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Comment

Thomas A. Severini

The papers by Reid and by Liang and Zeger cover
several important areas of statistics. I will confine
my comments to three topics considered in Profes-
sor Reid’s excellent review of conditional inference.

1. APPROXIMATE SUFFICIENCY IN THE
PRESENCE OF A NUISANCE PARAMETER

In Section 5 Reid suggests that it may be possible
to approximately eliminate a nuisance parameter
by conditioning on a statistic that is approximately
sufficient for fixed values of the parameter of in-
terest. I now present some recent results regarding
this issue; further details and additional results are
available in Severini (1993, 1994a).

Consider a model parameterized by a scalar pa-
rameter of interest ¢ and a nuisance parameter A;
for simplicity, take A also to be a scalar although
the results hold more generally. A natural approach
to consider, given its optimality in exponential fam-
ily models, is to take S; = ¢, the MLE of ¢, and
S, = )L,,, the MLE of A for fixed . In exponential
family models in which ¢ is a linear function of the
canonical parameter this leads to exact methods of
inference with well-known optimality properties.

In general, under standard regularity conditions,
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and [ is the log-likelihood function. Hence, this ap-

proach is successful in approximately eliminating
the nuisance parameter, to the order considered,

Thomas Severini is Ass,:ociate Professor, Department
of Statistics, Northwestern University, 2006 Sheri-
dan Road, Evanston, Illinois 60208-4070.

[ ,fvg
Y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%.%

187

provided that y = O(n~'/2). In particular, if the dis-
tribution of the data for fixed ¢ forms a full expo-
nential family model, then y = 0; in general, vy is
a measure of how close the distribution is to full
exponential family form.

Consider an exponential family model with log-
likelihood function of the form

l(df’ A) = g(wa A)tl + /\t2 - k((//’ /\)a

where (%1, t3) is the sufficient statistic and is of or-
der O,(n) and dg(¢, A)/d¢ # 0. Then y = O(n~"/2)
requires that

2
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Under this condition, g(i, A) is linear in A for each
fixed ¢ so that there exists a one-dimensional suf-
ficient statistic for A for each fixed ¢ and the con-
ditional distribution of the data given X,,, is exactly
free of \. When (1) does not hold, we could attempt
to eliminate A by conditioning on S, = ()AW,, A) for
some statistic A, but it is clear that such a statis-
tic S, would have to be equivalent to the sufficient
statistic in the original, unrestricted, model. Hence,
in full exponential family models when the exact
theory of conditional inference fails, an approximate
theory fails as well, at least using the approach con-
sidered here.

This suggests that, for inference in the presence
of a nuisance parameter, methods based on the
marginal distribution of some quantity, such as the
modified likelihood ratio statistic r, are likely to be

=0.

more generally applicable than methods based on a

theory of approximate conditional inference.

2. THE RELATIONSHIP BETWEEN BAYESIAN
INFERENCE AND CONDITIONAL INFERENCE

One advantage of Bayesian inference over non-
Bayesian methods of inference is in the treatment
of problems involving a nuisance parameter. In
Bayesian inference, any nuisance parameter can be
eliminated by integrating it out, at least in princi-
ple. Given the formal appeal of Bayesian methods,
as well as some well-known optimality properties,
it is of interest to determine when a non-Bayesian
method of eliminating a nuisance parameter, such
as conditional inference, corresponds to Bayesian in-
ference with respect to some prior distribution.
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Consider inference about a scalar parameter of
interest ¢ in the presence of a scalar nuisance pa-
rameter A based on a statistic S = (S, Sy). Suppose
that the density of S factors in the following man-
ner:

f(s;¢,A) = f(s1ls9; ) f (59 ¢, A).

Non-Bayesian inference about ¢ can then be based
on f(s1|se; ). Let w(A|¢) denote a conditional prior
density of A given ¢. If

2) [ Fs3:9, Mym(Alp) dA

does not depend on i, then the posterior density
of  based on the density f(s; ¢, A) is the same as
the posterior density of ¢ based on f(s;|sy;¥). In
this case, elimination of A by using f(s;|sqe; ) does
correspond to elimination of A using Bayesian infer-
ence. Hence, we want to determine the conditions
under which (2) does not depend on ¢ with respect
to some prior density.

For instance, if the marginal distribution of S,
does not depend on i, then it is clear that (2) does
not depend on ¢ for any prior distribution on (¢, A)
such that ¢ and A are independent. More generally,
suppose that S, is an S-ancillary statistic (see, e.g.,
Barndorff-Nielsen, 1978); that is, suppose that the
family of density functions

(3) {f(sa:9,2): A e A}

is the same for each i; here A denotes the space
of possible A. It is easy to show that f(sg; ¢, A) de-
pends on (i, A) only through a real-valued param-
eter ¢ = d(¥, A) and, hence, (2) holds for any prior
density on (¢, A) such that  and ¢(i, A) are inde-
pendent. )

A similar result holds if for each ¢ the family of
probability distributions corresponding to (3) forms
a transformation model with respect to a transitive
group of transformations isomorphic to A. In this

case, (2) holds with 7(A|¢y) = w(A) taken to be the’

density of the right-invariant measure on A.
However, in many models in which conditional in-
ference is used to eliminate a nuisance parameter,
neither of these conditions is satisfied and in some
cases it can be shown that (2) does not hold for any
prior density, subject to weak regularity conditions
(Severini, 1994b). This suggests that, in these cases,
it may be desirable to relax the requirement of exact
similarity in order to use the information in S, for
inference about . On thé other hand, the results of
Davison (1988) indicate that, for exponential family
models in which  is a linear function of the canon-
ical parameter, elimination of ¢ by conditioning on

the sufficient statistic for the nuisance parameter
does approximately correspond to Bayesian infer-
ence. Hence, the additional information available in
the distribution of S, may be negligible.

3. CONDITIONAL TESTS AND POWER

Although it is often stated that conditional tests
are less powerful than unconditional ones, compar-
isons of this type depend on whether or not there ex-
ists an optimal unconditional test, as well as on how
the significance level of the conditional test depends
on the value of the conditioning statistic. Many of
the points raised in the following discussion are also
discussed in Barnard (1982).

In the case of testing a simple null hypothesis ver-
sus a simple alternative, the unconditional test with
level o based on the likelihood ratio statistic has, of
course, optimal unconditional properties. Consider a
conditional test given a statistic A based on the like-
lihood ratio statistic, and let a(a) denote the condi-
tional significance level of the test given A = a. If it
is required that a(a) = « for each a, then the condi-
tional likelihood ratio (CLR) test typically has less
power than the unconditional likelihood ratio (ULR)
test; throughout this discussion the term power will
refer to unconditional power. However, suppose that
a(a) is allowed to vary with a; this may be quite
natural if A is a measure of the precision of the ex-
periment, such as an effective sample size. In this
case, the CLR test may be as powerful as the ULR
test with the same unconditional level. This is easy
to see by simply taking a(a) to be the conditional
significance level of the ULR test given A = a. In
this case, the conditional test and unconditional test
are essentially the same, except that the results of
the conditional test are interpreted conditionally on
the observed value of A. Similar conclusions hold
in those cases in which a uniformly most powerful
unconditional test exists. When an optimal uncondi-
tional test does not exist, either the conditional test
or the unconditional test may have higher power
under a given alternative.

These ideas are easily illustrated on the exam-
ple of two weighing machines with different preci-
sions, considered by Cox (1958a). Let A denote a
random variable taking values 0 and 1 each with
probability 1/2. Given A = a, let X denote a nor-
mally distributed random variable with unknown
mean u and standard deviation o,, where o; > oy.
Here we will consider oy, = 1 and o7 = 3. Consider
testing u = 0 versus the alternative u = 3. The
ULR test with level « = 0.05 depends on the al-
ternative u = 3 but is easily determined and can
be shown to have power 0.593. The CLR test with
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a(a) = 0.05 for a = 0, 1 can be shown to have power
0.586. However, the power of the test depends heav-
ily on the value of A; when A = 0, the power 0.912
as opposed to a power of 0.259 when A = 1. Hence,
it may be desirable to decrease «(0) and increase
a(1). Since the ULR test has conditional level 0.033
when A = 0 and 0.067 when A = 1, the power of the
CLR test is maximized by taking «(0) = 0.033 and
a(1) = 0.067; under these choices the unconditional
and conditional tests are identical.

Now consider a test of the null hypothesis u = 0
versus u > 0. In this case there does not exist a uni-
formly most powerful unconditional test. A reason-
able choice for a test statistic may be X, the MLE
of w. The test with level 0.05 that rejects the null
hypothesis for large values of X has power 0.294,
0.763 and 0.926 at alternatives u = 3,5 and 7, re-
spectively. The conditional test described previously
with a(0) = a(1) = 0.05 also rejects u = O for large

Comment

Louise M. Ryan

Professors Liang and Zeger deserve congratula-
tions for yet another excellent contribution to the
statistical literature. My discussion will first elab-
orate on their Example 1.3, the analysis of teratol-
ogy (developmental toxicity) data, then outline some
needed extensionsg and further applications.

Teratology is a fascinating research area, not only
because it is such an important public health con-
cern, but also because the statistical problems that
arise in this context are so interesting. Due to the
limited availability of reliable epidemiological data,
controlled experiments in laboratory animals play
a critical role in the safety assessment and regu-
lation of substances with potential danger to the
developing human fetus. In .a typical study (de-
picted in Figure 1), pregnant dams (usually mice,
rats or sometimes rabbits) are randomized to a con-
trol group or one of three or four exposed groups.
Dams are exposed to the test substance during the
period of major organogenesis when the developing
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X and is uniformly most powerful among condi-
tional tests; this test has power 0.586, 0.754 and
0.877 at w = 3,5 and 7, respectively. Hence, which
test is more powerful depends on the alternative
under consideration. If the unconditional test had
been based on the statistic X /o4, then the condi-
tional and unconditional tests would be identical;
of course, there would still exist unconditional tests
with higher power for some alternatives.

The point of this discussion is that there is
nothing inherently inefficient about conditional in-
ference even when the properties are assessed un-
conditionally, although I agree with Reid that such
comparisons are typically not directly relevant.
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offspring are likely to be most sensitive to insult.
Just prior to normal delivery, the dams are sacri-
ficed and the uterine contents examined for defects.
A typical study might have 20 to 30 dams per group,
with anywhere from 1 to 20 offspring per litter.
Anyone familiar with the developmental toxicity
literature will be aware of the longstanding debate
over how to handle the so-called litter effect (or the
tendency of littermates to respond more similarly
than nonlittermates). The debate started in the
early 1970’s with papers in the toxicology journals
asking questions like “what are the sampling units”
in a teratology study. The paper cited by Profes-
sors Liang and Zeger (Weil, 1970) inspired an edito-
rial in the journal Teratology by Kalter (1974), com-
plaining that “statistics here has exceeded its role
as handmaiden” and suggesting that such consider-
ations are best left to the biologists! In response to
this editorial, Staples and Hasemen (1974) empha-
sized that a proper statistical analysis should use
all the fetus-specific information, but must allow for
possible correlation between littermates. Since then,
much attention has focussed on the development
of suitable statistical methods. Earlier suggestions
(e.g., Williams, 1975) recommended use of a beta-
binomial distribution, mainly because of its concep-



