.. say, and
analyse it in terms of conditional distributions of the
form fores:. Because fiz.x = fan.k-1 fe-11.2-2 ... fonfi
this single joint distribution can be built up from a
nested sequence of marginal distributions. For exam-
ple, the missing (1,3) edge in the directed graph of a
Markov chain

OO

signifies the X3 |l X:|X,. However the graph (e) still
refers to a single joint distribution of four random
variables.

Unfortunately, a single joint distribution is not gen-
erally specified by all pairwise marginal distributions,
and so a graph built from these may easily indicate
ambiguities as in the mutual independence example
above.

4. Latent variable embedding: It may be unnecessary
to invent new types of graphs. For example, consider
an analysis of the undirected dashed edge chain graph

defined by {X; I X5, Xi 1l X4 X» 1l X4} and ask if
information on X, is needed to predict X; when X is
known.

Now the graph (f) is a consequence of the directed

CI graph (g)
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in which Z;, Z; and Z; are mutually independent and
the X’s are conditionally independent given the Z’s
(X1 1l X5 as they have no Z’s in common). The CI
graph (f) is a “consequence” in the sense that the mar-
ginal distribution of (X3, X2, X3, X4) is obtained from
that of (Xi, Xs, X3, X4, Z1, Zs, Z3) by integrating out
(Z1, Z3, Z3) and has the requisite properties of marginal
independences indicated by missing dashed lines.

The moralisation procedure of Lauritzen and Speigel-
halter (1988) indicates that (g) is embedded in the
undirected CI graph (h) for the joint distribution of
(X1, X2y X3, X4, Z, Z5, Z3).

Since X, does not separate X; from X; in (h), the
answer is that X; cannot be discounted if X, is ob-
served. However, ironically if X, is not observed, the
graph reflecting the distribution (X1, X5, X4, Z1, Z, Zs)
is (i)

and clearly, X; is uninformative about Xs.
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This device of embedding the dashed graph into a
CI graph with “latent variables” certainly solves some
problems. It also indicates why latent variables in
highly structured graphs allow marginal empirical de-
pendences to determine the statistical analysis. A
prime example of this is the graphical analysis of the
state space model underlying the Kalman filter.

ROLE OF THE PARTIAL VARIANCE
(SCHUR COMPLEMENT)

The technical conditions for conditional indepen-
dence in multivariate normal distributions, for in-
stance, that X; || X,|X; is characterised by a zero
in the inverse variance matrix of (X;, X», X;), appear
somewhat bizarre at a first acquaintance. A good un-
derstanding requires an interpretation of the elements
of this inverse variance matrix, and I found it useful
in writing Chapter 5 of my book (Whittaker, 1990) to
use the concept of the partial variance as the vehicle
for this explanation. For instance, slightly extending
the notation of the CW paper, when a vector X with
variance X is partitioned into (X,, X;) the block in the
inverse variance X! corresponding to X, is I* =
(X Y)e (and not (Z.)~Y), the essential content of the
inverse variance lemma is that

(1) S = var(X,|Xs) .

Here var(X,|X;) is the partial or residual variance of
X, having regressed out X;, and defined by var(X, —
X.(X,)) where X,(X,) is the fitted (multivariate) regres-
sion of X, on X,. These entities can be represented in
the Pythagorean vector diagram

Xa _Xa(Xb) ¥ Xa

XX Xb

The notion of a partial variance permits the diagonal

Rejoinder
D. R. Cox and Nanny Wermuth

We are grateful to all the contributors for their
thoughtful and constructive contributions. There is
rather little with which we disagree so that our reply
is brief. '

While to some extent the use of the word causal is
a matter of convention, we much prefer to restrict the

elements of the inverse variance matrix to be inter-
preted as functions of the multiple correlation coeffi-
cient: if a = {i} is 1-dimensional, so that b denotes the
p — 1 remaining variables, then (1) becomes

3 = var (Xi|Xoe) ™ = var(X;)™ [ (1—R%)

where R(i) is the multiple correlation coefficient of X;
with the remaining variables. In consequence, the larger
Y% in relation to var(X;) the more predictable is X;
from the other variables. By choosing a = {i, j} to be
2-dimensional, formula (1) enables an explicit expres-
sion for the off-diagonal elements of the inverse
variance in terms of the partial correlation of X; and
X; given the remaining variables. In point of fact
¥ | Jxixi = —corr (X;, Xj| Xrest).

The inverse variance lemma, which is by no means
new, is really just statistical interpretation of invert-
ing a partitioned matrix. In fact var(X,|Xs) can be com-
puted from var(X,) — cov(X,, Xs)var(Xs) tcov(X;, X,)
which in the mathematical literature is well known as
the Schur complement of the matrix

var(X,) cov(X,, X3)
coviXpX,)  varXy) |

The determinant represents the squared length (vol-
ume) of the residual vector in the Pythagorean vector
diagram above. This quantity is denoted by X, in
CW as in many books on the multivariate normal dis-
tribution, but such a notation obscures various elemen-
tary properties such as var(AX,|X;) = Avar(X,| XA’
where A is a fixed linear transform, and if B is inverti-
ble, var(X,|BX;) = var(X,|X:) expressing the invari-
ance of the partial variance to a change of units in the
regressor variables.

Various forms of the lemma exist and a frequent
application is to Bayesian analysis for instance, in the
analysis of linear models by Lindley and Smith (1972),
in standard treatments of factor analysis, and in Kal-
man filtering.

word to situations in which we have knowledge of some
underlying process. We reassure Dempster that we are
deeply concerned with the elucidation of processes that
might have generated the data, but are cautious about
what conclusions can be drawn from single investiga-
tions or even repeated investigations, especially but



