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Comment

Joe R. Hill

The authors of these two papers are among the
most active nodes in an ever growing hypergraph of
interesting papers on statistical applications of graph
theory. It is an honor to discuss these two new hyper-
edges.

My discussion is divided into four parts. Section
1 discusses statistical applications of graph theory.
Section 2 briefly describes ways of leveraging parallels
between probability and database theory. Section 3
highlights two important points made in each of the
papers. Finally, Section 4 asks some specific questions.

1. STATISTICAL APPLICATIONS OF
GRAPH THEORY

Graph theory has a lot to offer statisticians. Conse-
quently, graph theory is quickly becoming an integral
part of modern statistics. Graphs, both directed and
undirected, and hypergraphs can be used to (a) repre-
sent qualitative multivariate relationships, (b) specify

" and visualize multivariate statistical models, (c) deter-
mine statistical properties of multivariate models and
(d) develop computationally efficient algorithms for
dealing with large multivariate models. The first two
of these contribute to effective communication between
applications experts and statisticians. The third helps
statisticians develop appropriate statistical theory.
The fourth makes computing feasible for more compli-
cated problems.

Graphical models provide a flexible paradigm for
describing multivariate statistical models. They can
have discrete variables (as in Bayesian networks, graph-
ical and recursive loglinear models for contingency
tables, and influence diagrams for applied decision anal-
ysis), or continuous variables (as in covariance selection
and structural equation models). Conditional Gaussian
models (Lauritzen and Wermuth, 1989; Wermuth and
Lauritzen, 1990) provide a framework for having both
kinds of variables in a single graphical model. Graphi-
cal models can have directed edges (as in Bayesian
networks, influence diagrams and regression models)
or undirected edges (as in graphical and decomposable
loglinear models, covariance selection models and Mar-
kov random field models for image restoration). Chain
graphs provide a framework for having both kinds of
edges in a single graphical model.

In their paper, Cox and Wermuth (CW) introduce,
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for multivariate normal models, the concept of dashed
edges as a way to represent constraints on covariance
matrices (i.e., to represent marginal independencies),
complementing the use of full edges to represent con-
straints on concentration matrices (i.e., to represent
conditional independencies). They illustrate the use of
the new enriched class of models with a number of
empirical examples.

Spiegelhalter, Dawid, Lauritzen and Cowell (SDLC)
give a status report on their ongoing development
of Bayesian networks for expert systems. They have
carefully combined a number of methods. They elicit
Bayesian graphical models from medical experts. They
use graphical ideas to convert the model into a compu-
tationally efficient form. They apply Bayesian estima-
tion techniques to “learn” probability parameters as
additional data are observed, and they use significance
testing methods to monitor and critique the model.

SDLC provide an effective method for eliciting the
qualitative, the probabilistic and the initial quantita-
tive aspects of an expert-defined model. The key to
their method is to use a directed acyclic graph to
represent the qualitative relationships between vari-
ables. Nearly everything else follows from this graph.

This graph determines a recursive factorization of
the joint distribution with, for each variable, a factor
that is the conditional distribution of that variable,
given its parents. This representation of the joint dis-
tribution has two advantages. First, the number of
probabilities that the expert has to specify is consider-
ably less than for a general joint distribution that does
not encode the implied conditional independencies as
efficiently. Second, these probabilities are “easy” for an
expert to specify for three reasons: (a) the expert has
to think about the distribution of only one variable at
a time, (b) each distribution is conditioned on the par-
ents of the variable, which are the variables that di-
rectly influence it and (c) the conditioning events can
be thought of as fixed scenarios. In short, it is easy for
an expert to think about the probability distribution of
a single “effect” given its immediate “causes.” This
second advantage contrasts sharply with the problems
associated with directly specifying an overall joint dis-
tribution. In that case, the expert would not be able to
think conditionally but would have to think in multiple
dimensions simultaneously and would typically have
to specify many very small probabilities.

Once the model has been specified, it is converted to
ajunction tree representation for efficient computation.
This conversion is carried out in a series of steps
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guided and justified by three important ideas: (a) graph
separation in the moral graph of an ancestral set deter-
mines conditional independence, (b) the cliques of a
chordal graph form an acyclic hypergraph and only
acyclic hypergraphs have junction trees [later in the
paper, their method for specifying hyper-Markov prior
distributions depends on the fact, proved by Vorob’ev
(1962), that a consistent set of marginal distributions
has an extension iff the margins they are defined on
form an acyclic hypergraph] and (c) large problems can
be made computationally more tractible by decompos-
ing them into smaller, component problems that re-
quire communication between neighboring components
only.

The major point of this section has been to emphasize
the important role that graph theory is playing in both
of these papers. It has helped in communicating with
substantive experts. It has helped in specifying and
understanding multivariate statistical models. And it
has helped with the computational aspects of those
models. It is time that we started teaching graph
theory in statistics courses of all levels.

2. LEVERAGING PARALLELS TO
DATABASE THEORY

2.1 A Problem

Not everything is bliss in the world of graphical
models. They have some rather subtle properties. They
also lack some properties that seem at first to be
trivially true. Some of the more important of these
problems arise when probabilities can be zero. Al-
though this situation does not arise in either of the
papers, newcomers to_graphical models might be mis-
led into thinking that some statements made in SDLC
and CW are valid in more general settings.

For example, CW state that “for a trivariate normal
distribution of Y, Z, X the hypothesis Y ||l X | Z
and X 1l Z | Y corresponds to zero concentra-
tions for pairs (Y, X) and (X, Z) and it implies X _{|
(Y, Z).” Nothing could be simpler. The conditional inde-
pendency Y |l X | Z splits X and Y and the condi-

, tional independency X 1l Z | Y. splits X and Z, so
the two of them together split X and (Y, Z), hence they
imply the conditional independency X _|I (Y, Z). For
multivariate normal models, which CW are dealing
with, this reasoning is fine; in fact, it is valid for any
family of strictly positive probability distributions.
However, if probabilities can be zero, then the result
is not true! For example, the distribution p(0,0,0) =
p(1,1,1) = 1/2, plx, y, 2) ='0 otherwise, satisfies the
first two of these conditional independencies, but does
not satisfy the third. See Moussouris (1974) and Dawid
(1979b) for other examples.

The problem is that the Gibbs-Markov theorem re-
quires strictly positive probability distributions. This

positivity condition limits the possible applications of
the equivalence of graph-generated conditional inde-
pendence models and factorizations of joint distribu-
tions. In particular, the theorem cannot be applied to
Bayesian networks with functional constraints (Laurit-
zen and Spiegelhalter, 1988) or to contingency tables
with structural zeros or to statistical mechanics sys-
tems with forbidden states (Moussouris, 1974).

In his discussion of Besag’s paper on Markov ran-
dom fields in spatial statistics, Hammersley (1974)
explained why he and Clifford did not publish the
result when they first discovered it in 1971. He wrote
(pp. 230-231),

In proving this result, we assumed a positivity
condition, namely that no probability should be
zero. . . . In many of the most important practical
applications to statistical mechanics, the physical
system is subject to constraints which prevent
the system from assuming certain forbidden
states. . . . So it seemed to us not only aesthetically
desirable but also practically important to amend
our proof in order to make the theorem indepen-
dent of the positivity condition . . . The very good
reason for our failure [to do so] was the unexpected
discovery by a graduate student, Mr John Mous-
souris, of a counter-example!

In short, Hammersley and Clifford did not publish
the result because they thought the positivity condi-
tion limited the theorem too much for it to be useful
in practice. Now no one doubts the importance of the
theorem even with the positivity condition. But it
is still quite inconvenient that no result exists for
distributions with zero probabilities.

2.2 A Solution

Here is a solution that was suggested by parallels to
relational database theory. Table 1 summarizes basic
database/probability parallels; see Hill (1991) for more
details. To state the results, we need some terminology
from graph theory. A hypergraph is a set of nodes
together with a set of hyperedges; each hyperedge is
a subset of the nodes of the hypergraph. The 2-section
of a hypergraph is an undirected graph with the same
set of nodes as the hypergraph and an edge between
each pair of nodes that belong to a common hyperedge.
A hypergraph is conformal if its set of hyperedges
equals the set of cliques of the edge set of its 2-section.
A hypergraph is acyclic if it is conformal and its
2-section is chordal. It can be shown that a hypergraph
is acyclic iff it has the running intersection property
iff it has a junction tree.

We also need some terminology adapted from data-
base theory. Graph separation in an undirected graph
determines a set of conditional independencies. A set
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TaBLE 1
Basic database and probability parallels

Probability concepts

Database concepts

Set of random variables V

Distribution for V, p[V],
a probability function

Marginal distribution of
X c V, plX]

Conditional distribution
plV | X = ]

Factorization constraint
Wy, ..., Vi, VeV

Conditional independency
X 1l Y| Z binary
factorization constraint

Set of attributes (column
names) R

Relation (table) over R,
r{R), an indicator func-
tion for a set of tuples
(rows)

Projection of r onto X <

Rv r[X]
Selection R | X = x]

Join dependency
X {R], e ,Rk},Rj SR

Multivalued dependency
Z—-—X | Y, binary join
dependency X (X U Z,

®XUZ YU Z YU Z

of conditional independencies is said to be graph-gener-
ated if there exists a graph that generates it. A condi-
tional independency X _|| Y | Z splits variables in X
from variables in Y; the variable set Z is called the
kernel of this conditional independency. The split graph
generated by a set of conditional independencies has
an edge between every pair of variables that is not
split by any of the conditional independencies in the
set. The closure of a set of conditional independencies
is the set of conditional independencies implied by the
original set. Two sets of conditional independencies
are said to cover each other if their closures are equal.
A set of conditional independencies is said to be con-
flict-free if it is graph-generated and it does not split
any of its kernels. Two sets of constraints are said to
be equivalent if the sets of probability distributions
that satisfy them are equal. Similar definitions have
been given for databases.

The Gibbs-Markov theorem can be stated in the
following three ways, each providing insight into the
relationships between graphs, sets of conditional inde-
pendqncies and factorization constraints.

THEOREM 1+. Let G be an undirected graph over V.
The set of conditional independencies generated by G
is equivalent, for strictly positive distributions, to the
factorization constraint generated by the cliques of G.

THEOREM 2+. Let V be a hypergraph over V. The
set of conditional independencies implied by the factor-
ization constraint generated by V is equivalent, for
strictly positive distributions, to the factorization con-
straint generated by V if and only if V is conformal.
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THEOREM 3+. Let C be a set of conditional inde-
pendencies defined on V. C is equivalent, for strictly
positive distributions, to the factorization constraint
generated by the cliques of the split graph of C.

Fagin, Mendelzon and Ullman (1982) and Berri et al.
(1983) proved the following database theorems, which,
after accounting for the different terminology, look a
lot like the three theorems stated above. In fact, how-
ever, because relations are indicator functions (there-
fore allowing zero values), these theorems, which have
stronger requirements on the underlying graphical
structure, suggest a way to relax the positivity condi-
tion.

TueoreEM DBL. Let G be an undirected graph over
R. The set of multivalued dependencies generated by
G is equivalent to the join dependency generated by
the cliques of G if and only if G is chordal.

THEOREM DB2. Let ® be a hypergraph over R. The
set of multivalued dependencies implied by the join
dependency generated by ®R is equivalent to the join
dependency generated by ® if and only if R is acyclic.

THeOREM DB3. Let M be a set of multivalued depen-
dencies defined on R. M is equivalent to the join depen-
dency generated by the cliques of the split graph of M
if and only if M has a conflict-free cover.

By translating database terms into probability
terms (Table 1) in these three database theorems, we
get the following three probability theorems, the proofs
of which will be given elsewhere.

THEOREM 1*, Let G be an undirected graph over V.
The set of conditional independencies generated by G
is equivalent to the factorization constraint generated
by the cliques of G if and only if G is chordal.

- THEOREM 2*. Let V be a hypergraph over V. The set
of conditional independencies implied by the factoriza-
tion constraint generated by V is equivalent to the
factorization constraint generated by V if and only if
V is acyclic.

THEOREM 3*. Let C be a set of conditional indepen-
dencies defined on V. C is equivalent to the factoriza-
tion constraint generated by the cliques of the split
graph of C if and only if C has a conflict-free cover.

Although Theorems 1*, 2* and 3* do not require
strictly positive distributions, they do impose stricter
constraints on the underlying graphical structures
than do Theorems 1+, 2+ and 3+. Theorem 1* re-
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quires the graph to be chordal for there to be equiva-
lence, whereas Theorem 1+ puts no requirements on
it. Theorem 2* requires the hypergraph to be acyclic
for there to be equivalence, whereas Theorem 2+ re-
quires only that it be conformal. Theorem 3* requires
the set of conditional independencies to have a conflict-
free cover for there to be equivalence, whereas Theorem
3+ puts no requirements on it (actually, the closure
with respect to strictly positive distributions of a set of
conditional independencies is always graph-generated).

As far as I know, Theorems 1*, 2* and 3* are new,
although, by now, they are probably not unexpected.

Parallel developments in the two fields have occurred
in the past, with neither aware of the other, apparently.
For example, Vorob’ev’s (1962) results on extending
consistent marginal distributions parallel similar re-
sults for the extension of consistent databases (Beeri
et al., 1983). And Beeri and Kifer’s (1986a, 1986b, 1987)
work on fixing sets of multivalued dependencies that
have intersection anomalies parallels Dawid’s (1979b)
method for fixing up sets of conditional independen-
cies.

3. MODELS AND DATA

Two simple but important points, each mentioned
in both papers and neither having to do directly with
graph theory, deserve to be emphasized. First, both
papers take the position that a model represents the
substantive knowledge that an expert brings to the
problem prior to seeing specifically relevant data. One
practical consequence of such a position is that statisti-

Comment: What’s Next?

David Madigan

These papers represent two of the many different
graphical modeling camps that have emerged from a
flurry of activity in the past decade. The paper by
Cox and Wermuth falls within the statistical graphical
modeling camp and provides a useful generalization of
that body of work. There is, of course, a price to be
paid for this generality, namely that the interpretation
of the graphs is more complex. I cannot resist comple-
menting the authors on the remarkable feat of finding
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cians cannot work in a vacuum; rather, they must
interact and communicate effectively with domain spe-
cialists. And, on a more philosophical note, this posi-
tion highlights the fact that a scientifically meaningful
model for the data is as much a subjective prior assess-
ment of the relative likelihood of possible values as is
a scientifically meaningful model for the parameters of
such a model. Second, SDLC stress and CW mention
that observed data allow us not only to estimate param-
eters in the model but also to monitor and, if need be, to
critique the model. It is refreshing to see frequentists
concerned about representing expert knowledge and
Bayesians worried about model criticism.

4. SOME QUESTIONS FOR THE AUTHORS

Can you have discrete variables in chain graphs with
dashed edges? Can you explain why the diagnostic
ability of the Bayesian network was not as good as
that of the CART-like algorithm? From Table 6, it
appears that for 110 cases (of 168) the Bayesian net-
work assigned the correct diagnosis the highest proba-
bility; what were the ranks of the correct diagnoses
for the other 58 cases? Has anyone created Bayesian
networks with both discrete and continuous variables?
Of course, with mixed models the number of parame-
ters in each distribution will not stay fixed after updat-
ing. Has anyone considered creating a “Bayesian chip”
that could be used to create truly parallel “Bayesian
machines”?

Reading and thinking about these papers has been
a real pleasure.

‘an example for each of the different graphical models

they propose.

The paper by Spiegelhalter, Dawid, Lauritzen and
Cowell falls within the probabilistic expert system
camp. This is a tour de force by researchers responsible
for much of the astonishing progress in this area. Ten
years ago, probabilistic models were shunned by the
artificial intelligence community. That they are now
widely accepted and used is due in large measure to
the insights and efforts of the authors, along with other
pioneers such as Judea Pearl and Peter Cheeseman.

I will confine my remaining comments to the Spiegel-
halter et al. paper and explore some open questions
that I believe will rapidly become important, now that



