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quires the graph to be chordal for there to be equiva-
lence, whereas Theorem 1+ puts no requirements on
it. Theorem 2* requires the hypergraph to be acyclic
for there to be equivalence, whereas Theorem 2+ re-
quires only that it be conformal. Theorem 3* requires
the set of conditional independencies to have a conflict-
free cover for there to be equivalence, whereas Theorem
3+ puts no requirements on it (actually, the closure
with respect to strictly positive distributions of a set of
conditional independencies is always graph-generated).

As far as I know, Theorems 1*, 2* and 3* are new,
although, by now, they are probably not unexpected.

Parallel developments in the two fields have occurred
in the past, with neither aware of the other, apparently.
For example, Vorob’ev's (1962) results on extending
consistent marginal distributions parallel similar re-
sults for the extension of consistent databases (Beeri
et al., 1983). And Beeri and Kifer’s (1986a, 1986b, 1987)
work on fixing sets of multivalued dependencies that
have intersection anomalies parallels Dawid’s (1979b)
method for fixing up sets of conditional independen-
cies.

3. MODELS AND DATA

Two simple but important points, each mentioned
in both papers and neither having to do directly with
graph theory, deserve to be emphasized. First, both
papers take the position that a model represents the
substantive knowledge that an expert brings to the
problem prior to seeing specifically relevant data. One
practical consequence of such a position is that statisti-

Comment: What’s Next?

David Madigan

These papers represent two of the many different
graphical modeling camps that have emerged from a
flurry of activity in the past decade. The paper by
Cox and Wermuth falls within the statistical graphical
modeling camp and provides a useful generalization of
that body of work. There is, of course, a price to be
paid for this generality, namely that the interpretation
of the graphs is more complex. I cannot resist comple-
menting the authors on the remarkable feat of finding

David Madigan is Assistant Professor, Department of
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Washington 98195.

cians cannot work in a vacuum; rather, they must
interact and communicate effectively with domain spe-
cialists. And, on a more philosophical note, this posi-
tion highlights the fact that a scientifically meaningful
model for the data is as much a subjective prior assess-
ment of the relative likelihood of possible values as is
a scientifically meaningful model for the parameters of
such a model. Second, SDLC stress and CW mention
that observed data allow us not only to estimate param-
eters in the model but also to monitor and, if need be, to
critique the model. It is refreshing to see frequentists
concerned about representing expert knowledge and
Bayesians worried about model criticism.

4. SOME QUESTIONS FOR THE AUTHORS

Can you have discrete variables in chain graphs with
dashed edges? Can you explain why the diagnostic
ability of the Bayesian network was not as good as
that of the CART-like algorithm? From Table 6, it
appears that for 110 cases (of 168) the Bayesian net-
work assigned the correct diagnosis the highest proba-
bility; what were the ranks of the correct diagnoses
for the other 58 cases? Has anyone created Bayesian
networks with both discrete and continuous variables?
Of course, with mixed models the number of parame-
ters in each distribution will not stay fixed after updat-
ing. Has anyone considered creating a “Bayesian chip”
that could be used to create truly parallel “Bayesian
machines™?

Reading and thinking about these papers has been
a real pleasure.

‘an example for each of the different graphical models

they propose.

The paper by Spiegelhalter, Dawid, Lauritzen and
Cowell falls within the probabilistic expert system
camp. This is a tour de force by researchers responsible
for much of the astonishing progress in this area. Ten
years ago, probabilistic models were shunned by the
artificial intelligence community. That they are now
widely accepted and used is due in large measure to
the insights and efforts of the authors, along with other
pioneers such as Judea Pearl and Peter Cheeseman.

I will confine my remaining comments to the Spiegel-
halter et al. paper and explore some open questions
that I believe will rapidly become important, now that
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many basic technical issues are being successfully
solved.

WHAT CAN YOU DO WITH A GRAPHICAL MODEL?

My primary concern is with the apparent mismatch
between the informal, qualitative character of hu-
man reasoning and the rigorous, formal, quantitative
approach of graphical models (Henrion, Breese and
Horvitz, 1991). Knowledge-based system builders now
have access to knowledge representation tools of con-
siderable expressive power and flexibility (e.g., Skuce,
1991) while the poor graphical modeler has to make do
with nodes, links and probability distributions. These
concerns are practically motivated. At the University
of Washington we are constructing an intelligent tu-
toring system (ITS) for basic statistics. At the heart
of any ITS is an explicit model of the student’s knowl-
edge. Acknowledging the inherent uncertainty, we use
a Bayesian graphical model for this purpose. However,
a second ITS component concerns instructional strat-
egy —the procedural knowledge of experienced teach-
ers. Graphical models fail dismally to represent this
knowledge, yet a simple rule-based system does a rea-
sonable job. In a project at the Fred Hutchinson Can-
cer Research Center in Seattle, we are constructing a
knowledge-based system to assist nurses who handle
telephone calls from bone marrow transplant patients
and their physicians (Bradshaw et al., 1993). Graphical
models can calculate the probabilities of various com-
plications, but cannot represent the heuristic knowl-
edge of experienced nurses as they manage the call. In
general, the range of potential applications for graphi-
cal models is considerably smaller than for knowledge-
based systems. -

There may be a way out of this dilemma: a number
of authors have suggested combining conventional
knowledge-based systems with probabilistic models.
The key to the success of such hybrid systems is
that each component contributes to the portion of
the process that it does best: the knowledge-based
components guide the interaction by using rough
rules-of-thumb that can help to quickly scope, categor-

. ize, gather information about, stricture and interpret
important aspects of the problem; the probabilistic
components rely on carefully crafted assessments of
uncertainty to provide specific answers about particu-
lar situations in a rigorous manner (Bradshaw et al.,
1993; Szolovits and Pauker, 1978). Control rests with
the knowledge-based component, which calls the proba-
bilistic component as required.

Closely related to this is the emerging area of “knowl-

- edge-based model construction” (KBMC). The effective
application of belief network tools requires a relatively
high level of modeling sophistication, and model con-
struction has proven to be a serious bottleneck. These

tools contain some of the algorithms of probabilistic
modeling, but cannot embody the experience and intu-
ition of the skilled modeler. KBMC seeks to combine
probabilistic modeling tools (including belief networks
and influence diagrams) with a knowledge-based sys-
tem that helps domain experts without extensive train-
ing in probabilistic modeling to build, evaluate and
refine probabilistic models (Breese, 1989; Goldman and
Breese, 1992; Holtzman, 1989). For complex problem
domains, sharing and re-use of model components is
vital: the knowledge base could dynamically assemble
a probabilistic model, tailored to the problem at hand,
from model fragments (Almond, Bradshaw and Madi-
gan, 1993). Notable applications of KBMC technology
include the Boeing Company’s DDUCKS tool, a knowl-
edge-based influence diagram workbench (Bradshaw et
al.,, 1991) and the text understanding application of
Goldman and Charniak (1992).

In short, it seems likely that in the future, graphical
models will not exist as stand-alone applications, but
rather will be embedded in larger systems, encom-
passing a variety of knowledge bases, databases and
models.

MODEL UNCERTAINTY

An alternative to KBMC is to automatically induce
models from existing databases. This is discussed by
the authors in subsection 5.4. They begin by stating
that “An approach that takes model comparison to its
full consequence is to induce the network directly from
data ... ignoring the prior structural and quantita-
tive information available.” Why does the “full conse-
quence” involve the absence of prior information? One
of the great advantages of the Bayesian graphical
model approach is that prior knowledge, both struc-
tural and quantitative, can realistically be elicited and
incorporated into both model selection and subsequent
inference (Madigan and York, 1993). Indeed, with even
a modest number of nodes, the graphical model space
is vast, and there is a concern that in the absence of
some prior knowledge, model selection procedures may
fail (Draper, 1993).

Historically, model selection procedures have fo-
cused on finding the single “best” model. However, this
ignores model uncertainty, leading to poorly calibrated
predictions: it will often be seen in retrospect that
one’s uncertainty bands were not wide enough (Draper,
1993). A Bayesian solution to this problem involves
averaging over all plausible models when making infer-
ences about quantities of interest (see, for example,
Raftery, 1988, and Kass and Raftery, 1993). Indeed
Hodges (1987) comments that “what is clear is that
when the time comes for betting on what the future
holds, one’s uncertainty about that future should be
fully represented, and model [averaging] is the only
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tool around.” In many applications, however, because
of the size of the model space and awkward integrals,
this averaging will not be a practical proposition, and
approximations are required. Draper (1993) describes
“model expansion”: averaging over all plausible models
in the neighborhood of a “good” model. Madigan and
Raftery (1991) describe an approach for Bayesian
graphical models that involves seeking out the most
plausible models and averaging over them. Raftery
(1993) applies this to structural equation models. Madi-
gan and York (1993) suggest a Markov Chain Monte
Carlo approach that provides a workable approxima-
tion to the complete solution. These methods can also
be applied to incomplete data (Madigan and Kong, in
preparation). The point is that with Bayesian graphical
models, correctly accounting for model uncertainty is
entirely possible.

Model averaging in the context of expert systems
raises special problems: displaying multiple models
requires careful software design; enhanced explanation
facilities are required; software for model prior elicita-
tion is needed. The issue of compatible priors in alter-
native models, addressed by the authors in Section

Comment

Sharon-Lise Normand

1. INTRODUCTION

The authors of these two highly complementary arti-
cles are to be congratulated on their timely contribu-
tions to the readership of Statistical Science and to
statisticians in general. The article by Spiegelhalter
and colleagues provides a comprehensive review of the
most recent statistical developments in expert sys-
tems, guiding us through a complete analysis in the
expert system domain. Cox and Wermuth present a
pointed discussion on the interpretation and graphical
representation of linear dependencies for continuous
valued random variables. In this discussion I will ex-
pand upon the range of applications of graphical mod-
els and emphasize some specific areas discussed by the
authors. Specifically, my comments will address (1) the
role of graphical models in statistical inference, (2) data

Sharon-Lise Normand is Assistant Professor of Biosta-
tistics, Department of Health Care Policy, Harvard
Medical School, 25 Shattuck Street, Parcel B, 1st Floor,
Boston, Massachusetts 02115.

8, is of considerable importance. While the procedure
suggested seems reasonable, a more general framework
is required. Certainly, when precisely specified proba-
bilities are involved, the procedure should be used with
extreme caution.

INTERCAMP COMMUNICATION

Other (independence) graphical modeling camps are
to be found within decision analysis, philosophy of
science and statistics. Several different camps are lo-
cated in computer science. To date, these camps have
communicated remarkably effectively with each other,
fostering rapid progress. The challenge we face is to
maintain the communication. The gulf between the two
papers here demonstrates both the diversity of the
progress and the extent of the challenge.
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propagation in graphs and (3) limitations of graphical
models.

2. THE ROLE OF GRAPHICAL MODELS

Graphical models can play an important role in struc-
turing statistical analyses, in performing complicated
computations and in communicating results. Thus the

. motivation for creating a graphical representation of

a statistical model is threefold: (1) the graph provides
an effective vehicle for communication among research-
ers, (2) the graph displays a knowledge map of the
dependency structure posited in the model and finally
(3) the graph can be transformed into a static secondary
structure that can be used for efficient probability
calculations. Professor Spiegelhalter and his colleagues
touch on all three reasons with emphasis placed on
calculating probabilities while Professors Cox and Wer-
muth stress the value of the graph as a knowledge
map. It is particularly important to note that one may
choose to exploit any or all three reasons for using a
graphical model.

The term graphical model has a very precise defini-
tion in the contingency table literature (Darroch, Laurit-



