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This article is dedicated to my mentor and friend George Tiao on
the occasion of his 70th birthday

Abstract. Any general textbook that discusses moment generating functions
(MGFs) shows how to obtain a moment of positive-integer order via differen-
tiation, although usually the presented examples are only illustrative, because
the corresponding moments can be calculated in more direct ways. It is thus
somewhat unfortunate that very few textbooks discuss the use of MGFs when
it becomes the simplest, and sometimes the only, approach for analytic cal-
culation and manipulation of moments. Such situations arise when we need
to evaluate the moments of ratios and logarithms, two of the most common
transformations in statistics. Such moments can be obtained by differenti-
ating andintegrating a joint MGF of the underlying untransformed random
variables in appropriate ways. These techniques are examples of multivariate
Laplace transform methods and can also be derived from the fact that mo-
ments of negative orders can be obtained by integrating an MGF. This article
reviews, extends and corrects various results scattered in the literature on this
joint-MGF approach, and provides four applications of independent interest
to demonstrate its power and beauty. The first application, which motivated
this article, is for the exact calculation of the moments of a well-known lim-
iting distribution under the unit-root AR(1) model. The second, which builds
on Stigler’s Galtonian perspective, reveals a straightforward, non-Bayesian
constructive derivation of the Stein estimator, as well as convenient expres-
sions for studying its risk and bias. The third finds an exceedingly simple
bound for the bias of a sample correlation from a bivariate normal popu-
lation, namely the magnitude of the relative bias is not just of ordern−1,
but actually is bounded above byn−1 for all sample sizesn ≥ 2. The fourth
tackles the otherwise intractable problem of studying the finite-sample op-
timal bridge in the context of bridge sampling for computing normalizing
constants. A by-product of the joint-MGF approach is that positive-order
fractional moments can be easily obtained from an MGF without invoking
the concept of fractional differentiation, a method used by R. A. Fisher in his
study ofk statistics 45 years before it reappeared in the probability literature.
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PROLOGUE

Any book (e.g., Johnson, Kotz and Kemp, 1992) that
discusses moment generating functions (MGFs) shows
how to obtain a moment with positive integer order by
differentiating an MGF. Specifically, supposeMX(t) =
E[etX] exists in a neighborhood oft = 0. Then

E(Xk) = M
(k)
X (0),(0.1)

whereM
(k)
X (t) denotes thekth derivative ofMX(t). It

is much less well known, however, that byintegrating
MX(t) in appropriate ways, we can obtain the expecta-
tion of g(X) for a variety of choices ofg. For example,
if g(x) is the Laplace transform ofh(t), that is,

g(x) =
∫ ∞

0
h(t)e−tx dt,(0.2)

then, when Fubini’s theorem is applicable, we have

E[g(X)] =
∫ ∞

0
h(t)E[e−tX]dt

(0.3)
=

∫ ∞
0

MX(−t)h(t) dt.

At first glance, (0.3) may not seem to be very useful.
It simply replaces the direct integration, with respect to
the probability measure defined byX, needed to eval-
uateE[g(X)] analytically with another integration. As
we all know, integration is generally much harder than
differentiation. Could this be the reason that formulas
such as (0.3) are almost never mentioned in any text-
book that presents MGFs (but see Cressie and Borkent,
1986)? Putting it differently, is there any value for iden-
tity (0.3) and ones similar to it to be a part of our gen-
eral textbook knowledge of MGFs?

Many statisticians perhaps never wonder or care
about such a question, nor did I until 1996.

1. A MOTIVATING STORY: TAKING A MOMENT
WITH UNIT ROOT

For a newcomer to time series analysis, as I was
around 1996 when I was working with Professor
George Tiao, “unit root” is often both a fascinating
and frustrating topic, regardless of whether one’s main
interest is in application or in theory. From a prac-
tical point of view, models that involve unit roots

are fascinating and important because they can cap-
ture phenomena with “phase transition” type charac-
teristics (e.g., from stationarity to nonstationarity), to
borrow a common phrase from physics. The various
inferential implications of such models or even the
existence of such transitions in particular studies are
ever-debatable. See, for example, the entire theme is-
sue ofJournal of Applied Econometrics [1991, 6(4)],
which was devoted to a lively and vigorous debate on
“Classical and Bayesian methods of testing for unit
roots” and their implications for analyzing the gross
national product of the United States from 1909 to
1970 and other economic time series. The very dif-
ferent conclusions reported by different articles in that
issue highlight the frustration a practitioner may face.
Because phase transition pushes nonrobustness to its
extreme, the inferential conclusions are often frustrat-
ingly sensitive to the assumptions posited for either
frequentist or Bayesian approaches. Furthermore, the
actual analysis is often more complicated because of
the nonapplicability of off-the-shelf methods, such as
standard normal asymptotics.

This complication also fascinates those who are
more theoretically oriented. Because normal asymp-
totics are so prevalent in general statistics, nonnormal
asymptotics are much more intriguing to theoreticians.
Indeed, it is generally said and believed that arti-
cles with nonnormal asymptotics have a substantially
higher publication acceptance rate than those with nor-
mal asymptotics. However, the theoretical thrill does
not come without frustration, even for tasks as basic as
verifying whether an intuitively standardized random
quantity indeed has mean 0 and variance 1. A well-
known statistic in the literature for testing the unit-root
AR(1) model (e.g., Dickey and Fuller, 1979) provides
a perfect illustration of such frustration. This statistic
was one of the key stepping stones in building popu-
lar testing procedures for unit roots in current practice
(e.g., Elliott, Rothenberg and Stock, 1996).

Specifically, suppose we adopt the standard AR(1)
model (with known variance for simplicity)

yt = φyt−1 + εt ,
(1.1)

εt
i.i.d.∼ N(0,1), t = 1,2, . . . , n,
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with the convention thaty0 = 0, and we are interested
in estimating and/or testing the model parameterφ.
A common method is to use the standard least-squares
estimator, which yields

φ̂n =
∑n−1

t=0 ytyt+1∑n−1
t=0 y2

t

.

The analogy to standard linear regression also sug-
gests how we might standardizeφ̂n − φ to arrive at an
approximate confidence interval or hypothesis test. If
this were the standard linear regression in the form of
yt = φxt +εt , then the variance would be(

∑n
t=1 x2

t )−1.
Since for (1.1),xt = yt−1, we are led to consider

τn
�=

(
n−1∑
t=0

y2
t

)1/2

(φ̂n − φ)

as our standardization of̂φn. However, although the
analogy is suggestive, for indeedτn has the usual
N(0,1) asymptotic distribution when|φ| < 1, it would
be a most unforgivable mistake in basic statistics or
probability to rely on the analogy to assert thatτn is
asymptotically standardized in general.

Indeed, the asymptotic distribution ofτn is no longer
N(0,1) as soon as|φ| ≥ 1. The case ofφ = 1 has re-
ceived the most attention in the literature, partly be-
cause of its implications in practice, because it models
random walk phenomenon (e.g., in economic time se-
ries), and partly because it signifies unit-root type prob-
lems in general. [Indeed, for the Studentized statistic
studied by White (1959), the asymptotic normality
holds also for|φ| > 1, making the case of|φ| = 1 even
more fascinating and unique.] Whenφ = 1, it is well
known that (see Chan and Wei, 1987; Tanaka, 1996,
Chapter 3)

τn =
(

n−1∑
t=0

y2
t

)1/2

(φ̂n − φ)

(1.2)
D−→ (W2(1) − 1)/2

[∫ 1
0 W2(t) dt]1/2

�= τ,

whereW(t) is the standard Wiener process on[0,1].
Clearlyτ is notN(0,1), but it is conceivable that it

might still have mean 0 and variance 1. Putting it dif-
ferently, it is not immediate what its mean or variance
should be just by inspecting its stochastic expression as
given in (1.2); the dependence between the numerator
and the denominator ofτ complicates such a determi-
nation. Of course one can always resort to simulation,
which would easily indicate that the mean ofτn is in

the vicinity of −0.4 whenn becomes large enough.
However, one would find that it is much more diffi-
cult to rule outV (τ) = 1 by simulation, as we discuss
shortly. Furthermore, when analytical calculations can
be done relatively easily, there is no rational argument
for not performing them, especially when simulations
are used as an investigation tool. There is really no
more reliable way to validate any simulation other then
by checking its output against known analytic results.

The question then is whether there exists a rela-
tively simple method for analytically calculating the
moments ofτ . The answer turns out to be a pleasant
yes, although apparently this is not a generally well
recognized fact, judging from my initial failure (during
1996–1997) to find the answer after a relatively exten-
sive literature search and consultation in both statistics
and econometrics. The search and research were most
rewarding, because what they revealed was not just a
neat trick for analytic calculation of the moments ofτ ,
but rather a class of powerful tools for analytical eval-
uation of moments of ratios and logarithms, two of the
most common transformations in statistics. The prob-
lem of calculating the moments ofτ nicely illustrates
the power of this class of methods.

Specifically, if we letX = 1
2(W2(1) − 1) andY =∫ 1

0 W2(t) dt , then τ = X/
√

Y . White (1958) estab-
lished that (with a minor correction by Abadir, 1993;
also see Rao, 1978) the joint MGF forX and Y ,
MX,Y (t1, t2) = E(exp(t1X + t2Y)), is given by

MX,Y (−t1,−t2)

= exp
(

t1

2

)
(1.3)

·
[
cosh

(√
2t2

) + t1√
2t2

sinh
(√

2t2
)]−1/2

,

t1 ∈ R, t2 ≥ 0.

Since the joint MGF uniquely determines the distribu-
tion of (X,Y ) (under regularity conditions), it also de-
termines any moment of anyg(X,Y ), which gives us
hope of directly linking a moment to the joint MGF
without first inverting the MGF to obtain the den-
sity. This is indeed possible forg(X,Y ) = Xk/Y b,
wherek is a nonnegative integer andb is arbitrary, as
Lemma 1 of Section 2 asserts that (under very mild
regularity conditions)

E

(
Xk

Yb

)
= 1

�(b)

∫ ∞
0

M
(k,0)
X,Y (0,−t)tb−1 dt,(1.4)



144 X.-L. MENG

where M(k1,k2)(t1, t2) denotes (∂k1+k2M(t1, t2))/

∂t
k1
1 ∂t

k2
2 . Applying (1.4) with (1.3) then yields straight-

forwardly

E(τ) = − 1√
2π

∫ ∞
0

1√
cosh(s)

[
1− tanh(s)

s

]
ds

(1.5)

= −0.42309564. . .

and

E(τ2) = 1

4

∫ ∞
0

1√
cosh(s)

[
s + 3

tanh2(s)

s

]
ds − 1

(1.6)

= 1.14159507. . . ,

which implies that V (τ) = Eτ2 − (Eτ)2 =
0.96258515. . . . Therefore, not onlyE(τ) �= 0, but also
V (τ) �= 1, although, somewhat intriguingly,V (τ) is
much closer to 1 thanE(τ) is to 0. [Why is that?
Lin (2003) speculated that the negative correlation be-
tween the numerator and the denominator ofτ atten-
uates its intended mean much more than its intended
variance.] The closeness ofV (τ) to 1 makes it much
more difficult to determineV (τ) �= 1 via simulating
the distribution ofτn, because one can (and should) al-
ways wonder whether the observed difference is due
to finite n, however large, even if the Monte Carlo
error is of no concern. All reported numerical values
and/or digits in (1.5)–(1.6) are obtained and confirmed
with a number of different numerical integration rou-
tines, such as MATLAB and Maple. [Note intrigu-
ingly that E(τ2) has its first six digits the same as
π −2!] These numerical values are also consistent with
the values reported in Gonzalo and Pitarakis (1998),
E(τ) = −0.4231 andE(τ2) = 1.1417, except that
(1.6) implies that the last digit in theirE(τ2) should
be 6, a reflection of rounding discrepancy between their
numerical series-expansion evaluation and our numer-
ical integration evaluation. Using the same integration
approach, Gonzalo and Pitarakis (1998) also obtained
moments for several other related statistics.

This article is the result of encouragement from
all those who shared my joy over the simplicity of
(1.5)–(1.6) [in contrast to the expression ofτ in (1.2)]
and who assured me that I was not alone in feeling that
something is missing in our general textbook knowl-
edge of the joint-MGF approach. This article is thus in-
tended to narrow the gap, so others can spend less time
and experience less frustration than I did dealing with
similar analytic problems. Section 2 contains a num-
ber of variations and extensions of (1.4), as well as re-
lated theoretical and historical development. Sections

3, 4 and 5 present, respectively, three applications in
the contexts of the Stein estimator, bias of a sample cor-
relation and optimal bridge sampling; Section 6 traces
the relevant history back to a work by R. A. Fisher in
1930 onk statistics. All four of these sections are in-
tended to be self-contained (except for their common
references to Section 2) and therefore can be read in
any order. Section 5 is most technically involved be-
cause it tackles an open problem in a theoretical study
of bridge sampling, so it should not be a part of any re-
laxing bedtime reading unless you have trouble falling
asleep.

Finally, a disclaimer is necessary for any article that
attempts to overview a topic of such diversity. The
76 listed references (and the references therein) are
the result of literally months of search and research,
vertically and horizontally, of the literature. Undoubt-
edly they are only a (nonrandom) sample of the articles
that could be cited, in view of the enormous literature
on Laplace transforms—because identities like (1.4)
are part of the general multivariate Laplace transform
techniques—and related topics in and outside of statis-
tics and econometrics. I thus offer my apology to those
whose relevant contribution is not given appropriate
credit in this article, and express my gratitude to any-
one who can further enrich my—as well as others’—
knowledge on this topic.

2. THE JOINT-MGF APPROACH

2.1 Integrating a Moment Generating Function

As a direct analogy to the well-known formula (0.1),
but with the differentiation operator replaced by the in-
tegration operator, one can verify that (e.g., Cressie,
Davis, Folks and Policello, 1981) ifP(Y > 0) = 1,
then for any positive integerk,

E(Y−k)

(2.1)
=

∫ ∞
0

· · ·
∫ ∞

0
MY

(
−

k∑
i=1

ti

)
dt1 · · · dtk.

This, however, is not a very useful formula because
it involves multidimensional integration whenk > 1.
[One can also successively integrate a probability gen-
erating function to obtain negative integer moments;
see Chao and Strawderman (1972) and the references
therein.]

A more useful formula is obtained by noticing that
for anyy > 0 andb > 0,

y−b = 1

�(b)

∫ ∞
0

tb−1e−ty dt,(2.2)
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that is,g(y) = y−b is the Laplace transform ofh(t) =
tb−1/�(b). Consequently, by identity (0.3), where
Fubini’s theorem is obviously applicable because the
integrand here is nonnegative, we obtain

E(Y−b) = 1

�(b)

∫ ∞
0

tb−1MY (−t) dt,(2.3)

which not only avoids multidimensional integration,
but more importantly handles negative fractional mo-
ments [obviously the right-hand side of (2.1) can be
simplified into that of (2.3) by a change of variables
via s1 = ∑k

i=1 ti andsj = tj for j ≥ 2]. For integerb,
identity (2.3) was given in Cressie, Davis, Folks and
Policello (1981).

Combining (0.1) and (2.3), we obtain the follow-
ing lemma, which is a more complete and rigorous
formulation of several previous results (e.g., Sawa,
1972; Mehta and Swamy, 1978; Cressie, Davis, Folks
and Policello, 1981). To simplify notation, we useP

as a generic notation for probability measure of any
( joint or marginal) random variable and useλ+

d for
the Lebesgue measure on thed-dimensional product
space(0,∞)d . To ensure the lemma is applicable as
generally as possible, we adopt the notion ofquasi-
integrability of a functionf , which only requires either
(f )+ or (f )− to be integrable, where(·)+ and(·)− are
the standard positive-part and negative-part functions,
respectively. This relaxation on integrability makes
verification of the conditions needed for (1.4) much
easier, as in our motivating example (see below).

LEMMA 1. Suppose k is a nonnegative integer and
b > 0, P(Y > 0) = 1, MX,Y (t1,0) exists in a neigh-
borhood of t1 = 0, and Xk/Y b is quasi-integrable
with respect to P . Then M

(k,0)
X,Y (0,−t2)t

b−1
2 is quasi-

integrable with respect to λ+
1 and the identity

E

(
Xk

Yb

)
= 1

�(b)

∫ ∞
0

M
(k,0)
X,Y (0,−t)tb−1 dt(2.4)

holds, where the values ±∞ are allowed.

Although (2.4) is not hard to verify formally, we
provide a rigorous proof of Lemma 1 in Appendix A
in view of some oversights in the literature concern-
ing special cases of Lemma 1. Cressie, Davis, Folks
and Policello (1981) considered the case whenb is an
integer and stated that (2.4) holds “when either inte-
gral exists,” without assuming the quasi-integrability
of Xk/Y b. A simple example indicates that this as-
sumption cannot be relaxed. TakeX = Z, Y = Z2 and

k = b = 1 in (2.4), whereZ ∼ N(0,1). Then the left-
hand side of (2.4) does not exist but the right-hand side
is zero becauseM(1,0)

Z,Z2(0, t2) = 0 for all t2 ≥ 0. The
same error was made earlier in Sawa (1972), who con-
sidered Lemma 1 in the case whenb and k are the
same integer. Sawa’s (1972) result has been extended
and applied frequently in econometrics for evaluating
moments of estimators of coefficients for various mod-
els, such as simultaneous equation models (e.g., Mehta
and Swamy, 1978), dynamic regression models (e.g.,
Hoque, 1985; Peters, 1989) and many autoregressive
or autoregressive integrated moving average (ARIMA)
type models (e.g., Sawa, 1978; De Gooijer, 1980;
Evans and Savin, 1981, 1984; Nankervis and Savin,
1988; Abadir and Larsson, 1996, 2001; Pitarakis,
1998). The error in Sawa’s (1972) result was spotted
by Mehta and Swamy (1978). However, due to the
way they constructed their proof, Mehta and Swamy
(1978, page 8) seemed to imply that the source of the
error occurred in the interchange of integration with
differentiation that leads to (A.2) in our proof given in
Appendix A. Our proof shows that (A.2) holds in gen-
eral and the error was in a subsequent interchange of
integrals when no condition of Fubini’s theorem was
satisfied, as our simple counterexample shows.

Although not every statistician cares about regularity
conditions as such, they are important in applications
such as our motivating example. Our goal there was
to compute the moments ofτ , but we did not even
know whether these moments exist or, at least, it is
not obvious why they do. Lemma 1 provides a very
effective way to determine the existence of any mo-
ment of positive-integer order ofτ as well as its value.
Specifically, for any integerk > 0, it is easy to derive
from (1.3), by using the differentiation chain rule, that

M
(k,0)
X,Y (0,−t2)

= (−1)k

2k

√
cosh(

√
2t2 )(2.5)

·
k∑

i=0

(−1)i(2i − 1)!!
(

k

i

)[
tanh(

√
2t2 )√

2t2

]i

,

where(2i − 1)!! = (2i − 1)(2i − 3) · · ·1. Clearly, for
k even, the conditions of Lemma 1 are satisfied be-
cause any fixed-sign random variable (i.e.,τ k ≥ 0) is
quasi-integrable and thus (2.4) is applicable. Fork odd,
we have|τ |k < 1+τ k+1 and thusτ k is integrable since
τ k+1 is integrable, because the right-hand side of (2.5)
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is integrable overt2 ∈ (0,∞) for any k ≥ 0. Conse-
quently, for any integerk > 0, E(τk) is finite and its
value can be found via (2.4) withb = k/2. Letting

ai,k =
∫ ∞

0

[tanh(s)]i√
cosh(s)

sk−i−1 ds,

then a simple change of variables = √
2t2 yields

E(τk) = E

(
Xk

Y k/2

)

= (−1)k

2(3k−2)/2�(k/2)
(2.6)

·
k∑

i=0

(−1)i(2i − 1)!!
(

k

i

)
ai,k,

which gives (1.5)–(1.6) whenk = 1,2. For higher mo-
ments (e.g., those needed for exact skewness and kur-
tosis of τ ) the following recursive formula, obtained
via integration by parts, is useful for reducing the com-
putational burden:

ai,k = 2(k − i − 1)

2i − 1
ai−1,k−2

(2.7)

+ 2(i − 1)

2i − 1
ai−2,k−2, 0< i < k, k > 2,

whereai,k is zero wheni < 0.
Although one might not find the general expres-

sions (2.6)–(2.7) in the published literature, the joint
MGF approach was used in the literature to deal with
similar moment calculations involving ratios. In ad-
dition to the aforementioned work by Gonzalo and
Pitarakis (1998), Tanaka (1996, Chapter 1) used this
approach to compute the moments ofτ ∗ = 1

2(W2(1) −
1)/[∫ 1

0 W2(t) dt], and Nielsen (1997) applied the same
approach to find the expansions of the moments ofτ2

n .
In particular, (1.6) was given by Nielsen (1997) as the
mean ofτ2. This is also an example of using the joint
MGF method to find moments of a ratio of quadratic
forms of normal variables, a class of problems we dis-
cuss further in Section 2.2.

2.2 Fractional Moments and Fractional Derivatives

In most of the literature mentioned in Section 2.1,
b was restricted to be an integer. The extension to non-
integerb is immediate since (2.3) holds for noninte-
gers as presented by Stuart and Ord (1987, page 101).
This trivial extension turns out to be important be-
cause (i) it facilitates exact calculation of moments of
“Studentization,”Tn = (θ̂n − θ)/

√
V̂n (in an obvious

notation) for finite or infiniten, as in the unit-root
problem, (ii) it suggests further useful generalizations
such as those provided in Section 2.3 and (iii) by
letting Y = X, it provides a formula for evaluating
positive fractional momentsE(Xa), wherea > 0 and
P(X ≥ 0) = 1. Cressie, Davis, Folks and Policello
(1981) mentioned the possibility of using fractional
derivatives to evaluate fractional moments via the MGF
[i.e., a generalization of (2.1)] and Laue’s (1980) work
to connect fractional moments with fractional deriva-
tives of a characteristic function. Indeed, such results
were presented by Wolfe (1975) and, in fact, were used
by Fisher in 1930 (see Section 6); similar results were
also presented by Cressie and Borkent (1986) and were
further discussed by Jones (1987a, b). The derivation
provided below, as a simple consequence of (2.4), is
more straightforward and appealing to researchers who
are unfamiliar with the concept of fractional deriv-
atives. The results are obviously equivalent, because
both methods are used to establish the same identity.
Indeed, a fractional derivative is defined in terms of in-
tegration; see Ross (1975) for an overview of fractional
calculus.

Specifically, supposeP(X > 0) = 1,MX(t) exists in
a neighborhood oft = 0 anda is a positive noninteger
[X can be negative for certain choices ofa (e.g., 1/3),
but we avoid such a complication here]. Let	a
 be the
smallest integer that exceedsa and let〈a〉 = 	a
 − a.
Now let k = 	a
, b = 〈a〉 andY = X in (2.4). Since
MX,X(t1, t2) = MX(t1 + t2), Lemma 1 implies

E(Xa) = E

(
X	a


X〈a〉
)

(2.8)

= 1

�(〈a〉)
∫ ∞

0
M

(	a
)
X (−t)t 〈a〉−1 dt,

and one side of (2.8) is finite if and only if the other side
is. Note that (2.8) reduces to (0.1) whena is an integer,
by taking〈a〉 → 0 (this can be verified directly or by
using fractional derivatives). We also note in passing
that by lettingY = X−1 and b = a in (2.3), we can
obtainE(Xa) by integrating the MGF ofX−1:

E(Xa) = 1

�(a)

∫ ∞
0

MX−1(−t) ta−1 dt.(2.9)

This identity was used by Shepp and Lloyd (1966) in
their study of limiting distributions of cycle lengths in a
random permutation. For another discussion of the re-
lationship between positive and negative moments, see
Piegorsch and Casella (1985) and the accompanying
comments, as well as Khuri and Casella (2002).
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Historically, the derivation of (2.8) was presented by
Mathai (1991) whenX is a positive quadratic form in
a (possibly singular) normal variable. Mathai’s (1991)
argument, however, is really general because the nor-
mality was used there only to justify interchange of in-
tegrals, as in deriving (2.3), which was also presented
by Mathai (1991) under the normality setting. There
also have been a considerable number of articles on
calculating (integer) moments of ratios of quadratic
forms in normal variables, and the joint MGF approach
seems to be the most popular one; see, for example,
Jones (1986), Morin (1992) and Tsui and Ali (1994)
and references therein. Closely related work includes
finding the exact distribution of a ratio via the in-
verse Mellin transform of its moments; see Provost and
Rudiuk (1994) and references therein, and the book by
Springer (1979). As we see here, the technique is use-
ful in general as long as the required MGF is available.
This was emphasized by Jones (1987b), who discussed
the use of fractional derivatives in general for comput-
ing multivariate fractional moments.

As a simple illustration of the use of (2.8) in a non-
normal case, consider the stable distribution on(0,∞),
which has the MGF (see Feller, 1971, pages 448–449)

MX(−t) = exp(−ctα), c > 0, t > 0, 0< α < 1.

For 0< a < 1, we have	a
 = 1 and〈a〉 = 1 − a, and
thus by (2.8), after lettings = ctα ,

E(Xa) = ca/α

�(1− a)

∫ ∞
0

e−ss−a/α ds.(2.10)

Since the right-hand side of (2.10) is infinite when
α ≤ a < 1, we conclude thatE(Xa) = ∞ when-
ever a ≥ α. When 0< a < α, the right-hand side of
(2.10) isca/α�(1 − a/α)/�(1 − a), which is also the
value of E(Xa) when a ≤ 0, as can be verified di-
rectly by using (2.3). The same result was obtained
by Wolfe (1975) via the fractional differentiation ap-
proach. Although fractional moments are often more of
theoretical interest, there has been some work on using
fractional moments in constructing estimators; see, for
example, From and Saxena (1989) and the references
cited there.

The identity (2.8) also reminds us that we can ex-
tend Lemma 1 to cases where thek in Xk is noninte-
ger (again, assumingX is nonnegative, although this
assumption can be relaxed). The price one has to pay
for this generality is the need for double integrations,

as seen in the following lemma, the proof of which is
again deferred to Appendix A.

LEMMA 2. Suppose a is a positive noninteger,
b > 0 and P(X ≥ 0, Y > 0) = 1. Then

E

(
Xa

Yb

)

(2.11) = 1

�(〈a〉)�(b)

∫ ∞
0

∫ ∞
0

M
(	a
,0)
X,Y (−t1,−t2)

· t 〈a〉−1
1 tb−1

2 dt1 dt2

and one side is finite if and only if the other side is.

Note that as a special case of Lemma 2 (i.e., with
Y = 1), the conditionP(X > 0) = 1 for (2.8) can be
relaxed toP(X ≥ 0) = 1, and the condition thatMX(t)

exists in a neighborhood oft = 0 is also not needed
[but recallMX(t) always exists fort ≤ 0 whenX is
nonnegative]. We also note that if we do not insist on
directly integrating the joint MGF, then we can ex-
press (2.11) in an equivalent form described by Evans
and Savin (1981):

E

(
Xa

Yb

)
= 1

�(b)

∫ ∞
0

E[Xae−tY ]tb−1 dt.

This result eliminates the double integration in (2.11),
but, as a trade-off, it requires the expression of
E[Xae−tY ], which may not be directly available to
the investigator even if the joint MGF is. Of course,
if one recognizes and uses the fact thatE[Xae−tY ] can
be obtained via differentiating and integrating the joint
MGF, then effectively one is implementing (2.11).

2.3 Further Extensions and Variations

Lemmas 1 and 2 can be easily extended to more
general identities that may be useful for analytic
calculations of more complicated moments, such as
multivariate moments (see, e.g., Jones, 1987b and
Mathai, 1991). The following Theorem 1 is a gen-
eral result that includes both Lemmas 1 and 2 as spe-
cial cases, although its proof is essentially the same
as that for Lemmas 1 and 2 (combined) but only with
more complicated notation (hence the proof of The-
orem 1 is omitted from Appendix A). It also cov-
ers a formula used by Davies, Pate and Petruccelli
(1985) to find exact moments of the sample cross cor-
relations of multivariate autoregressive moving aver-
age models. For simplicity, an operation applied to a
vector means that it is applied componentwise [e.g.,

	a
 �= (	a1
, 	a2
, . . . , 	aM
)�].
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THEOREM 1. Let X = {X1, . . . ,XL}, Y = {Y1,

. . . , YM} and Z = {Z1, . . . ,ZN }, where P(Y ≥ 0,

Z > 0) = 1. Let k = {k1, . . . , kL} be L nonnega-
tive integers, let a = {a1, . . . , aM} be M positive
nonintegers and let b = {b1, . . . , bN } be N positive
numbers. Suppose

∏L
l=1 X

kl

l

∏M
m=1 Y

am
m /

∏N
n=1 Z

bn
n is

quasi-integrable with respect to P and that MX,Y,Z(tL,

0M,0N) exists in a neighborhood of tL = 0L, where
0D denotes a D-dimensional vector of zeros. Then
M

(k,	a
,0N)
X,Y,Z (0L,−u,−v)

∏M
m=1 u

〈am〉−1
m

∏N
n=1 v

bn−1
n is

quasi-integrable with respect to λ+
M+N and the identity

E

(∏L
l=1 X

kl

l

∏M
m=1 Y

am
m∏N

n=1 Z
bn
n

)

=
{∫ ∞M

0M

∫ ∞N

0N

[
M

(k,	a
,0N)
X,Y,Z (0L,−u,−v)

(2.12)
·

M∏
m=1

u〈am〉−1
m

N∏
n=1

vbn−1
n

]
dudv

}

·
{

M∏
m=1

�(〈am〉)
N∏

n=1

�(bn)

}−1

holds, where the values ±∞ are allowed.

The above extension is more or less obvious once we
see the common patterns given by Lemmas 1 and 2.
That is, any positive-integer moments are taken care of
by differentiation and any pure positive fractional mo-
ments (i.e., after taking out the largest positive-integer
moments) and negative moments are dealt with by in-
tegration. However, the extension toW = log(X/Y )

takes a much less obvious form. The extension is
possible becauseMW(t) = E[(X/Y )t ] and thus we
can use Lemma 2 to connect the moments ofW to
MX,Y (t1, t2). The following theorem is a result of such
a connection.

THEOREM 2. For any t1 > 0, t2 > 0 and nonnega-
tive integer k, let

gk(t1, t2) =
{

∂k

∂tk

[(
t2

t1

)t sin(πt)

πt

]}
t=0

(2.13)

=
[k/2]∑
j=0

αj,k(log t2 − log t1)
k−2j ,

where [k/2] is the integer part of k/2 and αj,k =
(−1)jπ2j k!/[(2j + 1)!(k − 2j)!]. Suppose P(X > 0,

Y > 0) = 1. Then (logX − logY)k is quasi-integrable

with respect to P if and only if M
(1,1)
X,Y (−t1,−t2) ·

gk(t1, t2) is quasi-integrable with respect to λ+
2 . Fur-

thermore,

E(logX − logY)k

(2.14) =
∫ ∞

0

∫ ∞
0

M
(1,1)
X,Y (−t1,−t2)gk(t1, t2) dt1 dt2.

In particular,

E(logX)

(2.15) = −
∫ ∞

0
M

(1)
X (−t) logt dt − γ,

Var(logX)

=
∫ ∞

0
M

(1)
X (−t)(log t)2 dt

(2.16)

−
(∫ ∞

0
M

(1)
X (−t) logt dt

)2

− π2

6

and

E(logX − logY)2

=
∫ ∞

0

∫ ∞
0

M
(1,1)
X,Y (−t1,−t2)(2.17)

· (logt2 − log t1)
2 dt1 dt2 − π2

3
,

where γ = 0.57721566490. . . is Euler’s constant. In
all of these identities the value ∞ is allowed.

The proof for Theorem 2, as given in Appen-
dix A, is considerably more involved than that for
Lemmas 1 and 2 (and hence Theorem 1), partially
because the conclusion of Theorem 2 is stronger—
(2.14) holds in the strongest possible sense, as given by
the “if and only if” statement. This is possible because
M

(1,1)
X,Y (t1, t2) is nonnegative even though log(X/Y )

does not have a fixed sign in general. This new result
provides a way to tackle the otherwise intractable prob-
lem for determining the finite-sample optimal bridge in
bridge sampling (Meng and Wong, 1996), as reported
in Section 5.

3. A GALTONIAN CONSTRUCTION OF THE
JAMES–STEIN ESTIMATOR

3.1 Stigler’s Galtonian Perspective Revisited

Consider the well-known setting for shrinkage esti-

mators,xi
indep∼ N(θi,1), i = 1, . . . , k, whereθ = (θ1,

. . . , θk)
� are unknown parameters. Perhaps the most

startling and well-known discovery in classical sta-
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tistics is that the obvious estimator ofθ , x = (x1,

. . . , xk)
�, is uniformly dominated in terms of the com-

posite quadratic riskR(θ, θ̂) = ∑k
i=1 Eθ(θi − θ̂i )

2 by
any estimator of the form

θ̂c =
(

1− c∑k
i=1 x2

i

)
x, 0 < c < 2(k − 2),(3.1)

whenk ≥ 3. Within this class, the best choice ofc is
k − 2, which corresponds to the well-known James–
Stein estimator (James and Stein, 1961). Since the
discovery of the James–Stein estimator, there have
been many interesting extensions; see, for example,
Brandwein and Strawderman (1990). Also see Maatta
and Casella (1990) for a related development concern-
ing variance estimation.

The Bayesian explanation for (3.1) is almost imme-
diate [see, e.g., Efron and Morris (1973)]. Among var-
ious non-Bayesian explanations of this “paradoxical”
phenomenon, Stigler’s (1990) Galtonian perspective
is particularly appealing and insightful. Stigler argued
that the “obvious” estimator̂θ0 = x is inferior because
it corresponds to regressingx on θ [sinceE(x|θ) = θ ],
which is the “wrong” regression line when we want
to predictθ from x, which should useE(θ |x). Since
we do not make any distributional assumption aboutθ ,
we would approximateE(θ |x), say, byβx, which in-
cludesθ̂0 = x as a special case. Stigler then invoked
the idea of “data augmentation,” namely, if we had the
values ofθ , then the best choice ofβ under the loss
L(θ, θ̂) = ∑k

i=1(θi − θ̂i)
2 would be

β̂θ =
∑k

i=1 θixi∑k
i=1 x2

i

.(3.2)

Since θ is unknown, we would like to estimatêβθ .
Stigler noticed that if the numerator in (3.2) is replaced
by its unbiased estimator

∑k
i=1 x2

i − k, then (3.2) is in
the form of (3.1) withc = k. The need to have at least
three points of(θi, xi) is also quite intuitive from the
Galtonian perspective, because with only two points
the two regression lines,θ on x and x on θ , would
be the same. The extra constraint of zero intercept ap-
pears to be compensated on average by the fact that
E(θ1X2 − θ2X1|θ1, θ2) = 0 for anyθ1 andθ2.

There is a small disappointment in the argument
above, since it did not lead to the best choicec =
k − 2. Furthermore, the choicec = k satisfies 0< c <

2(k − 2) only whenk > 4, a condition stronger than
necessary. It turns out that this problem can be easily
fixed if we seek an unbiased estimator forβ̂θ of (3.2)

itself, instead of just for its numerator. This is because

Eθ

(
1− k − 2∑k

i=1 x2
i

)
(3.3)

= Eθ

(∑k
i=1 θixi∑k
i=1 x2

i

)
for anyθ

whenk ≥ 3. Although Stigler (1990) did not use (3.3)
to interpret this unbiasedness property of the James–
Stein choice ofc, he proved (3.3) and used it in
an elegant proof of the fact that (3.1) dominates
θ̂0 = x. Stigler provided two proofs of (3.3): one re-
lies on an invariance argument and the other uses
Stein’s (1981) integration-by-parts formula concern-
ing the normal distribution. Lemma 1 leads to a rather
simple proof, but more importantly its use with the
Galtonian perspective leads to the following straight-
forward constructive derivation of the James–Stein es-
timator, a derivation that reveals how naturally we
first choose (3.1) as our candidate class and then im-
poseEθ(β̂) = Eθ(β̂θ ) to arrive at the optimal choice
c = k − 2.

3.2 A Non-Bayesian Constructive Derivation

Inspired by the Galtonian perspective, we seekβ̂(x)

such thatθ̂ = β̂(x)x (strictly) dominatesθ̂0 = x in
terms ofR(θ, θ̂). By taking expectations of both sides
of the well-known regression decomposition

∑
(θi −

βxi)
2 = (β − β̂θ )

2 ∑
x2
i + ∑

(θi − β̂θ xi)
2, whereβ̂θ is

given by (3.2), we have

R(θ, θ̂) = Eθ

[(
β̂(x) − β̂θ

)2
(

k∑
i=1

x2
i

)]

(3.4)

+
k∑

i=1

Eθ(θi − β̂θ xi)
2.

We thus only need to deal with the first term on
the right-hand side of (3.4), which we denote by
D(β̂(x)|θ). At this moment, we (as non-Bayesian)
have little idea what the form of̂β(x) might be, but
it is intuitively clear that it is impossible to minimize
D(β̂(x)|θ) over all possibleβ̂(x) simultaneously for
all θ . We thus restrict the class of candidates forβ̂(x),
and the simplest general class forβ̂ appears to be
β̂(x, α), that is, a class indexed by a scalar quantityα.
That is, much like reducing all possible models by pa-
rameterizing, the simplest type is a parametric family
indexed by a scalar parameterα. We still have no idea
what this class/family looks like, but if̂β(x, α) is a
differentiable function ofα, then seeking the optimal
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α amounts to solving

∂

∂α
D

(
β̂(x, α)|θ)

(3.5) = 2Eθ

[(
β̂(x, α) − β̂θ

)(∂β̂(x, α)

∂α

k∑
i=1

x2
i

)]

= 0

simultaneously for allθ . Evidently, the easiest way to
solve (3.5) is to set

∂β̂(x, α)

∂α

(
k∑

i=1

x2
i

)
= constant(3.6)

and

Eθ [β̂(x, α) − β̂θ ] = 0 for all θ .(3.7)

The differential equation (3.6) immediately suggests
that

β̂(x, α) = c0 + c1α∑k
i=1 x2

i

,(3.8)

and the requirement that̂β = 1 belong to this class (to
ensure that the optimal estimator we find dominates
θ̂0 = x) setsc0 = 1. We can rewritec1α asα sinceα is
arbitrary, and then the unbiasedness requirement (3.7)
is equivalent to determiningα0 such that

Eθ

(∑k
i=1 θixi − α0∑k

i=1 x2
i

)
= 1 for all θ .(3.9)

Once such anα0 is found, then (3.4) indeed is min-
imized by θ̂ = β̂(x, α0)x becauseD(β̂(x, α)|θ) is
a convex quadratic function ofα for β̂(x, α) given
by (3.8). Lemma 1 is a very handy tool for search-
ing for (instead of proving) such anα0. Note that by
the Cauchy–Schwarz inequality, the random variable
in (3.9) is bounded above by‖θ‖2 + |α0|(∑x2

i )−1

and thus the left-hand side of (3.9) exists whenk > 2.
Therefore, Lemma 1 is applicable as long ask ≥ 3.

To apply Lemma 1, we letX = ∑k
i=1 ξixi − α0 and

Y = ∑k
i=1 x2

i , and we use generalξ = (ξ1, . . . , ξk)
�

in X instead ofθ because of the bias calculations we
discuss later. Then the joint MGF of(X,Y ) is easily
obtained by forming an appropriate quadratic form for
eachxi , i = 1, . . . , k, as

MX,Y (t1, t2)

= (1− 2t2)
−k/2

· exp
[
−t1α0 + ‖ξ‖2t2

1 + 2ξ�θt1 + 2‖θ‖2t2

2(1− 2t2)

]
.

SinceMX,Y (t1,0) exists for anyt1 and

M
(1,0)
X,Y (0,−t2)

= (1+ 2t2)
−k/2

[
ξ�θ

1+ 2t2
− α0

]
exp

(
− ‖θ‖2t2

1+ 2t2

)
,

by (2.4), after lettings = (1 + 2t2)
−1 and performing

an integration by parts, we obtain

E

(∑k
i=1 ξixi − α0∑k

i=1 x2
i

)
(3.10)

= ξ�θ

‖θ‖2 − 1

2

[
(k − 2)

ξ�θ

‖θ‖2 + α0

]
γk−2(‖θ‖),

where

γm(x) =
∫ 1

0
s(m−2)/2 exp

(
x2

2
(s − 1)

)
ds.(3.11)

Therefore, whenξ = θ ,

E

(∑k
i=1 θixi − α0∑k

i=1 x2
i

)
(3.12)

= 1− γk−2(‖θ‖)
2

[(k − 2) + α0]

and thus (3.9) holds if and only ifα0 = −(k − 2), the
James–Stein choice.

Similar arguments can be used for the Efron–Morris
(1973) estimator

θ̂EM
c = x̄1k×1 +

(
1− c∑k

i=1(xi − x̄)2

)
(x − x̄1k×1),

0< c < 2(k − 3),

where x̄ is the average of{x1, . . . , xn} and 1k×1 =
(1, . . . ,1)�. In particular, the best choice ofc = k − 3
corresponds to the unbiased estimator of the regression
slope based on the “augmented data,” that is,

E

(
1− k − 3∑k

i=1(xi − x̄)2

)

= E

(∑k
i=1(xi − x̄)(θi − θ̄ )∑k

i=1(xi − x̄)2

)

whenk ≥ 4. [It is easy to verify that, after a rotation
transformation, the above expression is the same as
(3.3) withk replaced byk − 1.]
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3.3 Convenient Expressions for Studying Risk and
Bias of θ̂c

The identity (3.12) also provides a trivial way to cal-
culate the risk of̂θc in (3.1). Because

k∑
i=1

(θ̂i − θi)
2

=
k∑

i=1

(xi − θi)
2 − 2c + 2c

(∑k
i=1 θixi + c/2∑k

i=1 x2
i

)
,

settingα0 = −c/2 in (3.12) yields

R(θ, θ̂c) = k − c

2
[2(k − 2) − c]γk−2(‖θ‖).(3.13)

Becauseγk−2(‖θ‖) > 0 for anyθ , if we only look for
a nonconstructive proof, then (3.13) is all we need be-
cause it trivially implies that (1)̂θc dominateŝθ0 if and
only if 0 < c < 2(k − 2) and (2)R(θ, θ̂c) is minimized
when c = k − 2. Among rigorous proofs of Stein’s
paradox (e.g., as discussed in Stigler, 1990), this per-
haps is the most elementary one given (3.13), which
itself is a straightforward application of Lemma 1.

To calculate the bias of̂θc, we need the more general
identity (3.10). Specifically, by settingα0 = 0, ξj = 1
and ξi = 0 for i �= j in (3.10) in turn for eachj , we
obtain

Bias(θ̂c)
�= E(θ̂c) − θ = −cγk(‖θ‖)

2
θ.(3.14)

In deriving (3.14) we have used the simple recursive
relationship

γm(x) = x−2[2− (m− 2)γm−2(x)], m ≥ 3,(3.15)

which is obtained via integration by parts.

Although there are many other ways to calcu-
late risk or bias ofθ̂c (e.g., using series expansions
as in Bock, Judge and Yancey, 1984), expressions
(3.13) and (3.14) are particularly convenient for cer-
tain theoretical derivations [as well as for numerical
evaluation because of (3.15)] by taking advantage of
the known properties of theγ function of (3.11). To
better facilitate our discussion, we first “standardize”
the indexc in θ̂c via b = [c − (k − 2)]/(k − 2) and,
accordingly, with a slight abuse of notation, rewriteθ̂c

as θ̂b. This reindexing removes the dependence ofc

on k, that is, the region 0< c < 2(k − 2) is trans-
formed into −1 < b < 1, whereb = 0 indexes the
James–Stein estimator andb = −1 is the maximum
likelihood estimator (MLE). More importantly, it ex-
plicitly displays the symmetry of the risk as a function
of b (for fixed‖θ‖):

R(θ, θ̂b) = k − 1
2(k − 2)2(1− b2)γk−2(‖θ‖).(3.16)

In contrast,‖Bias(θ̂b)‖2 is a strictly increasing func-
tion of b ∈ [−1,1] for fixed‖θ‖ because (3.14) implies

‖Bias(θ̂b)‖2

(3.17) = 1
4(k − 2)2(1+ b)2‖θ‖2γ 2

k (‖θ‖).
Comparing (3.16) with (3.17) reveals some interesting
features of̂θb for b ∈ [−1,1]. For example, we observe
that for any 0≤ b ≤ 1, θ̂−b and θ̂b have the identical
maximal risk among�̂b

�= {θ̂β , |β| ≤ b}, yet θ̂−b has
the least bias (in terms of its magnitude), whereasθ̂b

has the maximum bias in the same class�̂b. In partic-
ular, θ̂1 can be viewed as the “worst” estimator within
the entire class{θ̂b, |b| ≤ 1} because it has the largest
risk as well as the largest bias. This is directly visible
from Figures 1 and 2, which plot the risk surface and
the bias-squared surface, respectively, fork = 3 and
k = 4.

FIG. 1. Risk and bias-squared surfaces of θ̂b when k = 3.
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FIG. 2. Risk and bias-squared surfaces of θ̂b when k = 4.

The figures also reveal that for fixedb, the risk is
a monotone increasing function as‖θ‖ moves from
zero to infinity. This can be easily proved via (3.16)
becauseγm(x) is a strictly decreasing function ofx
with γm(0) = 2/m andγm(∞) = 0. Consequently, for
any −1 ≤ b ≤ 1, the risk ofθ̂b increases strictly from
2+ b2(k − 2) to k as‖θ‖ moves away from the origin
to infinity. This, of course, confirms our intuition that
as the trueθ moves away from zero, the shrinkage fac-
tor in (3.1) becomes closer and closer (stochastically)
to 1 and, therefore,̂θb should have increased risk un-
til it reaches the maximal valuek, becausêθb behaves
more and more like the MLEx.

The same intuition also suggests that the bias ofθ̂b

decreases as the underlyingθ moves away from zero
since the MLEx is unbiased forθ . It is evident from the
figures, however, that‖Bias(θ̂b)‖2 is not a monotone
function of‖θ‖ for fixed b. Indeed, it is easy to verify
from (3.17) that‖Bias(θ̂b)‖ approaches zero when‖θ‖
approaches either zero or infinity and reaches its max-
imum when‖θ‖ = zk , the solution ofγk(z) = 2/(z2 +
k − 1). [Why the absolute bias‖Bias(θ̂b)‖ reaches the
maximum at this particular value is a theoretical cu-
riosity for which an intuitive explanation is yet to be
found.] This does not imply that our intuition is wrong.
It actually is accurate: What went wrong was the in-
appropriate mathematical formulation of our intuition.
The correct formulation is to userelative bias, relative
to the size of the estimandθ , which indeed in general is
a more meaningful measure of bias. It is then trivial to
see from (3.17) that the relative magnitude of the bias
‖Bias(θ̂c)‖/‖θ‖ = (k − 2)(1+ b)γk(‖θ‖)/2 monoton-
ically decreases to zero with the increase of‖θ‖. Fur-

thermore, because

sup
θ∈Rk

‖Bias(θ̂b)‖
‖θ‖ = lim‖θ‖→0

‖Bias(θ̂b)‖
‖θ‖

= c

2
γk(0) =

(
1− 2

k

)
(1+ b),

we learn that the maximal magnitude of the relative
bias occurs at the origin. For the James–Stein esti-
mator, this maximal relative bias is 1− 2k−1, which
monotonically increases withk but is bounded above
by 1.

As a further illustration of the utilities of (3.16)–
(3.17), because limx→∞ x2γm(x)/2= 1 for anym ≥ 1
[for m ≥ 3, this is a consequence of (3.15) and for
m = 1,2, it can be verified directly], we can easily
derive the rate at which the reduction in risk (com-
pared to the MLE) and‖Bias(θ̂b)‖2 approach zero as
‖θ‖ → ∞:

k − R(θ, θ̂b) � (k − 2)2(1− b2)

‖θ‖2 ,

(3.18)

‖Bias(θ̂b)‖2 � (k − 2)2(1+ b)2

‖θ‖2 .

These “Cauchy density” type tails are quite visible in
Figures 1 and 2 (for the risk surfaces, when viewed
upper side down). Furthermore, becauseγm(x) ≤
2/x2 for all m ≥ 2 [again a consequence of (3.15)
when m ≥ 3 and directly verifiable form = 2, but
not for m = 1], the right-hand side of each equiva-
lent relationship in (3.18) also serves as a sharp up-
per bound of the corresponding left-hand side, except
for the case ofk − R(θ, θ̂b) when k = 3 [because
γ1(x) > 2/x2 when x ≥ x0, the solution ofγ1(x) =
2/(x2 − 1)].
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4. BOUNDING THE BIAS IN
A SAMPLE CORRELATION

As a simple illustration of the usefulness of Theo-
rem 1, going beyond bivariate MGFs as covered by
Lemmas 1 and 2, consider the problem of estimat-
ing a population correlationρ by a sample correla-
tion rn, wheren indexes the sample size of a simple
random sample. It is well known that, unlike a sam-
ple mean or a sample variance,rn is generally a bi-
ased estimator ofρ, and the exact distribution ofrn is
generally very complicated, even when the underlying
joint distribution is bivariate normal. Indeed, assuming
joint normality, Fisher (1915) via an elegant geometric
argument found the density function ofrn to be

f (r) = (1− ρ2)(n−1)/2

π�(n − 2)
(1− r2)(n−4)/2

(4.1) · dn−2

d(ρr)n−2

{
arccos(−ρr)√

1− ρ2r2

}
,

−1 ≤ r ≤ 1.

It is clear thatf (r) is not particularly easy to manip-
ulate analytically, for example, for finding the mean
of rn. By expressing (4.1) in terms of a hypergeomet-
ric function, we can expressE(rn) via a hypergeomet-
ric series (e.g., Hotelling, 1953; Stuart and Ord, 1987,
pages 529–531),

E(rn) = ρ�2(1
2n)

�{1
2(n − 1)}�{1

2(n + 1)}(4.2)

· F (1
2, 1

2, 1
2(n + 1), ρ2),

where

F(α,β, γ, z)

= 1+ α · β
γ · 1

z + α(α + 1)β(β + 1)

γ (γ + 1) · 1 · 2
z2 + · · · .

(Higher-order moments can also be expressed via
hypergeometric series, as in Johnson, Kotz and
Balakrishnan, 1995, Chapter 32.) We now show that
with the help of Theorem 1, we can find an integral rep-
resentation ofE(rn) from which we can easily derive
some useful bounds for the relative bias(E(rn)−ρ)/ρ

without having to deal with (4.1) or (4.2), and the re-
sults do not rely on large-sample approximations.

BOUND I. Suppose (xi, yi), i = 1, . . . , n, are a
simple random sample from a bivariate normal dis-
tribution with population correlation ρ. Then, for

any n ≥ 2,

−1

n
<

E(rn) − ρ

ρ
< 0 when 0< ρ2 < 1,

(4.3)

E(rn) = ρ when p = 0,±1.

PROOF. As detailed in Appendix B, applying The-
orem 1 to the current setting yields

E(rn) = 2(n − 1)ρ

π

·
∫ ∞

0

∫ π/2

0

[
(1− ρ2)sin2(2θ)r2(4.4)

+ 2r + 1
]−(n+1)/2

dθ dr.

When 0< ρ2 < 1, since forr > 0 and 0< θ < π/2,

2r + 1 < (1− ρ2)sin2(2θ)r2 + 2r + 1 < (r + 1)2,

we obtain from (4.4) that(
1− 1

n

)
= (n − 1)

∫ ∞
0

dr

(1+ r)n+1

<
E(rn)

ρ
< (n − 1)

∫ ∞
0

dr

(1+ 2r)(n+1)/2 = 1

and hence (4.3) [E(rn) = ρ whenρ2 = 0 or 1 is obvi-
ous]. �

Bound I is handy to use in practice, since it says
that for 1> ρ > 0, rn underestimatesρ, and for−1 <

ρ < 0, rn overestimatesρ, but the absolute relative
bias [i.e., |E(rn) − ρ|/|ρ|] never exceeds 1/n for
anyn (≥ 2). Thus the finite-sample bias is usually of
no practical concern as long asn is not too small
(e.g., n ≥ 10). [Nevertheless, an unbiased estimate
of ρ, in the form ofrnF (1

2, 1
2, 1

2(n− 1),1− r2
n), where

F(α,β, γ, z) is the hypergeometric series used in (4.2),
was suggested by Olkin and Pratt (1958).] Whether this
exceedingly neat bound also holds for some other dis-
tributions is a question of both theoretical and practical
interest.

Although bound (4.3) is sufficient and appealing for
most practical purposes, it can be improved upon if one
is willing to carry out a few more algebraic steps, as
illustrated below.

BOUND II. Assuming the same condition as in
Bound I, for any n ≥ 4,

− 1

n − 3

1− ρ2

1+ ρ2 <
E(rn) − ρ

ρ
< 0

(4.5)

when 0< ρ2 < 1.
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PROOF. Since(a + bt)−(n+1)/2 is a convex func-
tion of t whena andb are positive, by the Jensen in-
equality, we obtain from (4.4) that

E(rn)

ρ
> (n − 1)

·
∫ ∞

0

[
(1− ρ2)r2

·
(

2

π

∫ π/2

0
sin2(2θ) dθ

)
(4.6)

+ 2r + 1
]−(n+1)/2

dr

= (n − 1)

·
∫ ∞

0

[
(1− ρ2)

2
r2 + 2r + 1

]−(n+1)/2

dr.

Let R(t) = a + bt + ct2 and� = 4ac − b2. Then

∫
[R(t)]−(n+1)/2 dt

= 2(2ct + b)[R(t)]−(n−1)/2

(n − 1)�
(4.7)

+ 4(n − 2)c

(n − 1)�

∫
[R(t)]−(n−1)/2 dt.

Applying (4.7) to (4.6) yields, whenn ≥ 4,

E(rn)

ρ
>

2

1+ ρ2

− 1− ρ2

1+ ρ2(n − 2)

·
∫ ∞

0

[
(1− ρ2)

2
r2 + 2r + 1

]−(n−1)/2

dr

>
2

1+ ρ2

− 1− ρ2

1+ ρ2(n − 2)

∫ ∞
0

(1+ 2r)−(n−1)/2 dr

= 1− 1− ρ2

1+ ρ2

1

n − 3
,

which proves (4.5). �

Compared to Bound I, Bound II is closer (for largen)
to the asymptotic expansion of (4.2), which is (see

Stuart and Ord, 1987, page 531)

E(rn) − ρ

ρ
= −(1− ρ2)

2n
+ O

(
1

n2

)
, ρ �= 0.

If desired, one can repeatedly use (4.7) to improve the
bound in (4.5). Of course, the bounds become more and
more complicated and thus lose their practical value.
However, the derivation of (4.5) (as well as its fur-
ther refinement) demonstrates that Theorem 1 can lead
to rather accurate bounds without ever invoking large-
sample arguments, illustrating the potential usefulness
of Theorem 1 (and its various special cases and exten-
sions) in finite-sample theoretical investigations.

5. SEARCHING FOR FINITE-SAMPLE
OPTIMAL BRIDGE

Bridge sampling is a generalization of importance
sampling for simulating (ratios of ) normalizing con-
stants of probability models. Computing normaliz-
ing constants is a common computational problem in
statistics as well as in other fields such as physics
and genetics. The basic setting for bridge sampling
is easy to describe, yet the problems to which it is
applicable can be exceedingly complex (e.g., com-
puting exchange frequencies in quantum crystals; see
Ceperley, 1995, pages 341–343). Indeed, the method
originated in computational physics for computing
free-energy differences, a problem that essentially
defeats the standard importance sampling technique
(see Bennett, 1976). For recent theoretical and em-
pirical studies of bridge sampling and closely re-
lated methods, refer to Meng and Wong (1996), Meng
and Schilling (1996, 2002), DiCiccio, Kass, Raftery
and Wasserman (1997), Gelman and Meng (1998) and
Kong, McCullagh, Meng, Nicolae and Tan (2003). We
discuss only material that is directly related to our cur-
rent topic and we ignore all regularity conditions.

Suppose we have two densitiespi(ω), i = 0,1, with
respect to a common measureµ(ω). We can evalu-
ate pi(ω) up to a normalizing constantci : pi(ω) =
qi(ω)/ci , i = 0,1. We also have draws{ωij , j =
1, . . . , ni} from pi(ω). The powerful Markov chain
Monte Carlo (e.g., Metropolis algorithm) allows us
to simulate from densities with unknown normalizing
constants; here we assume draws fromp0 are indepen-
dent of draws fromp1. Our goal here is to use these
draws to estimater = c1/c0. The bridge sampling re-
lies on the following simple identity to construct esti-
mators forr . For simplicity, supposep0 andp1 share
a common support� [but see Voter (1985) and Meng
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and Schilling (2002) when this assumption fails], and
supposeα(ω) is a nonnegative function on� such that
0 <

∫
α(ω)p0(ω)p1(ω)µ(dω) < ∞. Then it is trivial

to verify that

c1

c0
= E0[q1(ω)α(ω)]

E1[q0(ω)α(ω)] ,(5.1)

where Ei denotes the expectation with respect to
pi(ω), i = 0,1. Thus, givenα and the draws{ωij , j =
1, . . . , ni; i = 0,1}, a simulation-consistent estimate
of r is

r̂α = (1/n0)
∑n0

j=1 q1(ω0j )α(ω0j )

(1/n1)
∑n1

j=1 q0(ω1j )α(ω1j )
.(5.2)

An obvious question then is the choice ofα. Indeed,
if we chooseα = q−1

0 , then we have the standard im-
portance sampling estimator (e.g., Ott, 1979), which
has large variability when theχ2 distance betweenp0
and p1 is large. By sensibly choosingα, we can re-
duce this variability by orders of magnitude, since a
good choice ofα can “bridge”p0 andp1, and thus ef-
fectively shorten the distance betweenp0 andp1 [see
Meng and Wong (1996) and Gelman and Meng (1998)
for detailed discussions]. The specific variability we re-
fer to here is the mean-squared error of logr̂α , which is
asymptotically equivalent to the relative mean-squared
error of r̂α , E(r̂α − r)2/r2. The log scale not only
makes the error symmetric aboutp0 and p1, but it
is also more relevant in many applications (e.g., log-
likelihood ratios; free-energy differences).

To find theα that minimizesR(α)
n0,n1

�= E[log r̂α −
logr]2 in general is a very difficult problem even
asymptotically (see Romero, 2003). This is because
R

(α)
n0,n1 in general is a very complicated functional ofα

due to the fact that the draws from the samepi , i =
0,1, are not necessarily independent (recall we gener-
ally obtain draws using Markov chain Monte Carlo).
However, when the draws are independent, it can be
shown (e.g., Meng and Wong, 1996) that theα that
minimizes the asymptoticR(α)

n0,n1 is given by

αopt(ω) ∝ 1

s0p0(ω) + s1p1(ω)
(5.3)

∝ 1

s0rq0(ω) + s1q1(ω)
,

wheresi = ni/(n0 + n1), i = 0,1, are assumed to be
strictly between 0 and 1 asymptotically. Since thisαopt
depends on the unknownr , Meng and Wong (1996)
constructed an iterative sequence that converges to an

estimator which achieves the asymptotic minimum er-
ror. Empirical and theoretical evidence (e.g., Meng and
Schilling, 1996; Servidea, 2002; Romero, 2003) sug-
gests that (5.3) is typically a sensible choice ofα even
with dependent draws. It is therefore useful to ex-
plore the finite-sample cases under the independence
assumption.

Given the intuitive nature (i.e., a mixture of
p0 and p1) of αopt in (5.3), it is of great theoretical
interest to find out what else can make logr̂α even
more accurate with finite samples. Since the asymp-
totic mean-squared error ignores the bias in logr̂α , we
expect the bias to have an important role to play in de-
termining the finite-sample optimal bridge; the issue of
reducing finite-sample bias is also of some practical in-
terest (e.g., see Meng and Schilling, 1996). Theorem 2
makes it possible to investigate such questions because
it allows us to derive an exact expression forR

(α)
n0,n1.

To apply Theorem 2, let

X0 = 1

n0

n0∑
j=1

p1(ω0j )α(ω0j )

and

X1 = 1

n1

n1∑
j=1

p0(ω1j )α(ω1j ).

Then, using the fact that loĝrα − logr = logX0 −
logX1 andMX0,X1(t1, t2;α) = MX0(t1;α)MX1(t2;α),
(2.17) can be simplified to

R(α)
n0,n1

=
∫ ∞

0

[
M

(1)
X0

(−t;α) + M
(1)
X1

(−t;α)
]
(log t)2 dt

− 2
[∫ ∞

0
M

(1)
X0

(−t;α) logt dt

]
(5.4)

·
[∫ ∞

0
M

(1)
X1

(−t;α) logt dt

]
− π2

3
.

In deriving (5.4) we have used the fact that
∫ ∞
0 M

(1)
Xi

(−t;
α)dt = 1, i = 0,1.

Under the further assumption that draws from each
pi are independent, we have

MXi
(t;α) = M

ni

i

(
t

ni

;α
)
, i = 0,1,(5.5)

whereMi(t;α) is the MGF ofp1−i(ω)α(ω) with ω ∼
pi(ω), i = 0,1. Combining (5.5) and (5.4) gives us an
exact expression ofR(α)

n0,n1 as a functional ofα, which
can then be maximized by using the calculus of vari-
ations. The details of this exercise are rather involved
and thus are deferred to Appendix C. The end result is
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that the optimalαO must satisfy the integral equation
(we use the∝ notation becauseαO is determined up to
a proportionality constant)

αO(ω)
(5.6)

∝ 1

s0p0(ω)W0(ω;αO) + s1p1(ω)W1(ω;αO)
,

where

Wi(ω;αO)

=
∫ ∞

0

∫ t

0
ξ1−i (t;αO)

(5.7)

· exp
(
− s

n1−i

αO(ω)pi(ω)

)
ds dt,

i = 0,1,

ξi(t;α) = (
log t − C

(α)
1−i

)
(5.8) · Mni−1

i

(
− t

ni

;α
)
, i = 0,1,

andC
(αO)
1−i is a constant given in (C.2) of Appendix C.

Thus, heuristically speaking, the finite solution dif-
fers from the asymptotic solution (5.3) by incorporat-
ing additional “weights” (i.e., in addition tos0 ands1)
Wi(ω;αO) when forming the mixture. Of course, the
limit of Wi(ω;αO) must be free ofω and i in view
of (5.3). This is indeed the case, because it is easy to
verify that for anyα(ω) > 0,

lim
n0,n1→∞Wi(ω;α)

=
∫ ∞

0
t[logt + (γ + logβα)]exp(−tβα) dt = β−2

α ,

where γ is Euler’s constant andβα = M
(1)
0 (0;α) =

M
(1)
1 (0;α) = ∫

α(ω)p0(ω)p1(ω)µ(dω) > 0.

Although it is impossible to solve (5.6) analytically
for αO in general, expressions (5.6)–(5.8) allow us to
explore the structure of the finite-sample optimal solu-
tion. For example, we observe that theξi(t;α) function
defined in (5.8), which plays a key role in determining
the finite-sample “weights”Wi , also plays a key role in
determining the finite-sample bias of logr̂α , because∫ ∞

0
ξi(t;α)M

(1)
1−i

(
− t

n1−i

;α
)

dt

= (−1)i
(
C

(α)
0 − C

(α)
1

)
= (−1)iE[logX0 − logX1], i = 0,1,

which is the (positive or negative) finite-sample bias of
log r̂α . The extent to which the finite-sample solution

reduces the mean-squared error and the bias relative
to the asymptotic choice (5.3) can be investigated by
asymptotic expansions ofWi , i = 0,1. Clearly this in-
vestigation is beyond the scope of this paper; here our
main purpose is to demonstrate how Theorem 2 has
made such a previously intractable investigation possi-
ble.

6. ONCE AGAIN THERE IS A LINK TO FISHER

As discussed in Section 1, various cases of Theo-
rem 1, particularly Lemmas 1 and 2, have appeared in
the literature due to their usefulness in analytical mo-
ment calculations. Even Theorem 2 is a mathematical
consequence, albeit not in an obvious form. Cressie,
Davis, Folks and Policello (1981) mentioned that the
earliest work of this sort they were able to trace was
Williams (1941). In fact, the relevant literature can
be traced back to Fisher (1930), who considered the
problem of finding finite-sample moments of sample
measures of “departure from normality,” including the
sample skewness and kurtosis. Fisher made explicit
use of the moment generating function (which Fisher
called characteristic function even though his defini-
tion did not involvei = √−1 ), and established a sym-
bolic relationship between a joint MGF of a set of
random variables and a joint MGF of functions of these
random variables when the first MGF is evaluated at
the origin. From this relationship and under the nor-
mality assumption, Fisher arrived at the identity

E

(
ka

3kb
4kc

5 · · ·
kr

2

)
= E(ka

3kb
4kc

5 · · ·)
(dr/dtr2)Mk2(t2)|t2=0

,(6.1)

wherekj is Fisher’sk statistic of orderj (i.e., kj is
the j th sample cumulant),Mk2(t2) is the MGF ofk2

(= sample variance),a, b, c, . . . are integers andr is
chosen such that the ratio inside the left-hand side is
scale invariant. While (6.1) is a reexpression of Fisher’s
identity for the sake of modern readers, the notation
dr/dtr2 was explicitly used by Fisher (1930, page 28)
and it was clearly for a fractional derivative, since
only 2r was guaranteed to be an integer. The use of
fractional differentiation is more evident from Fisher’s
symbolic operations that led to (6.1), where he intro-
duced the notationD3D

3/2
2 andD5D

5/2
2 , “where Dp

stands ford/dtp” (Fisher, 1930, page 28).
However, not unusual in his writing, Fisher (1930,

page 28) used these operators “without discussing what
meaning should be attached to the fractional indices.”
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In particular, he gave

dr

dtr2
Mk2(t2)

∣∣∣∣
t2=0

(6.2) = (n + 2r − 3) · · · (n + 1)(n − 1)

(n − 1)r
σ 2r ,

n ≥ 2,

which, of course, isE(kr
2) = σ 2rE(χ2r

n−1)/(n − 1)r , as
can be verified from (2.8) withX = χ2

n−1. It is possi-
ble that Fisher had first obtained (6.2) for integerr and
then formally generalized it to nonintegerr in the ob-
vious way. For the normal problem, this generalization
turns out to be irrelevant since “r is always an integer
save for the odd moments which necessarily vanish”
(Fisher, 1930, page 25), because the numerator on the
right-hand side of (6.1) is zero when 2r is odd and thus
these operators “find in fact only zero terms on which
to operate” (Fisher, 1930, page 28). It would certainly
be interesting to learn what meaning Fisher would have
attached to these operators had he chosen to work with
nonnormal distributions, because how to define a frac-
tional differentiation operator was still a topic of dis-
cussion and research more than four decades later (e.g.,
Ross, 1975; Johnson, 1975).

Fisher’s symbolic method is difficult to apply in gen-
eral without the normality assumption, as Bowman and
Shenton (1992) demonstrated. The simplicity under the
normality comes from the fact that the ratio in the
left-hand side of (6.1) is independent of its denom-
inator (because the ratio is scale invariant) and thus
the expectation of the ratio is the ratio of expectations,
which leads to (6.1). In an earlier work where he intro-
duced the celebratedk statistics, Fisher (1929) worked
out how to obtainE(ka

3kb
4kc

5 · · ·) via a joint MGF;
thus what his symbolic approach effectively accom-
plished was to evaluateE(kr

2) through ther th deriva-
tive ofMk2(t) at t = 0, a predecessor of (2.8). Although
Fisher’s method is not very effective without the inde-
pendence structure, it made it clear that the moments of
a ratio, including fractional moments, can be obtained
directly from the joint MGF of its numerator and de-
nominator, which is the central theme for the later work
discussed in this paper. Furthermore, it directly stimu-
lated more workable approaches, such as (2.8).

For example, in an attempt to overcome the difficulty
with Fisher’s method, Bowman and Shenton (1992) ar-
rived at (2.8) witha = 1/2, which they used to obtain a
series expansion of the mean of the sample standard
deviation from a modified normal distribution. They

also applied a version of (2.4) to derive exact expres-
sions of moments of ratios of central and noncentral
sample moments when the data are generated from a
uniform on the unit interval, and they emphasized the
power of the MGF method in obtaining these finite-
sample results. It is with the same emphasis that this
paper attempts to unify and extend various results as
given in Section 2, and the presented applications are
intended to demonstrate the usefulness of these identi-
ties in finite-sample theoretical studies, such as the one
that Fisher (1930) pursued.

EPILOGUE

Moment generating functions indeed generate all
kinds of moments, many more than most of our text-
books have ever taught us. The possibility of using
(0.3) is simply endless, because it works for infinitely
many pairs ofg andh that satisfy (0.2) (cf. Gradshteyn
and Ryzhik, 1992), as emphasized by Cressie and
Borkent (1986). For example,

E

[
X

X2 − 1

]
=

∫ ∞
0

cosh(t)MX(−t) dt

whenP(X > 1) = 1. Although the majority of these
identities remain at most a mathematical curiosity, our
knowledge about their existences can bring us some
happy (research) moments, as the examples in this ar-
ticle intend to demonstrate.

In addition, our toolkit can be further expanded if we
replace the Laplace transform by the Fourier transform
or even by a hybrid transform such asE[eit1X+t2Y ],
wherei = √−1, as suggested by Professor K. Lange
in a personal exchange.

Of course, all these would be stories for another day,
if you have a second moment.

APPENDIX A: PROOFS FOR SECTION 2

PROOF OF LEMMA 1. Choose anε such that
MX,Y (t1,0) exists when|t1| ≤ ε. For anyx and pos-
itive y,

∞∑
j=0

|t1x|j
j ! exp(−t2y) ≤ eεx + e−εx

(A.1)

if |t1| ≤ ε andt2 ≥ 0.

Since the right-hand side of (A.1) is integrable with
respect toP under our assumption, we can inter-
change integration with summation (by Theorem 16.7
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of Billingsley, 1995, page 211) to obtain

∞∑
j=0

t
j
1

j !E(Xje−t2Y )

= E[exp(t1X − t2Y )]
= MX,Y (t1,−t2) for all |t1| ≤ ε, t2 > 0.

It follows then (see Billingsley, 1995, page 543) that,
for any integerk ≥ 0 andt ≥ 0,M(k,0)

X,Y (0,−t1/b) exists
and is given by

M
(k,0)
X,Y (0,−t1/b) = E[Xk exp(−t1/bY )].(A.2)

Let B(X,Y ; t) = Xk exp(−t1/bY ). SinceXk/Y b is
quasi-integrable, we have, say,E[(Xk)+/Y b] < ∞.
Then

E

[∫ ∞
0

(B(X,Y ; t))+ dt

]

= E

[
(Xk)+

∫ ∞
0

exp(−t1/bY ) dt

]

= �(b + 1)E

[
(Xk)+

Yb

]
< ∞.

Consequently, by Fubini’s theorem (for quasi-
integrability; see Neveu, 1965, Chapter III.2) and

by (A.2), M
(k,0)
X,Y (0,−t1/b)

�= E[B(X,Y ; t)] is quasi-
integrable with respect toλ+

1 , and (2.4) holds. �
PROOF OFLEMMA 2. For anyt1 > 0 andt2 ≥ 0,

since
∞∑

j=0

(|tx|j /j !)exp(−t1x − t2y) ≤ exp
(−(t1 − |t |)x)

,

which is integrable with respect toP when|t | < t1, we
have (again by Theorem 16.7 of Billingsley, 1995)

∞∑
j=0

tj

j !E
(
Xj exp(−t1X − t2Y)

)

= MX,Y (t − t1,−t2) for any|t | < t1.

It follows then (again see Billingsley, 1995, page 543),
for any positive integerk, that

M
(k,0)
X,Y (−t1,−t2) = E[Xk exp(−t1X − t2Y )]

if t1 > 0 andt2 ≥ 0.

The rest of the proof follows trivially from Fubini’s
theorem, noting that the value ofM

(	a
,0)
X,Y (−t1,−t2) at

t1 = 0 is not relevant for (2.11).�

PROOF OFTHEOREM 2. For any positivex, y, t1
andt2, let

ht (x, y; t1, t2)
(A.3)

= xy exp(−t1x − t2y)

(
t2

t1

)t sin(πt)

πt
,

where the indext is an arbitrary real number and
the right-hand side of (A.3) is defined to bexy ·
exp(−t1x − t2y) whent = 0. Since

sin(πt)

πt
=

∞∑
j=0

(−1)j
(πt)2j

(2j + 1)! for all |t | < ∞,

it is easy to see thatht (x, y; t1, t2) is differentiable with
respect tot to any order. Furthermore, for a given pos-
itive integerk and 1> ε > 0, one can find a constant
c(ε, k) such that

sup
|t |≤ε

∣∣∣∣∂
kht (x, y; t1, t2)

∂tk

∣∣∣∣
≤ c(ε, k)xy exp(−t1x − t2y)

(A.4)

·
((

t2

t1

)ε

+
(

t2

t1

)−ε)

· (1+ | logt2 − log t1|k).
Since the right-hand side of (A.4) is integrable in
(t1, t2) with respect toλ+

2 whenε < 1, the following
interchange of integration with differentiation is justi-
fied by the dominated convergence theorem (DCT):∫ ∞

0

∫ ∞
0

xy exp(−t1x − t2y)gk(t1, t2) dt1 dt2

=
∫ ∞

0

∫ ∞
0

{
∂kht (x, y; t1, t2)

∂tk

}
t=0

dt1 dt2

(A.5)

=
{

∂k

∂tk

∫ ∞
0

∫ ∞
0

ht (x, y; t1, t2) dt1 dt2

}
t=0

=
{

∂k

∂tk

(
x

y

)t}
t=0

= (logx − logy)k.

In deriving (A.5), we used the identity�(1 − t)�(1 +
t) = πt/sin(πt) for 0≤ t < 1.

Now suppose that(logX − logY)k is quasi-
integrable with respect toP , say, E[((logX −
logY)k)+] < ∞. LetB(X,Y ; t1, t2) = XY exp(−t1X−
t2Y)gk(t1, t2) and Bi(X,Y ; t1, t2) = XY exp(−t1X −
t2Y)(log t2 − logt1)

i, i = 0,1,2, . . . . Then from (2.13)
we have

(B(X,Y ; t1, t2))+
(A.6)

≤
[k/2]∑
j=0

|αj,k|(Bk−2j (X,Y ; t1, t2))+.
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Using the fact that((a + b)i)+ ≤ 2i−1[((a)i)+ +
((b)i)+] for any positive integeri, we have(Bi(X,Y ;
t1, t2))

+ ≤ 2i−1XY exp(−t1X − t2Y )[| log(t2Y) −
log(t1X)|i + ((logY − logX)i)+]. This implies that
for any 1≤ i ≤ k,

E

[∫ ∞
0

∫ ∞
0

(Bi(X,Y ; t1, t2))+ dt1 dt2

]

≤ 2i−1
{∫ ∞

0

∫ ∞
0

exp(−s1 − s2)

· | log(s2/s1)|i ds1 ds2

+ E
[(

(log(X/Y ))k
)+] + 1

}
< ∞.

It follows then, by (A.6), DCT and Fubini’s theo-
rem, thatB(X,Y ; t1, t2) is quasi-integrable with re-
spect toP × λ+

2 , which implies thatE[B(X,Y ; t1, t2)]
is quasi-integrable with respect toλ+

2 . Using a simi-
lar argument as for (A.2), one can easily show that
M

(1,1)
X,Y (−t1,−t2) = E(XY exp(−t1X − t2Y )) for any

t1 > 0 and t2 > 0. Therefore,M(1,1)
X,Y (−t1,−t2)gk(t1,

t2) = E[B(X,Y ; t1, t2)] is quasi-integrable with re-
spect toλ+

2 and (2.14) holds because of (A.5) and
Fubini’s theorem.

Next we suppose, without loss of generality, that(
M

(1,1)
X,Y (−t1,−t2)gk(t1, t2)

)+
�= M

(1,1)
X,Y (−t1,−t2)(gk(t1, t2))

+

is integrable with respect toλ+
2 . It follows immedi-

ately by Fubini’s theorem thatB(X,Y ; t1, t2) is quasi-
integrable with respect toP × λ+

2 since∫ ∞
0

∫ ∞
0

E[(B(X,Y ; t1, t2))+]dt1 dt2

=
∫ ∞

0

∫ ∞
0

M
(1,1)
X,Y (−t1,−t2)(gk(t1, t2))

+ dt1 dt2

< ∞.

By Fubini’s theorem and (A.5),

(logX − logY)k
�=

∫ ∞
0

∫ ∞
0

B(X,Y ; t1, t2) dt1 dt2

is quasi-integrable with respect toP and (2.14) holds.
Identities (2.15)–(2.17) follow from (2.14) because

g1(t1, t2) = log t2 − log t1 and g2(t1, t2) = (logt2 −
logt1)

2 − π2/3. To simplify the expressions, we used
the following facts:

∫ ∞
0 e−t logt dt = �′(1) = −γ ,∫ ∞

0 e−t (log t)2 dt = �′′(1) = γ 2 + π2/6 and∫ ∞
0

∫ ∞
0 M

(1,1)
X,Y (−t1,−t2) dt1 dt2 = 1, which is (2.14)

whenk = 0. �

APPENDIX B: DERIVATION OF E(rn)

IN SECTION 4

Without loss of generality, we can assume
(xi

yi

) i.i.d.∼
N(0, (

1 ρ
ρ 1)). With a simple rotation we have

E(rn) = E

[ ∑n−1
i=1 xiyi√∑n−1

i=1 x2
i

√∑n−1
i=1 y2

i

]
�= E

[
X√

Y 1
√

Y 2

]
.

To apply Theorem 1, we first calculate

MX,Y1,Y2(t1, t2, t3)

=
{

1

2π |�|1/2

·
∫ ∫

exp
[
−1

2
(x, y)(�−1 − T )

(
x

y

)]

· dx dy

}n−1

,

whereT = (2t2 t1
t1 2t3

)
and� = (1 ρ

ρ 1

)
. Thus,

MX,Y1,Y2(t1, t2, t3)

=
(

1

|�|1/2|�−1 − T |1/2

)n−1

= |I − �T |−(n−1)/2

= [
(1− 2t2)(1− 2t3) − 4ρ2t2t3

− 2ρt1 − (1− ρ2)t2
1
]−(n−1)/2

and

M
(1,0,0)
X,Y1,Y2

(0,−t2,−t3)

= (n − 1)ρ

[4t2t3(1− ρ2) + 2(t2 + t3) + 1](n+1)/2 .

Since MX,Y1,Y2(t1,0,0) exists for (at least)|t1| ≤
(1 + ρ)−1 andE(|rn|) ≤ 1, we can apply Theorem 1
(with L = 1,M = 0,N = 2 andk1 = 1,b1 = b2 = 1/2)
to obtain

E(rn) = (n − 1)ρ

�(3
2)�(3

2)

·
∫ ∞

0

∫ ∞
0

[
4t2

2 t2
3(1− ρ2)(B.1)

+ 2(t2
2 + t2

3) + 1
]−(n+1)/2

dt2 dt3.
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With the transformationt2 = √
r sinθ and t3 =√

r cosθ , (B.1) becomes (4.4).

APPENDIX C: DERIVATION OF OPTIMAL α

IN SECTION 5

To derive the optimalα that minimizesR(α)
n0,n1, we

follow the calculus of variations approach with a sim-
ple modification to accommodate the constraint thatα

is positive. We note that for anyh(ω) that is bounded
on �, we can find anεh > 0 such that when|ε| < εh,
[1 + εh(ω)]α(ω) is positive on�. Now if αO mini-

mizesR(α)
n0,n1, thenξ(ε)

�= R
((1+εh)αO)
n0,n1 must achieve its

minimum atε = 0 and thusξ ′(0) = 0. This implies,
from (5.4) and (5.5), that∫ ∞

0
[G0(t;αO,h) + G1(t;αO,h)]dt = 0,

where, fori = 0,1,

Gi(t;αO,h)

= ∂2M
ni

i (s/ni; (1+ εh)αO)

∂ε ∂s

∣∣∣∣
(ε=0,s=−t)

· [
(log t)2 − 2C(αO)

n1−i
logt

]
(C.1)

= A
(αO)
i (t)Ei

[
exp

(
− t

ni

αOp1−i

)
αOp1−ih

]

− 1

ni

B
(αO)
i (t)

· Ei

[
exp

(
− t

ni

αOp1−i

)
(αOp1−i)

2h

]

with

C
(αO)
i =

∫ ∞
0

M
ni−1
i

(
− t

ni

;αO

)
(C.2)

· M(1)
i

(
− t

ni

;αO

)
log t dt,

A
(αO)
i (t) = ∂[tMni−1

i (−t/ni;αO)]
∂t(C.3)

· [
(logt)2 − 2C

(αO)
1−i log t

]
,

B
(αO)
i (t) = tM

ni−1
i

(
− t

ni

;α0

)
(C.4)

· [
(logt)2 − 2C

(αO)
1−i log t

]
.

It follows then, by interchanging the integrations,
that

0 =
∫
�

{∫ ∞
0

[
A

(αO)
0 (t)exp

(
− t

n0
αO(ω)p1(ω)

)

+ A
(αO)
1 (t)exp

(
− t

n1
αO(ω)p0(ω)

)]
dt

−
[∫ ∞

0
B

(αO)
0 (t)exp

(
− t

n0
αO(ω)p1(ω)

)
dt

]

· αO(ω)p1(ω)

n0
(C.5)

−
[∫ ∞

0
B

(αO)
1 (t)exp

(
− t

n1
αO(ω)p0(ω)

)
dt

]

· αO(ω)p0(ω)

n1

}

· αO(ω)p0(ω)p1(ω)h(ω)µ(dω).

This implies, becauseh(ω) is arbitrary besides being
bounded, that the expression inside the brace of (C.5),
as a function ofω, must be zero on� almost surely
with respectµ(ω). This yields, after an integration by
parts as implied by (C.3) and (C.4),∫ ∞

0
ξ0(t;αO)exp

(
− t

n0
αO(ω)p1(ω)

)
dt

(C.6) +
∫ ∞

0
ξ1(t;αO)exp

(
− t

n1
αO(ω)p0(ω)

)
dt

= 0,

whereξi(t;αO) is given by (5.8). Using the fact that∫ t
0 e−as ds = (1 − e−at )/a and the fact that ifαO(ω)

satisfies (C.6), thencαO(ω) must satisfy (C.6) for any

c (�= 0) that is independent ofω becausêrα
�= r̂cα [see

(5.2)], we can rewrite (C.6) as (5.6).
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