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Opportunities and Challenges Applying
Functional Data Analysis to the Study
of Open Source Software Evolution
Katherine J. Stewart, David P. Darcy and Sherae L. Daniel

Abstract. This paper explores the application of functional data analy-
sis (FDA) as a means to study the dynamics of software evolution in the
open source context. Several challenges in analyzing the data from software
projects are discussed, an approach to overcoming those challenges is de-
scribed, and preliminary results from the analysis of a sample of open source
software (OSS) projects are provided. The results demonstrate the utility of
FDA for uncovering and categorizing multiple distinct patterns of evolution
in the complexity of OSS projects. These results are promising in that they
demonstrate some patterns in which the complexity of software decreased as
the software grew in size, a particularly novel result. The paper reports pre-
liminary explorations of factors that may be associated with decreasing com-
plexity patterns in these projects. The paper concludes by describing several
next steps for this research project as well as some questions for which more
sophisticated analytical techniques may be needed.
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software complexity.

1. INTRODUCTION

Software complexity is a crucial factor in many im-
portant outcomes of the software development process,
including defect rates, maintainability, security, and re-
liability (Kemerer, 1995). As these outcomes are often
viewed as being at the root of what makes for “better”
or “worse” software, complexity has been seen as a key
contributor to overall software quality (Prahalad and
Krishnan, 1999). Understanding software complexity
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and how it may be managed throughout the software
lifecycle is therefore of great interest to software de-
velopers and researchers.

Much of the thinking on the evolution of software
has come from Lehman’s laws of software evolution
(Belady and Lehman, 1976). Relevant insights include
that software will tend to grow in size and functionality
from release to release in order to remain valuable to
users. Similarly, complexity of the software will tend
to increase through the life of a project, unless it is
actively managed. Much of the empirical work based
on the laws has largely supported them (Kemerer and
Slaughter, 1999), although that work has mostly taken
place in the closed source context, and has often been
limited to studying a single system or a small set of
systems.

While most work to date has examined software
complexity in the context of closed source software
development, managing complexity could be at least
as important in the open source development context.
OSS is software released under a license approved by
the Open Source Initiative (OSI, see www.opensource.
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org). The main OSI licensing requirement is that source
code be available when the software is distributed. As
an example of an OSS project, see the statistical appli-
cation R that we used in our analyses (www.r-project.
org). Because source code is available, OSS is open
to a wide audience for use, inspection, contributions
and modifications. Software complexity may be espe-
cially important in this context because of the poten-
tially higher fluidity in membership of the project team
(i.e., developers may join and leave more freely than in
most closed development contexts and new members
will be able to more quickly contribute if complex-
ity is minimized), the lack of or lag in formal design
specifications and documentation to aid in developing,
understanding and maintaining the software (Scacchi,
2002) and the support concerns that have been voiced
by many potential OSS adopters (Smith, 2002).

The goal of this research is to uncover and charac-
terize patterns of evolution in the complexity of OSS
projects. This is a first step in investigating the an-
tecedents and consequences of different evolutionary
patterns, which we hope may provide insights for im-
proved project management in both open and closed-
source software project contexts. The objective of this
paper is to describe how functional data analysis may
be applied toward achieving the research goals. Given
this objective, our discussion of the large literature on
software development and evolution is extremely lim-
ited. While we do not delve far into theoretical issues
surrounding software evolution, we do discuss some
of the drawbacks to using more established statistical
techniques to analyze evolution. This serves as an in-
troduction to the opportunities for uncovering patterns
in evolution using functional data analysis (FDA), sev-
eral challenges we encountered in analyzing software
complexity data, and the approaches we considered
and selected to address those challenges. The final sec-
tion of the paper discusses the preliminary conclusions
drawn from the FDA results, and the analytical limita-
tions that remain. To provide the backdrop for this dis-
cussion, the next two sections provide a brief overview
of literature on software complexity and a description
of the data collected for the study.

2. THEORETICAL BACKGROUND

Several aspects of software complexity have been
studied. Algorithmic complexity, for example, exam-
ines the machine resources, such as time necessary to
solve a given problem. Structural software complexity
has been defined as “the organization of program el-
ements within a program” (Gorla and Ramakrishnan,
1997, page 191). Software designed to solve a particu-

lar problem can be structured in many different ways.
Different structures may lead to significant variations
in the amount of effort required in implementing or
maintaining a software solution. For example, there is
evidence to suggest that the complexity of the Linux
kernel is so high that future changes will be difficult
(Yu, Schach et al., 2004). While algorithmic complex-
ity is important in terms of providing the requisite ma-
chine resources, structural complexity has an impact on
the implementation and maintenance (i.e., human) re-
sources necessary to provide software. The availability
of machine resources continues to increase, and their
cost to decrease, at exponential rates, while the avail-
ability and cost of human resources necessary to imple-
ment and maintain software is more constant. Because
the human resources involved in building and main-
taining software represent an increasing portion of the
total cost of software, we chose to focus on structural
complexity.

In this paper, two dimensions of structural com-
plexity of software are considered: coupling and co-
hesion (Chidamber, Darcy and Kemerer, 1998). Cou-
pling (Cpl) is the degree to which a program element
is “related” to other elements; the higher the average
coupling of elements in the software, the more com-
plex it is considered to be. Coupling measures tend to
use absolute scales; for each instance of coupling by
a program element to another element, the measure is
incremented by 1. Cohesion is the degree to which the
content within a program element is related; the higher
the average cohesion of elements in the software, the
less complex it is considered to be. Cohesion measures
tend to use a percent scale; more cohesive program ele-
ments will have values closer to 100%. For consistency,
we use lack of cohesion as a measure (abbreviated as
LCoh) such that increases in Cpl and LCoh both repre-
sent increases in complexity.

Coupling and cohesion have been argued to be in-
versely correlated such that managing one may re-
sult in a trade-off for managing the other (Chidamber,
Darcy and Kemerer, 1998). Particularly when consid-
ering a program in its entirety rather than an indi-
vidual program element, different design choices will
often impact both coupling and cohesion, frequently
reducing one at the expense of increasing the other.
Therefore it is the interaction of coupling and cohe-
sion, rather than either one alone, that may best de-
termine software maintenance effort (Darcy, Kemerer
et al., 2005). To take both measures into account we
followed Darcy, Kemerer et al. (2005) and calculated
a cross-term, multiplying coupling by cohesion. This
cross-term is the main variable of interest in the re-
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mainder of this paper, and it is referred to hereafter as
“CplXLCoh.”

3. RESEARCH DESIGN AND DATA COLLECTION

As part of a larger project, data were collected on
105 OSS projects hosted online at Sourceforge (sf.net).
Sourceforge is the largest OSS repository, currently
hosting over 100,000 projects and over one million reg-
istered users. OSS projects use Sourceforge to manage
development and to make releases of their software
available. In order to limit the variance in structural
complexity driven by factors other than software de-
sign choices, we limited our data collection to projects
that use only the Java programming language and are
listed in the Internet and System Networking domains.
By examining only projects written for the Internet
and System Networking domains, we limit variance in
structural complexity that may be driven by the under-
lying problem type. Similarly, by exploring only Java
projects, we limit variance in structural complexity that
may be driven by the programming language. We fur-
ther limited the data collection by only including these
projects that use an OSI approved license to ensure that
only software that is truly open source was included.
Finally, to be included a project had to have posted at
least one file on the Sourceforge site as of the time
of our initial project selection, Fall 2002. This crite-
rion was applied to screen out projects that had not
produced any code because projects may be listed on
Sourceforge soon after their inception, before any soft-
ware has actually been produced. Data were collected
on the published release history of each project that met
the screening criteria. Each release of each project was
analyzed to calculate CplXLCoh. The size of each re-
lease was measured using a calculation of the number
of lines of code (LOC).

Figure 1 shows the CplXLCoh measure for each re-
lease for three of the projects in the sample, and Ta-

FIG. 1. Three sample project release histories.

TABLE 1
Sample project data

Project ID Release date LOC CplXLCoh

3064 17-Jan-03 4,901 45.71
3064 2-Mar-03 5,449 79.31
3064 16-Jul-03 6,775 113.83
3064 16-Aug-03 10,915 135.98
3064 25-Oct-03 13,516 149.15
3064 4-Jan-04 13,991 148.65
3064 7-Feb-04 14,892 162.30

ble 1 provides the data associated with one of these
projects (the squares in Figure 1). The x-axis repre-
sents calendar time; it starts at January 2000 because
that is the earliest release for any project in the sam-
ple. Figure 1 is included to graphically depict several
challenges that had to be overcome to analyze the data.
These are that (1) the projects have different starting
points, (2) the projects have different ending points,
(3) the project histories are of different lengths, (4) the
projects have different numbers of releases (i.e., data
points) and (5) the projects span different levels of
complexity. The next section discusses in greater detail
how each of these issues was accommodated to derive
functional objects for each project.

4. CHALLENGES AND STRATEGIES FOR
EXAMINING SOFTWARE EVOLUTION

Like the online auction setting described by Jank
and Shmueli (2005), studying software evolution poses
several challenges in terms of both the nature of the
data available and the insights we seek to generate us-
ing it. The data have all of the unique aspects of auc-
tion bid data outlined by Jank and Shmueli (2005),
including that data from releases form a time series,
but they are unequally spaced and occur with differing
frequencies over varying amounts of time for different
projects. An additional challenge is posed because un-
like auctions where there is a final winning price, OSS
software projects generally have no defined end point.

While most empirical work on software evolution
has focused on studying releases of a single system
over time (Kemerer and Slaughter, 1999), we wish
to analyze multiple sets of time-series data on OSS
projects in order to gain insights that may be applicable
to other projects as opposed to analyzing a single time
series in order to gain insight into a single project. Thus
we turned to functional data analysis, which allows for
capturing the dynamics of the projects over time, rep-
resenting those dynamics using polynomial pieces to

sf.net
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create a function for each project, and then using these
functions to analyze patterns in the projects.

Project Starting Point

The fact that projects in the sample begin on differ-
ent calendar days presents a question concerning how
to align the data so that functions derived for differ-
ent projects are comparable. As implied in Figure 1,
the projects in the sample do not present an obvious,
“natural” alignment. Aligning the starting points of the
curves is easy if we ignore the calendar time at which
projects commence and simply place the first release
at the origin on the x-axis and plot each curve from
that point forward. This approach mimics that taken in
studies that have used age on the x-axis (Ramsay and
Silverman, 2002), where the date of birth of a person
can be safely ignored because the interest is in compar-
ing changes across lifespan that are assumed indepen-
dent of date of birth.

A potential difficulty in applying this approach in
this context is that the first public releases for different
projects do not necessarily represent similar points in
the evolution of the projects. For example, some OSS
projects may release an initial version very early in de-
velopment when only a small portion of the software
has been created whereas others may release an ini-
tial version only after most of the intended function-
ality has been created and tested. Thus “day 1” for
OSS projects is not equivalent to “age 1” for a per-
son. Unfortunately, however, the data do not provide
any good indication of the development stage of the
project at its first release; thus aligning the first release
of each project as the starting point was the best ap-
proach available. This approach has implications for
the nature of the conclusions that can be drawn from
analysis, which will be discussed below.

Project Ending Point

Just as there is no reason to believe the first releases
represent comparable points in the development of the
software of each project, there is no basis for assuming
that the last releases represent comparable points. As
can be seen in Figure 1, the data span different amounts
of time, and for those projects with final releases close
to the last point on the x-axis, there is no way to know
what may have occurred in the project development af-
ter the end of the period.

In order to generate curves that are as equivalent
as possible in representing similar periods of develop-
ment for each project, we limited the dataset to include
only those releases that occurred within two years of

the initial release of a project (730 days). We return to
the implications of this decision in discussion of the
results, below.

Creating Comparable Project Data

Having decided to consider data for releases dur-
ing the first two years after the initial release of each
project in order to align starting and ending points,
there remained the issue that some projects had data
spanning periods that were significantly shorter than
others. In other words, though each project had one re-
lease at least two years prior to data collection, many
projects have long periods of time with no releases. For
example, the project represented by circles in Figure 1
had three releases spanning 301 days and then nothing
since. Whereas we cannot be certain that this indicates
development on the project stopped (e.g., the project
could have released a new, different version one day
after our data collection), this is how we chose to in-
terpret it. We thus assumed the level of complexity was
constant after the last release, for the remainder of the
two-year period. This treatment of the data is consistent
with viewing the software from the user perspective in
that even if development was actively under way, the
complexity of the software available to users was un-
changed.

Having expanded data for short projects so that each
project was the same length, the final issue in preparing
the data to generate curves was to consider alignment
of points along the curves. Projects produced different
numbers of releases, making it difficult to align change
points and produce comparable functional representa-
tions across projects. Following prior work (Ramsay
and Silverman, 2002; Jank and Shmueli, 2005), this is-
sue was addressed by interpolating the data to create
equivalent numbers of observations. We expanded the
data to create values of complexity for every project
for every day of the two-year period using a step func-
tion. The values calculated from the first release of
the project were assigned for every day until the sec-
ond release, and then values from the second release
were assigned for every day until the third release, and
so forth. An alternative approach would be to assume
a linear change in complexity between releases; how-
ever, we chose the former approach to maintain consis-
tency with the manner in which the data were extended
to cover the entire two-year period and because, again,
from the user perspective, changes occur at the discrete
points when new releases become available.
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5. RESULTS

Because our interest is in understanding how com-
plexity evolves as software grows over time, we
screened out projects that did not have at least a 5%
increase in LOC between the first and last releases in a
single development stream of the project. This mainly
removed projects that had only released a single ver-
sion of their software, and left 59 projects for analysis.
Descriptive statistics for these 59 projects are provided
in Table 2.

Our analysis is divided into two main parts. The
first part examines the patterns of change in actual val-
ues of complexity. Based on the findings of the first
analysis, the second analysis examines the evolution of
complexity values that have been standardized within
projects.

Analysis of Absolute Levels of Complexity

Figure 2 shows the same three projects as Figure 1,
but with the data adjusted as described. Our next step
was to use smoothing splines to obtain representations
of the projects that would be more compact and re-
duce some of the fluctuation to allow us to discern
underlying patterns. To fit smoothing splines, the over-
all interval of interest, in this case 2 years, is split
into subintervals and a polynomial piece is fitted for
each subinterval such that the polynomial pieces are
fit together smoothly at the points where the subin-
tervals meet. These points are the knots. Minimiza-
tion of the penalized residual sum of squares is done
in a way similar to the minimization of the least-
squares operator in regression analysis (see Shmueli
and Jank, 2006). Following Jank and Shmueli (2005),
we sampled from the step functions in order to place
knots to connect the smoothing splines across subin-
tervals. For this analysis a parameter of 13 knots
was chosen as this represents the number of project
days explored (730) divided by the average num-

TABLE 2
Descriptive statistics (n = 59 OSS projects)

Measure Mean Std dev Min Max

Number of releases 8.44 6.56 2 29
Average release
frequency (in days) 56.08 52.05 0.00 238.00
First release LOC 7,031.32 9,589.37 395.00 52,792.00
Last release LOC 14,565.63 16,165.28 595.00 70,012.00
First release CplXCoh 98.28 54.63 13.06 239.16
Last release CplXCoh 113.64 58.01 18.36 360.04

FIG. 2. Adjusted data for the same three sample projects.

ber of days between releases (56). That is, on av-
erage the projects released changes every 56 days,
and therefore a 56-day interval was chosen. We used
the smooth.spline function to generate the curves (see
ego.psych.mcgill.ca/misc/fda/software.html).

The order of the smoothing spline determines how
much the curves may deviate from a flat line. Prior
work employing FDA has used a cubic smoothing
spline (Ramsay and Silverman, 2002), and because we
have no reason to expect a higher-order function to be
more appropriate, that convention is followed here. The
smoothing parameter for the curves determines the de-
gree to which the function is faithful to the observed
data points. We selected a high value to generate rel-
atively smooth curves because a primary objective of
this initial study is to develop a description of broad un-
derlying patterns, and allowing for wider fluctuations
in the functions makes interpretation of the basic pat-
terns more difficult.

The adjusted data for all 59 projects were used to cre-
ate and plot functional objects, examine the mean func-
tional object and explore whether there were different
clusters of projects. The mean curve, shown as a solid
line in Figure 3(a), is virtually flat, with only a very
small positive slope. The dashed lines indicate a 95%
confidence interval calculated pointwise using the fit-
ted values. Overall, the mean curve shows very little
upward movement in complexity, which is a surpris-
ing result given a large quantity of past work arguing
that complexity increases as software grows (Belady
and Lehman, 1976; Kemerer and Slaughter, 1999),
and we specifically limited the sample to projects that
increased in size (the average increase in LOC was
107%). Examining the individual project curves shows
that many projects decreased in complexity over their
lives, while others followed the expected pattern of in-
crease, which sheds light on why the overall mean is
flat.

http://ego.psych.mcgill.ca/misc/fda/software.html
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FIG. 3. (a) Functional objects, absolute values (n = 59, solid
mean and dashed 95% CI). (b) Functional objects, standardized
values (n = 59, solid mean and dashed 95% CI).

Following Jank and Shmueli (2005), we used
K-medoids clustering on the coefficients of the func-
tions to separate the opposing patterns that result in
an overall flat mean. K-medoids clustering is a more
robust version of K-means clustering, especially with
respect to outliers. The K-medoids algorithm (e.g.,
Kaufman and Rousseeuw, 1987; Hastie, Tibshirani and
Friedman, 2001) minimizes within-cluster dissimilar-

ity. This is done by iteratively alternating between
two steps. During the first step the cluster center ob-
servations are determined based on the current data-
partitions. The cluster center observation in the kth
cluster that minimizes the total distance to the other
points in the cluster is chosen. This observation is
known as the medoid and is the most centrally located
point in a cluster. During the second step observations
are reassigned to the nearest medoid and the associated
cluster. These steps continue until the assignments do
not change.

When we applied cluster analysis to the data, we
found that different patterns of change in evolution
were overwhelmed by different absolute levels of com-
plexity such that the results separated projects into
clusters that had similar overall levels of complexity,
but the mean function for each cluster was still similar
in shape to the overall mean function (see Figure 4).
While it is crucial to manage the absolute level of com-
plexity of software code, it is also widely accepted that
complexity is correlated with size (Chidamber, Darcy
and Kemerer, 1998), and a significant correlation be-
tween LOC and CplXLCoh (0.259, p ≤ 0.05) in the
dataset indicated consistency with this assertion. Since
complexity is a function of size, which is largely de-
termined by the scope of the problem the software is
designed to address, the extent to which a project man-
ages changes in complexity over time (e.g., minimizes
increases in complexity that may result from mainte-
nance) is of greater interest to us than the absolute level
of complexity in a project. Thus we sought to adjust the
data to focus on the pattern of change (i.e., the shapes
of the curves) rather than the absolute level of com-
plexity. To do this, we standardized the values of com-
plexity for each project such that the average for every
project was at 0. This allowed us a means of aligning
the curves, and results of analysis on the standardized
values produce more meaningful clusters in terms of
having identifiably different shapes.

Analysis of Standardized Complexity

Parameter values for the analysis on the standard-
ized data were the same as those used to generate
Figure 3(a). The overall mean curve derived from the
standardized data has the same flat shape as the curve
for the absolute data [see Figure 3(b)]. However, con-
ducting cluster analyses yields more interesting results.
Because this research is exploratory in that there are
no prior established patterns of complexity evolution
that we expect the data to follow, we began by ex-
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FIG. 4. (a) Cluster 1 of 3 (absolute values). (b) Cluster 2 of 3 (absolute values). (c) Cluster 3 of 3 (absolute values).

ploring a two-cluster solution and then increased the
number of clusters until no new patterns were uncov-
ered. The two-cluster solution [Figure 5(a)] resulted in
25 projects in cluster 1 that show an overall decline in
comlexity over approximately the first 350 days, then
flatten out before starting a slight upward trend toward
the end of the observation period. The 34 projects in
cluster 2 have an overall upward in complexity with the
fastest rate of increase over roughly the first 300 days.

The main point of interest in the two-cluster solution is
that it results in one cluster with projects whose com-
plexity increases and one cluster for projects whose
complexity decreases. This is consistent with the over-
all flat mean for the entire set; however, it is a very sur-
prising result in the sense that no prior empirical work
in either the open or closed source software context has
identified a development pattern in which complexity
decreases as size is increased.
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FIG. 5. (a) Two-cluster mean functions (solid overall
mean). (b) Three-cluster mean functions (solid overall mean).
(c) Four-cluster mean functions (solid overall mean).

TABLE 3
Project cluster membership

Two Three Four
clusters clusters clusters

Cluster 1—early decreasers 25 24 13
Cluster 2—early increasers 34 20 18
Cluster 3—midterm increasers 15 14
Cluster 4—midterm decreasers 14

The three-cluster solution [Figure 5(b)] produces
a decreasing-complexity cluster very similar to that
seen in the two-cluster solution, while the increasing-
complexity cluster splits into two clusters with dif-
ferent patterns. One cluster of increasing-complexity
projects is active over approximately the first 150 days
and then flattens out. The second cluster shows an up-
ward trend throughout the observation period, with the
fastest rate of increasing complexity between approx-
imately days 200 and 400. These projects appeared to
have longer active periods than the projects in either of
the other clusters.

The four-cluster solution [Figure 5(c)] resulted in
a similar split in the decreasing-complexity projects.
One decreasing-complexity cluster shows a relatively
small change over the first 200 days, then flattens out
before increasing during the last 150 days. The other
cluster shows a larger decrease in complexity over ap-
proximately the first 400 days. The five-cluster solution
did not result in any new pattern becoming apparent;
therefore we focus on the four-cluster solution. For the
four-cluster solution, the average within-cluster dis-
tance was 6.04 and the average intercluster distance
was 3.60.

The groupings identified in the four-cluster solution
might be differentiated as early decreasers that expe-
rience decreasing complexity during the first several
months of the observed period, appear relatively stable
during the middle of the observed period and then start
trending back upward toward the end of the two years
(cluster 1); early increasers that experience their fastest
rate of increasing complexity during the first several
months of the project and appear relatively stable af-
ter day 150 (cluster 2); midterm increasers that experi-
ence their fastest rate of increasing complexity several
months after the start of the project and then appear
more stable (cluster 3); and midterm decreasers that
continue a steady decrease through the midpoint of the
period before stabilizing around day 400 (cluster 4).
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TABLE 4
Descriptive statistics for the four-cluster solution

Cluster 1— Cluster 2— Cluster 3— Cluster 4—
early early midterm midterm

decreasers increasers increasers decreasers

Number of releases 6.23 5.94 12.21 9.93
Average release
frequency (in days) 40.93 36.01 80.60 71.42
First release LOC 4,893 6,576 5,052 11,579
Last release LOC 10,872 14,166 13,934 19,139
First release
CplxLCoh 113.99 104.49 58.99 114.97
Last release
CplXLCoh 111.31 140.21 99.78 95.49

The main differentiating characteristics of the pro-
jects across clusters appear to be the change in com-
plexity (i.e., increased or decreased) and the period
of time over which the projects were most active. To
compare the four-cluster solution to the three- and
five-cluster solutions and to confirm that apparent
differences across clusters are representative of real
differences across the projects and not an artifact of
the smoothing splines, we conducted multiple analysis
of variance (MANOVA). The MANOVA used the per-
centage change in CplXLCoh for each project and the
active life of each project as dependent variables with
the cluster assignment as the categorical independent
variable. Percentage change in CplXLCoh was calcu-
lated for each project using the nonstandardized data:
(CplXLCoh of the last release – CplXLCoh of the first
release)/CplXLCoh of the first release. Active life was
calculated as the number of days between the first re-
lease and the last release of a project during the 730
days over which projects were observed.

For each of the three-, four- and five-cluster so-
lutions, cluster assignment had a significant impact
on both of the dependent variables (p < 0.01 in all
cases). The three-cluster solution explained 17.6%
and 17.3% of the variance in percentage change in
CplXLCoh and active life, respectively. In the four-
cluster solution these numbers were increased to 20.0%
and 27.9%. In the five-cluster solution the explained
variance decreased slightly to 19.9% and 27.5%. These
results seem to be consistent with our conclusion above
that the four-cluster solution appears to be of great-
est interest. For the four-cluster solution, the multi-
variate F -test was significant (F3,55 = 7.582, p <

0.001) as were univariate tests for each dependent vari-
able (for percentage change in CplXLCoh F3,55 =

4.570, p < 0.01, and for active life F3,55 = 7.081,
p < 0.001). Differences across clusters were in the ex-
pected directions in all cases.

Given the relatively small sample size, and the lim-
ited amount of other information available in our
dataset about the projects, it is difficult to identify
what other characteristics may be associated with
cluster membership. Prior work has suggested there
may be correlations between size in LOC and com-
plexity or between the release pattern of a project
and complexity (Tan and Mookerjee, 2005). Based
on these suggestions, we examined four character-
istics of potential interest in an attempt to uncover
such differences. These were the size of the first re-
lease of a project, the number of releases, the av-
erage release frequency and the percentage increase
in size. We entered these variables into a MANOVA
with the cluster assignment as the predictor variable.
The multivariate F -test was significant (F4,54 = 9.085,
p < 0.001), as were univariate tests for number of re-
leases (F3,55 = 3.564, p < 0.05) and average release
frequency (F3,55 = 2.976, p < 0.05). Univariate tests
for size of the first release and percentage increase in
size were not significant at ≤ 0.05. Pairwise compar-
isons indicated that projects in the midterm increasers
cluster had significantly more releases than the early
increasers (difference = 6.27, p < 0.01) or the early
decreasers (difference = 5.984, p < 0.05). The aver-
age release frequencies for these projects were also
longer than the average release frequencies for the
early increasers (difference = 44.589, p < 0.05) or the
early decreasers (difference = 39.665, p < 0.05). The
midterm decreasers cluster had a significantly longer
average release frequency than the early increasers
(difference = 35.410, p < 0.05). All other pairwise
comparisons were insignificant.
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Sensitivity Analysis

As discussed above, several parameters were chosen
in conducting the analysis. To reduce the likelihood
that the results reported here are artifacts of specific
parameter values, we repeated the analysis varying
these parameters. The number of knots was changed
to 6 and to 26. The smoothing parameter was varied
from the minimum to the maximum allowable value
for the smoothing function that we used to generate the
splines. We performed clustering using both the coef-
ficients and the predicted values for the curves. In no
case were the conclusions from the analysis affected.
While minor variations in the shapes of the cluster
mean curves were observed, in every case we observed
four clusters with the same basic shapes (i.e., two clus-
ters of increasing-complexity projects and two clusters
of decreasing-complexity projects, as described).

In addition to varying the parameters, we applied
different screening criteria to the data, screening out
projects with fewer than three releases and including
projects with any positive increase in LOC. Again,
while minor variations in the shapes of the curves were
observed, conclusions were unaffected.

6. DISCUSSION

Though this initial analysis has focused on a small
sample of projects, results indicate FDA is a promis-
ing approach for studying the dynamics of evolution
in software development. Identifying different patterns
of change is a first step toward building a better un-
derstanding of why projects fall into one pattern versus
another and what differences in outcomes may result
from different patterns. This is of particular interest
given that patterns of decreasing complexity are likely
to result in desirable outcomes such as lower mainte-
nance costs (Darcy, Kemerer et al., 2005).

Preliminary explorations into why some of the
projects grouped into decreasing (complexity) clus-
ters and others into increasing (complexity) clusters
indicate that some of the intuitive and long-held be-
liefs about project complexity may not apply in some
OSS development projects. In particular, neither the
starting size nor the increase in size over the observed
history of a project was significantly different across
increasing-complexity or decreasing-complexity clus-
ters. This is surprising given the widely held belief that
increasing size is associated with increasing complex-
ity (Chidamber, Darcy and Kemerer, 1998). Similarly,
the pattern of differences across clusters in the average

release frequency of projects did not distinguish be-
tween increasing- and decreasing-complexity clusters,
but rather between clusters that had longer and shorter
active periods. In the future research section below, we
discuss other factors that may influence the assignment
of a project to a cluster and the potential implications
of cluster membership.

Limitations

Aside from possible limitations on the generalizabil-
ity of the particular patterns uncovered here (due to
the screening criteria used to select projects), the de-
cisions regarding how the data were analyzed have im-
portant implications. First, we focused on CplXLCoh
as a measure of complexity because it has been shown
in prior work (Darcy, Kemerer et al., 2005) to bet-
ter represent overall structural complexity than either
Cpl or LCoh alone. The individual measures, Cpl and
LCoh, or other measures such as size or McCabe’s
Cyclomatic complexity may exhibit different patterns
over time. Second, our approach to creating com-
parable data across projects by interpolating values
of complexity for every day could underestimate the
uncertainty regarding the levels of complexity and tra-
jectory of changes in projects with very few releases.
For example, the pointwise calculation of the 95%
confidence interval using fitted values creates a rel-
atively tight bound around some areas of the mean
curve where there may be relatively few actual ob-
servations (i.e., releases). The approach taken in this
analysis was to weight every project equally whereas
for some projects we have many more data points than
for others.

It is important to bear in mind that we cannot inter-
pret the curves as representing what happens during the
first two years of software development, but rather dur-
ing the first two years of public development. That is,
the results tell us about the nature of the first two years
of evolution after a project is opened to the community,
and that, as explained above, could happen at differ-
ent stages of a project’s lifecycle. One interesting av-
enue for future study is to investigate whether a reason
projects may fall into the different clusters uncovered
in this analysis is due to their having initially released
software at different stages. For example, it could be
that projects in clusters where complexity decreased
released software with all of the intended functionality
already included and the main effort of the community
was then to “clean it up” and add minor extensions to
an already well-defined architecture. In contrast, per-
haps the projects in the increasing-complexity clusters
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released very early initial versions and thus the first two
years of open development represent more significant
additions of functionality. However, if size represents
functionality, then the exploratory post hoc analysis
showing no statistical difference between the percent
change in size across clusters would cast some doubt
on this possibility.

As noted above, projects were only observed for ap-
proximately two years. Based on the results it seems
that this may be long enough to capture the dynam-
ics of many projects because all cluster curves exhib-
ited the most activity prior to approximately day 400.
However, while our screening criteria for inclusion in
the sample ensured projects did maintain a presence on
Sourceforge during the entire two years of observation,
it is possible that some projects may maintain such a
presence while shifting development work to another
location, which would be an alternative reason that de-
velopment might appear to cease. It remains to be seen
if the projects in the more dynamic upward trending
cluster may later reach equilibrium or if they will con-
tinue to grow steadily in complexity over time.

Future Research

There are several ways to build on the exploratory
work presented here. Many of these revolve around re-
fining the patterns uncovered, examining the extent to
which they may be replicated in other samples (e.g.,
projects that use different programming languages) and
exploring their antecedents and consequences. One po-
tential antecedent to cluster membership mentioned
above is the development stage of the project. Prior
work on software development has indicated that larger
development teams may produce more complex soft-
ware (Banker, Davis and Slaughter, 1998); thus one
fruitful avenue for future work on antecedents of clus-
ter membership may be to examine the project team
size. Because OSS projects often rely on voluntary la-
bor, team size is an issue of particular relevance in the
OSS setting and attracting larger teams has generally
been viewed as an indicator of project success (Stewart
and Gosain, 2006). Projects that experience decreasing
complexity may be able to attract and retain more de-
velopers because new developers will be able to more
quickly understand and modify the code. Combined
with the finding in prior work that larger teams pro-
duce more complex code, this could explain the pattern
in the early decreasers cluster in which complexity ini-
tially decreases (allowing for the attraction of more de-
velopers) but then trends upward toward the end of the
observation period (once the team size has increased).

In addition to having different sizes, OSS projects
have been observed to use different kinds of organiza-
tional structures (e.g., Apache has a voting system in
place to advance contributors into positions of leader-
ship whereas many other projects have less formalized
processes), and prior work has suggested that the orga-
nization of software code may mirror the organization
of the group that produces it (MacCormack, Rusnak
and Baldwin, 2004). Thus another potential antecedent
to cluster membership may be the organizational struc-
ture of the team that develops the software.

A reason that uncovering antecedents to cluster
membership may be important is that cluster mem-
bership may have implications for the future success
of projects. For example, Yu, Schach et al. (2004)
postulate that the currently high complexity of Linux
may shortly bring it to a point where maintenance
becomes extremely difficult. Generalizing from that
work, it may be the case that projects in the increasing-
complexity clusters may eventually be unable to add
enhancements to keep up with changing user needs and
thus lose popularity. Given that popularity has been
considered a facet of OSS project success (Stewart,
Ammeter and Maruping, 2006), such a trend would
be undesirable for the longer-term health of an OSS
project.

In addition to these questions for which there is a
ready arsenal of analytical techniques to apply, there
are other questions that may require more sophisti-
cated statistical strategies. For example, because struc-
tural complexity has multiple components, we used a
cross-term of two such components to capture an over-
all level of complexity (Cpl X LCoh). Since there is
a trade-off between Cpl and LCoh, it would be inter-
esting to be able to study their co-evolution—that is,
do projects that manage to contain overall complexity
(e.g., those in the downward sloping clusters) do so by
alternately attending to LCoh and Cpl or by attending
to both in a consistent manner over time? Similarly, to
what extent do changes in size co-occur with changes
in complexity? A means for analyzing patterns in two
or more curves for each project simultaneously, such
as a bivariate functional object, may be helpful in ad-
dressing such questions.

It may also be of interest to attempt to replicate or
refine the findings from this study using different ap-
proaches. For example, an alternative analytical ap-
proach would be to use functional principal compo-
nents analysis rather than cluster analysis. An alterna-
tive approach to examining evolution may be to ana-
lyze more granular data. For example, rather than fo-
cusing on official releases, one might track each change
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as it occurs through some form of version or configura-
tion management system (such as the CVS mechanism
on Sourceforge).

Conclusion

The goal for this paper was to explore FDA as a
means to uncover and characterize patterns of evo-
lution in the complexity of OSS projects. FDA en-
ables the examination of projects through the creation
and manipulation of a functional data object for each
project. This approach allows a richer exploration and
comparison of projects than has been previously possi-
ble using prior approaches in the software engineering
literature. This analysis has suggested insights into the
evolution of complexity in open source projects, partic-
ularly with regard to the existence of multiple nuanced
patterns. Our post hoc explorations have suggested that
there is a substantial need for extensive additional re-
search into the various patterns. These initial findings
open extensive avenues for further research that we
hope will ultimately provide practical guidance in man-
aging software complexity.
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