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is a point in R? whose expectation is x(A ;j)- Conse-
quently,

AR (y; — w)/p) -1

has zero mean for each j = 1,..., n, and nonzero
mean off the template. These n elementary esti-
mating functions can be combined linearly in an

179

optimal manner to obtain estimates of the param-
eters of interest without involving the nuisance
parameters.

It would be of considerable interest to know
whether the preceding method can be extended in
useful ways, possibly to nonlinear distortions of tem-
plates.

Comment: Alternative Aspects
of Conditional Inference

George Casella, Thomas J. DiCiccio and Martin T. Wells

The roles of conditioning in inference are almost
too varied to be summarized in one paper. Professor
Reid has done a wonderful job of explaining and il-
lustrating some of these roles. We expand on a num-
ber of her points, with particular attention to the
practical uses and implementation of the methods.
We also discuss some overall goals of conditional in-
ference and alternative ways of achieving them.

1. INTRODUCTION

The techniques of conditional inference are a col-
lection of extremely powerful tools. They allow for
the construction of procedures with extraordinarily
good properties, especially in terms of frequentist
asymptotic behavior. In fact, in many cases these
procedures are so good that one begins to wonder
why they are not more widely used; that is, although
statistics methodology journals often contain arti-
cles on conditional inference, such techniques have
not really found their way into the arsenal of the
applied statistician and thus into the subject mat-
ter journals. There are, we feel, two reasons for this.
One is that, unfortunately, the procedures are fairly
complex in their derivation and, hence, in their im-
plementation, and for that reason alone they may

"not have received thorough consideration. The sec-
ond reason is somewhat more subtle, but perhaps
more important. If an experimenter uses condi-
tional inference techniques, the goal of the anal-
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ysis (and the exact type of ultimate inference to
be made) is not at all clear. In Section 1, Reid re-
counts four roles of conditional inference that are
identified by Cox (1988). However, to a prospective
user of these techniques, these goals are vague, and
the effort needed to actually implement these so-
lutions can be prohibitive. For example, consider
Example 3.3, used to illustrate conditional infer-
ence techniques in the estimation of the gamma
shape parameter when the scale parameter is un-
known. The density given by (3.3) and (3.5), which
contain components that are “difficult to calculate,”
is offered as a conditional inference solution to the
problem. This density can be used to test an hy-
pothesis or, with some difficulty, to calculate a confi-
dence interval, but the details of carrying out these
procedures are quite complex. Moreover, if one is
interested in a point estimate and evaluation of
the performance of the estimate, this density will
not suffice. Rather, one might use a saddlepoint
approximation (Reid, 1988) for the density of the
maximum likelihood estimate, yielding a density
proportional to

[ ()T (WA () — 13172
-exp[n{( — Y)AW) + ¢ — yIn g},

where A(-) is the digamma function. Although the
approximation is remarkably accurate, computation
of the normalizing constant (which involves inte-
grating this function with respect to ) is quite de-
manding, limiting the use of the formula. Thus, the
“naive” user is shortchanged. Rather than the ac-
curate approximations and, hence, more precise in-
ference, the user gets only halfway there and can
be faced with calculations of prohibitive complexity.
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The failing is that conditional inference has been
developed by the cognoscenti for their use, and to
these experts the problems of this paragraph are
easy to surmount.

We are not presented with any unifying idea or
goal that is the core of conditional inference. In-
stead, what is presented are “techniques” of condi-
tional inference, but not a comprehensive “theory”
of conditional inference. Such a theory, of course,
exists. Indeed, there is a rich theory. But, to the ad-
vancement of powerful problem-solving techniques,
this development has been neglected. For example,
referring to Cox’s four roles, we are not guided as
to what probability calculations are relevant. How
does one measure the lost information in order to
know how much has been recovered? How does one
measure the influence of the nuisance parameters,
so that a reasonable factorization can be decided
upon? Last, and most important, what should we
do with that extremely accurate density approxima-
tion? These comments are not meant to be adversar-
ial or confrontational, but rather they are meant to
highlight areas that we believe need to be devel-
oped in order for the theory of conditional inference
to obtain the widespread use it deserves.

In our discussion we will focus on three main
topics, which are all aimed at clarifying under-
standing and aiding practical applications of the-
ory and methods of conditional inference and allied
techniques. We first discuss the elimination of nui-
sance parameters and different options for obtain-
ing a reasonable density on which to base inference.
We then consider some more practical aspects and
discuss methods that aid implementation of condi-
tional solutions. Finally, we describe a Bayesian—
frequentist synthesis, first illustrating Bayesian
methods for computation and inference with condi-
tional techniques and then showing how conditional
inference techniques are useful in the construction
of Bayes procedures having good frequentist prop-
erties.

2. ELIMINATION OF NUISANCE PARAMETERS

It seems to us that a major, and extremely desir-
able, goal of conditional inference can be stated as
the accurate approximation of a likelihood function
of the parameter of interest, free of nuisance pa-
rameters. Such likelihoods can be obtained through
the modified profile likelihood of Barndorff-Nielsen
(1983) or the conditional profile likelihood of Cox
and Reid (1987). '

These likelihoods are often obtained through del-
icate expansions and substitutions, sometimes re-
sulting in formulas that are extremely difficult to

understand and interpret. Moreover, the exact im-
plementation of these methods is not straightfor-
ward as there does not seem to be an overall
“recipe.” For example, the exact degree of nuisance
parameter elimination is tied to the type of density
factorization possible, such as (3.1), (3.2) or (3.6). Al-
though such factorizations often can be recognized,
what concerns us is that the implementation of nui-
sance parameter elimination is hard to character-
ize. Example 3.1 uses a factorization that conditions
one part of a sufficient statistic on another; Exam-
ple 3.3 is similar, but uses a different form of the
sufficient statistic. Example 3.6 (see also Example
5.3) seems to take advantage of the pivotal struc-
ture of the problem, and its implementation is also
equivalent to integration of the parameters accord-
ing to a Haar measure prior. Thus, there is a great
opportunity for a naive user to be bewildered about
implementation.

To us, this is a perfect illustration of the need for
synthesis in statistics. The Bayesian paradigm is
perfectly suited for elimination of nuisance param-
eters, and can leave one with a density (actually
a posterior density) that only depends on the pa-
rameters of interest. The methodology is straightfor-
ward and completely general. One merely specifies
a prior for the nuisance parameter and then inte-
grates to get the desired density (similar to Exam-
ple 3.6, where the location—scale structure naturally
suggests a Haar measure prior). The actual choice
of the prior, while often of concern in theory, is some-
what less of a concern in practice, as typical “flat” or
“default” priors (Berger and Bernardo, 1992; Clarke
and Wasserman, 1993) will lead to reasonable fre-
quentist inferences (as illustrated in Strawderman,
Casella and Wells, 1995). Indeed, working a little
harder on the prior can often yield extremely inter-
esting results.

3. PRACTICAL INFERENCE

We are somewhat disappointed in the examples
in Professor Reid’s paper, as they tend to be more
stylized than practical. This is particularly unfortu-
nate since these methods can be extremely useful in
practical situations, and it is important to highlight
this point.

Perhaps this stylization of examples reflects what
can be perceived as a misplaced emphasis in the de-
velopment of the conditional inference theory. The
development of approximations of densities, distri-
bution functions and likelihoods has been for mod-
els derived from statistical theory rather than mod-
els derived from the concerns of experimenters. The
somewhat related topic of saddlepoint approxima-
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tions has been more successful in making headway
into practical solutions.

3.1 The Saddlepoiht Alternative

Although there is a fundamental difference be-
tween the inference from the saddlepoint approach
and that from the conditional inference approach,
much of the mechanics is so similar that a compar-
ison is almost required. Moreover, in many impor-
tant exponential family models, the marginal infer-
ences that result from saddlepoint approximations
are equivalent to conditional inferences.

There is, however, a distinct difference between
the saddlepoint and p* approaches in their imple-
mentation, resulting in an advantage to the saddle-
point approach. A role of the ancillary statistic in
the p*-formula (2.1) is to separate the data into the
maximum likelihood estimate and the ancillary, so
the p*-formula can actually be used as a density for
the maximum likelihood estimate. (The more fun-
damental role of the ancillary is to reduce the di-
mension of the sufficient statistic to that of the pa-
rameter of interest, putting the problem more in the
form of an exponential family. However, the “separa-
tion” role is quite important in the mechanics of the
implementation.) For example, getting from (2.1) to
(2.2) uses the identity

x—p=R-p+@E-p)=p-p+a,
where (i is the maximum likelihood estimator and
a is an ancillary statistic. Such a decomposition is
transparent in the location—scale case, but becomes
less so in other cases, where implementation of the
p*-formula can necessitate involved calculations of
approximate ancillaries.

This problem is not shared by the saddlepoint ap-
proximation, and the reason is, perhaps, most evi-
dent from the exponential-tilting derivation of the
saddlepoint. The auxiliary random variable used to
center the approximation is added to the mix, and

hence is always separate from the statistics of in-

terest. Thus, no separation or factorization is re-
quired to obtain the desired density approximation,
* making the saddlepoint somewhat more accessible
as an approximation technique in complicated prob-
lems. Alternatively, and equivalently, the saddle-
point approximation can also start from an estimat-
ing equation, derived from the experimenter’s model
of interest. To illustrate the differences in these ap-
proaches, consider the important practical case of
logistic regression, in particular, logistic regression
with one covariate and an unknown intercept,

Y, ~ Bernoulli( p;(6)),

(1 -1
- pi(0) = [1 +exp(—(y + 6;x;))] .

From a conditional inference point of view, esti-
mation of the coefficient density was considered
by Barndorff-Nielsen and Cox (1979) and Davison
(1988), who used double-saddlepoint (numerator
and denominator) approximations to approximate
the conditional density of the regression coefficients.
Their delicate approximations eliminate nuisance
parameters by conditioning and result in answers
that are quite difficult to compute. The logistic
model can also be directly attacked with saddle-
points starting from estimating equations (see, e.g.,
Field and Ronchetti, 1990), as done in Strawder-
man, Casella and Wells (1995). (Note that we are
now invoking the discussant’s privilege: talk about
your own work.) The cumulant generating function
for n independent observations from (1) is

K, (t|s, 0) =) log[1l— p;(6) + p;(6)expt'z]
i=1
—t'z;pi(s),

where ¢, s and 6 are 2 x 1 vectors, z; = (1, x;)/, the
two-dimensional saddlepoint is W, = n~(s—6) and
the approximate density of 6 is given by

n 2. 1— p.
©) gé(s|0)=|z‘=1zlzlpt(;)7£ pi(s))|

-exp K, (s—0]s,0),

1/2

where | - | denotes the determinant. A similar for-
mula holds for parameter vectors of fixed but arbi-
trary dimension. Approximation (2) has been shown
to be extremely accurate, even for samples as small
as n = 20. Note that (2) is a marginal, not a condi-
tional, density, which illustrates an essential differ-
ence in the saddlepoint versus conditional inference
methodologies. However, as we shall see in Section
4.1, we can use some simple computing techniques
(such as the Gibbs sampler) to allow us to derive
conditional-type inferences from (2).

In the case of exponential families, in which
ordinary logistic regression falls, the saddlepoint
and conditional inference (double saddlepoint) ap-
proaches yield equivalent answers. Moreover, the
estimating equation approach is somewhat more
general, allowing us to apply approximations such
as (2) to more general situations.

3.2 Computing the Conditional Solution

Professor Reid mentions that computing methods,
such as Monte Carlo Markov chain, have exploited
the fact that conditional solutions are often eas-
ier to calculate than marginal densities. However,
the conditional solutions from the p*-formula or
a saddlepoint approximation can, themselves, be
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extremely complicated. This becomes particularly
apparent in the problem of confidence interval con-
struction, which often necessitates many evalua-
tions of the target density (and its constant), with
each evaluation at a different parameter point.

This suggests another synthesis. Rather than just
note that conditional densities can make techniques
such as Monte Carlo Markov chain easier to im-
plement, it is also the case that these computing
techniques can eliminate much of the delicate ap-
proximation needed to use either the p*-formula or
a saddlepoint approximation. For example, consider
the linear models in Examples 3.7 and 5.3, perhaps
still the most common models in statistics. They can
be analyzed easily and effectively using computa-
tional methods.

The special structure of these linear regression
examples, which results in the existence of a useful
pivot, makes it easy to apply some now-standard
computing methods. The general expression for the

density of the pivot statistics t = (¢;,...,¢,) and v,
where
t1=Bl_:B17'~~, tp=BP_:BP, v=g,
g g g

conditional on the ancillary statistics a;(y) = (y; —
X B,;)/0, has the specific form (Fraser, 1979, Chap-
ter 6; Fraser, Lee and Reid, 1990)

fo[(Xt + a)v]vn—llX/XII/Z
J fol(Xt+ayplon| X' X|V2dtdv’

For any density f,, we can draw samples from
(3) using a method such as the accept-reject or
Metropolis algorithms, or perhaps the Gibbs sam-
pler (see Tanner, 1993, or Robert, 1994). For ex-
ample, if interest is in the marginal distribu-
tion of ¢;,, we draw m realizations from (3), say,
{9, 89, v}, Then we can calculate a Monte
Carlo approximation to the marginal density of ¢,
R m 1D () 0 )
(4) f(t)z_]-_z ¢(tk |t— El)} ().];(t’tj’—k’v )
m Jj=1 f(tkj ’ t_Jk’ U(J))

where ¢(-|) is any conditional density. If f(¢) is the
_ true marginal, then for any such density ¢(:|-) we
have f(t) — f(¢) at a geometric rate as m — oo, and
the convergence will be faster the closer ¢ resembles
the true conditional density. This type of computing
is a quite viable alternative to the marginalization
asymptotics of Section 4.3, as expression (4) is exact
to any degree of accuracy desired.

Details of the application of this technique, as
well as a number of examples, are given in Casella,
Wells and Tanner (1994). Bayesian applications of
Monte Carlo marginalization are given in Gelfand,

3)

Smith and Lee (1991) and Chen (1994). The gen-
eral theory of Monte Carlo marginalization is a con-
sequence of the conditional Monte Carlo method,
nicely explained in Hammersley and Handscomb
(1964). Thus, the easy computer implementation
that Professor Reid mentions in her concluding re-
marks may already exist in another guise within a
slightly different inferential framework.

4. THE BAYESIAN CONNECTION
4.1 A Bayesian Solution

In Section 2 we discussed the Bayesian solution to
marginalization and how well suited it is to general
problems. When that is combined with the computa-
tional techniques described in the previous section,
a powerful tool for calculation of marginal densities
emerges. In particular, the Monte Carlo marginal-
ization (4) can be combined with the logistic saddle-
point density (2) to obtain the marginal density of
interest. This strategy can also circumvent the prob-
lem of inference with nonorthogonal parameters.

Specifically from the saddlepoint density (2), or
its higher-dimensional analog, it is straightforward
to marginalize to the univariate density of any one
coefficient. However, in contrast to a normal approx-
imation, the marginal saddlepoint density for each
parameter (obtained by integrating out the remain-
ing variables) depends upon the true values of all
of the parameters. For example, if the parameter
vector is (6, 0, 0, 63) and interest is in making in-
ferences about 65, the marginal density for 6, is not
immediately useful since it will depend upon 6, as
well as 6y, 6; and 63. Thus, simply using numerical
integration to marginalize the saddlepoint density
is not recommended unless it is known that there is
parameter orthogonality.

Using a Bayesian approach, a marginal posterior
distribution (which is similar to a conditional den-
sity) can be calculated for the parameter of interest,
and this marginal behaves quite nicely under fre-
quentist evaluations. In the above illustration, plac-
ing a uniform improper prior on each of 6, 6;, 6,
and 65 yields a posterior density of the parameters,
given the data, that is proportional to the saddle-
point density of the MLE’s. To obtain the marginal
posterior density for each parameter, one can first
apply the Gibbs sampler (or other sampling scheme)
to obtain observations from the joint posterior den-
sity, and use Monte Carlo marginalization to ob-
tain the desired result. Strawderman, Casella and
Wells (1995) have had success with this method in
the generalized linear model setting and have found
that the Bayesian HPD regions maintained reason-
able frequentist coverage. Indeed, with the use of
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typical flat priors, adequate frequentist performance
of Bayes procedures is to be expected. However, one
might hope to improve, and this leads naturally to
the question of the existence of priors that could
yield even better frequentist performance.

4.2 Bayesian-Frequentist Conditional Inference

The fact that the Bayes intervals of the previ-
ous section were also good frequentist intervals is
not a coincidence. Underlying the theory of condi-
tional inference are structures that are common to
both paradigms. As mentioned in Section 6.3 and re-
viewed in Reid (1995), these similarities have been
explored and exploited previously to understand the
types of Bayesian priors that are likely to result
in good frequentist inference. We would like to ex-
plore further the connection between conditional
and Bayesian inference, in particular using asymp-
totic tail probability approximations to help identify
noninformative priors.

Suppose that Z is a continuous random variable
having probability density function of the form

fz(z) o b(2) exp{k(z)} = exp{k(2) + log b(z)},

where k(z) and its derivatives are of order O(n), the
derivatives of log b(z) are of order O(1) and k(z) is
maximized at £, so that Z — 2 is of order O ,(n"1/2).
DiCiccio and Martin (1991) showed

pr(Z > z) = ®(r) + ¢(r)(r*—vt)

(5)
+ 0(n=3/2),

where 2 — z is assumed to be of order O(n~1/2),

r = sgn(2 — 2)[2{k(3) — k(2)}]">,
) b3
v = {—k(2)(2)}1/2 b(z)’

and kV)(z) = d/k(2)/dz’, j = 1, 2. Now consider
Bayesian inference for 6 = (¢, A) based on an ob-
served random vector Y = (Y,,...,Y,) and a prior
probability density function 7(6). The Tierney, Kass
. and Kadane (1989) Laplace approximation to the
marginal posterior density of ¢ is

Ty () < (P, ;\¢)|jAA(‘//, )A\.p)’_l/z

-exp{l(y, )A\,,,)},

where [(0) is the log-likelihood function for 6 based
onY and j,,(0) = —I,,(6). When approximation (6)
is normalized, it has relative error of order O(n~%/2).
An asymptotic expression for posterior tail probabil-
ities of i can be obtained by applying formula (5) to

(6)

(6). There are two obvious ways to proceed: either
choose
1/2

b(y) = (¢, X¢)|j)\,\(‘//, le)’# ’
k(Y) = Uy, A,),

or else choose
b(¢) =1,
(8) k() =l(‘/f’;\¢)— %log’j)\,\(t//, }\w)r
— log m(, )A\¢)~

Choices (7) and (8) produce, respectively, approxima-
tions of the “double saddlepoint” and the “sequential
saddlepoint” form, which are mentioned by Profes-
sor Reid in Section 4.3. Numerical investigations
show that (8) generally produces more accurate ap-
proximations than (7); moreover, in practice, numer-
ical integration of the Laplace approximation (6)
might be feasible and extremely accurate. However,
choice (7) is preferable for the purpose of identify-
ing noninformative priors. Using (7) in conjunction
with approximation (5) yields, for values ¢, such
that ¢ — ¢, is of order O(n~"/2), the tail probability
approximation

o) P Wl =0y +olry)(ry! —v)
+ O(n=3%?),
where r, = sgn(§ — o) [2{L(F, X) — I(Yo, 5\0)}]1/2

is the signed root of the likelihood ratio statistic,
Ay = Ay,

(7

1/2

| jan(Wos Ag)| " (i, A)
| oo, V)| (o, Ro)’

and (¢, A) = 9l(y, A)/dy. Thus, the value of i
satisfying ¢(r,) + @(r,)(r;t +v,') = a agrees with
the posterior 1 — a quantile of ¢ to error of order
O(n2).

On the other hand, from a frequentist perspective,
Barndorff-Nielsen (1986, 1991) has shown that the
standard normal approximation to the conditional
distribution of r% = r, + r,'log(u,/r,), given an
exact or approximate ancillary statistic ¢, has error
of order O(n~3/2), where iy now denotes the true
value of the parameter of interest,

50 A) = LG, Ao) Lo, Ao)|
{7 (o, R0)] [ Fas(i, 1)}

where l4(#, ) is the column vector of partial
derivatives of (¢, A; 6,t) taken with respect to
8; 1,.9(¢, ) is the matrix of second-order partial
derivatives of I(y, A; §,t) taken with respect to A
and 0; and u » takes the same sign as r,. Hence,

Up = l:p(lﬁo, Xo)

p
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the value of ¢, that satisfies d(r%) = « is an ap-
proximate 1 — « confidence limit havmg conditional
coverage error of order O(n =%/ 2) as is the value of
o such that ®(r,) + o(rp)(rp' —u,') = a, since it
can be shown that

D(r3) = D(rp,) + qo(rp)(r;1 - u;l)
+O(n-2).

Approximation (10) generalizes (2.3) to the nuisance
parameter case and produces (4.3) for canonical pa-
rameters of linear exponential families.

One notion of a noninformative prior is that the
posterior 1 — o quantile of ¢ is, under repeated
sampling, an approximate upper 1 — a confidence
limit having coverage error of order O(n~!). Writing
6 =(6,...,0%), with y = 6', Peers (1965) showed
that to be noninformative the prior 7(6) must sat-
isfy the equation

(10)

Z iY@Ey 1/2 {log m(6)}
ay 7
1j/:11\—
e
where i;; = E{—21(0)/6' 96/} and (iV) is the ma-

trix 1nverse of (¢;;). Tibshirani (1989) noted that,
when ¢ and A are orthogonal (11) reduces to

(igy) " l/j{loa‘é’ﬁ("’)}“‘ w(' )2 =0,

which has solutions of the form

(12) (W, ) o< {iyy (0, D2 2(0),

where g(A) is arbitrary. DiCiccio and Martin (1993)
showed that if 7(9) is noninformative, then v, =
u,+ 0,(n!) in the repeated sampling sense. Thus
the Bayesian approximate confidence limits agree
with the limits from (10) to error of order O ,(n=%/2),
and it follows that the Bayesian limits have condi-
tional coverage error of order O(n~!) given exact or
approximate ancillary statistics.

Equation (11) does not have a unique solution,

and it is natural to ask whether solutions can be
identified for which the coverage error of the ap-
proximate limits is of order O(n~3/2). This improved
coverage accuracy holds if the prior is such that
v, =u,+ 0,(n"%?), that is, if m(y, A) satisfies

77(‘//97 60)
13) m(P, A)
‘JAA(‘/’O’ o)|1/2 1
=1y (o, Ao)—————775 (1),
|J00( v, )’1/2 ?

to error of order O ,(n=3/2).

The use of (11) can be illustrated in the gamma
model discussed in Examples 3.3 and 5.2. Consider
a sample Y,,...,Y, from the distribution having
density

f(y; 1, )—{(r/(”))y} - 1eXp{—<£)y}, y>0,

where u is the mean, v is the shape parameter and
w and v are orthogonal. Suppose that u is the pa-
rameter of interest and v is the nuisance parameter.
Since i,, = nv/u?, expression (12) shows that the
noninformative priors are of the form

(14) m(p, v) o« === g( )

where g(v) is arbitrary. For thls problem, Barndorff-
Nielsen (1986) showed that

nl/2 (4 — Mo)ﬁyz{ ¢(1)(V) 2

o dD()
where ¢(v) = dlogI'(v)/dv — logv and ¢D(v) =
d?log'(v)/dv? — 1/v. In this case, expression (13)
becomes

Up =

(1o, Po) _ A Do [ ¢ (b) }”2
(@, 9)  pe v | W@ | 7

which recommends the prior m(u,v) = v¢D(v)/u,

corresponding to the choice g(v) = v¢@W(v) in (11).

The situation is not so clear when v is the parameter

of interest and p is the nuisance parameter. Since
i,, = n¢M(v), noninformative priors are of the form

(15) w(v, m) « g(p) [P )} "%,

where g(u) is arbitrary. In this case,

1/2/4 Yo 1z 1), ~y11/2
up == ) (%) (600},

and by (13), the prior 7 (v, u) should be chosen so
that, to error of order O ,(n™3/?),

(v, Bo) _ _¢(¥) — $(v0)
7(5,2) (P —w)pD(D)
P ()
dD(@)

1 2 9 (®)
+ E(VO - V)zm.

Since {1y, = & in this case, there is no loss in restrict-
ing attention to priors (v, u) that are functions of
v alone. An easy Taylor expans1on shows that the
choice 7(v, p)  {¢ (1)(1/)} satisfies (16) only to er-
ror of order O(n!). Moreover, the reference prior
(v, p) o y,{d)(l)(v)]l/ ? considered by Liseo (1993)
also satisfies (16) only to error of order O,(n™').

(16) = 1+%(vo—ﬁ)
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Expression (16) suggests that it might be impossi-
ble to find a prior density that produces confidence
limits having coverage error of order O(n~/2); see
DiCiccio, Keller and Martin (1992).

Many of the likelihood adjustments and distri-
butional corrections discussed in the paper can
be viewed, at least to error of order Op(n‘l), in
terms of the quantities z, and @ that arise in
Efron’s (1987) BC, confidence limits. Efron defined
zo = @ Hpr(§ < ¢)}, and a is related to the
skewness of the score function; both z, and a are
of order O(n~1/2). In the setting of Section 4.2,
DiCiccio and Efron (1992) and Efron (1993) showed
that E(r,) = —zy + O(n™!) and that r, + z, has
the standard normal distribution to error of order
O(n~1). Moreover,

E{U,()} = (a - 20){~1()} > + O(n™Y)

Comment

A. P. Dawid and C. Goutis

Nancy Reid has presented a clear and valuable
overview of the uses of conditioning, and of asso-
ciated techniques of analysis. We wish to focus on
some difficulties which can arise from too uncritical
an attitude to conditional inference.

It is implicit in Reid’s account, as in most oth-
ers, that the goal of conditional inference has been
achieved when we have identified the appropri-
ate conditional “frame of reference” (Dawid, 1991).
From that point on, it is implied, we should be free
to use any favourite method of inference within that
new frame. However, a more thorough-going analy-
sis casts doubt on this assumption. This doubt may
be evidenced in several related ways.

First there is the problem of nonuniqueness of
(maximal) ancillary statistics, and the consequent
,arbitrariness, in general, of the .conditional frame
of reference. The collected works of Basu (1988),
which deal thoroughly with these topics, should
be required reading for anyone contemplating con-
ditional inference. For example, if (X;,Y;) have
a bivariate normal distribution with known vari-
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and

L) = L, () — (a — 20){~s()} /2 + O(nY).

As many authors have noted, adjustment of the log
profile likelihood function /(i) reduces the bias of
the profile score. Also, E(r,) = —a + O(n"'/?), and
r. + a has the standard normal distribution to er-
ror of order O(n~'). Further details are given in
DiCiccio and Efron (1995).
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ances and unknown correlation p, each of X =
(X4,...,X,)and Y =(Yy,...,Y,)is ancillary, and
inference conditional on either appears equally jus-
tified. We cannot, however, condition on both, since
(X,Y) reproduces the whole sample.

Next, there is Birnbaum’s (1962) celebrated
demonstration that acceptance of both the suffi-
ciency and conditionality principles demands accep-
tance of the likelihood principle—and is thus incom-
patible with any method of inference which does not
respect that principle. A much weaker version of
this argument and conclusion, which nevertheless
implies the irrelevance of optional stopping and is
hence incompatible with many common forms of in-
ference, is given by Dawid (1986).

Then there is the “conflict between conditioning
and power” mentioned in Section 6.2. A concrete ex-
ample, based on Cox (1958a), is analysed in Dawid
(1983, pages 99-100). In a problem with point null
and alternative hypotheses, and a simple experi-
mental ancillary, the rule “use the likelihood ratio
test with size @ = 0.05,” if applied conditionally
on the ancillary, does not agree with any un-
conditional likelihood ratio test and is thus less
powerful than the overall 0.05-level test (which
has differing conditional a-levels). However, the
Neyman—Pearson lemma, which simply requires use
of some likelihood ratio test, can nonetheless be ap-



