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From Unit Root to Stein’'s Estimator to
Fisher's k Statistics: If You Have a
Moment, | Can Tell You More
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This article is dedicated to my mentor and friend George Tiao on
the occasion of his 70th birthday

Abstract. Any general textbook that discusses moment generating functions
(MGFs) shows how to obtain a moment of positive-integer order via differen-
tiation, although usually the presented examples are only illustrative, because
the corresponding moments can be calculated in more direct ways. It is thus
somewhat unfortunate that very few textbooks discuss the use of MGFs when
it becomes the simplest, and sometimes the only, approach for analytic cal-
culation and manipulation of moments. Such situations arise when we need
to evaluate the moments of ratios and logarithms, two of the most common
transformations in statistics. Such moments can be obtained by differenti-
ating andintegrating a joint MGF of the underlying untransformed random
variables in appropriate ways. These techniques are examples of multivariate
Laplace transform methods and can also be derived from the fact that mo-
ments of negative orders can be obtained by integrating an MGF. This article
reviews, extends and corrects various results scattered in the literature on this
joint-MGF approach, and provides four applications of independent interest
to demonstrate its power and beauty. The first application, which motivated
this article, is for the exact calculation of the moments of a well-known lim-
iting distribution under the unit-root AR(1) model. The second, which builds
on Stigler's Galtonian perspective, reveals a straightforward, non-Bayesian
constructive derivation of the Stein estimator, as well as convenient expres-
sions for studying its risk and bias. The third finds an exceedingly simple
bound for the bias of a sample correlation from a bivariate normal popu-
lation, namely the magnitude of the relative bias is not just of orde,

but actually is bounded above by for all sample sizes > 2. The fourth
tackles the otherwise intractable problem of studying the finite-sample op-
timal bridge in the context of bridge sampling for computing normalizing
constants. A by-product of the joint-MGF approach is that positive-order
fractional moments can be easily obtained from an MGF without invoking
the concept of fractional differentiation, a method used by R. A. Fisher in his
study ofk statistics 45 years before it reappeared in the probability literature.
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PROLOGUE are fascinating and important because they can cap-
ture phenomena with “phase transition” type charac-
teristics (e.g., from stationarity to nonstationarity), to

Sborrow a common phrase from physics. The various
inferential implications of such models or even the
existence of such transitions in particular studies are
ever-debatable. See, for example, the entire theme is-

Any book (e.g., Johnson, Kotz and Kemp, 1992) that
discusses moment generating functions (MGFs) show
how to obtain a moment with positive integer order by
differentiating an MGF. Specifically, suppodgx (1) =
E[e'X] exists in a neighborhood of= 0. Then

(0.2) ExX* = M,((k) 0, sue ofJournal of Applied Econometrics [1991, 6(4)],
® o which was devoted to a lively and vigorous debate on
where My~ (1) denotes theth derivative ofMx (1). It «Cjagsical and Bayesian methods of testing for unit

is much less well known, however, that byegrating roots” and their implications for analyzing the gross
My () in appropriate ways, we can obtain the expecta- national product of the United States from 1909 to

tion of g(X) for a variety of choices of. For example, 1970 and other economic time series. The very dif-

if g(x) is the Laplace transform df(z), that s, ferent conclusions reported by different articles in that
issue highlight the frustration a practitioner may face.
Because phase transition pushes nonrobustness to its
extreme, the inferential conclusions are often frustrat-
~ ingly sensitive to the assumptions posited for either
Elg(X)] :/ h(t)E[e ' Xdt frequentist or Bayesian approaches. Furthermore, the

(0.3) 0 actual analysis is often more complicated because of

o0 the nonapplicability of off-the-shelf methods, such as

— / My (—0)h(r) dt. ;
0 standard normal asymptotics.

Atfirst glance, (0.3) may not seem to be very useful. This compl_ication .also fascinates those who are
It simply replaces the direct integration, with respect to More theoretically oriented. Because normal asymp-
the probability measure defined by, needed to eval- totics are so prevalent in general statistics, nonnormal
uateE[g(X)] analytically with another integration. As ~@Symptotics are much more intriguing to theoreticians.
we all know, integration is generally much harder than Indeed, it is generally said and believed that arti-
differentiation. Could this be the reason that formulas ¢/€s with nonnormal asymptotics have a substantially
such as (0.3) are almost never mentioned in any text-higher publication acceptance rate than those with nor-
book that presents MGFs (but see Cressie and BorkentMmal asymptotics. However, the theoretical thrill does
1986)? Putting it differently, is there any value for iden- Nnot come without frustration, even for tasks as basic as

tity (0.3) and ones similar to it to be a part of our gen- Verifying whether an intuitively standardized random

(0.2) glx) = /Oooh(t)e’x dt,

then, when Fubini's theorem is applicable, we have

eral textbook knowledge of MGFs? gquantity indeed has mean 0 and variance 1. A well-
Many statisticians perhaps never wonder or care known statistic in the literature for testing the unit-root
about such a question, nor did I until 1996. AR(1) model (e.g., Dickey and Fuller, 1979) provides
a perfect illustration of such frustration. This statistic

1. A MOTIVATING STORY: TAKING A MOMENT was one of the key stepping stones in building popu-
WITH UNIT ROOT lar testing procedures for unit roots in current practice

(e.q., Elliott, Rothenberg and Stock, 1996).
Specifically, suppose we adopt the standard AR(1)
model (with known variance for simplicity)

For a newcomer to time series analysis, as | was
around 1996 when | was working with Professor
George Tiao, “unit root” is often both a fascinating
and frustrating topic, regardless of whether one’s main Vi =yi_1+ &,
interest is in application or in theory. From a prac- (1.1) o
tical point of view, models that involve unit roots et"l’vd'N(O, 1), =12 ...,n,
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with the convention thapg = 0, and we are interested the vicinity of —0.4 whenn becomes large enough.
in estimating and/or testing the model paramegter  However, one would find that it is much more diffi-
A common method is to use the standard least-squaregult to rule outV (r) = 1 by simulation, as we discuss
estimator, which yields shortly. Furthermore, when analytical calculations can
be done relatively easily, there is no rational argument
T for not performing them, especially when simulations
2—0 Vi are used as an investigation tool. There is really no
The analogy to standard linear regression also sug-more reliable way to validate any simulation other then
gests how we might standardigg — ¢ to arrive atan by checking its output against known analytic results.
approximate confidence interval or hypothesis test. If The question then is whether there exists a rela-
this were the standard linear regression in the form of tively simple method for analytically calculating the

-1
(2) . Z?:o Ve Yr+1
, = =2 7 T

y; = ¢x; +¢;, then the variance would t@:?:lxt?)—l_ moments ofr. The answer turns out to be a pleasant

Since for (1.1)x; = y,_1, we are led to consider yes, although apparently this is not a generally well
1 12 recognized fact,_judging from my initial failu_re (during

. A (Z yt2> (b0 — ) 1_996_—1997) to find the answer afte_r a relatlvely e>_<te_n—

= sive literature search and consultation in both statistics

) and econometrics. The search and research were most
as our standardization @f,. However, although the  rewarding, because what they revealed was not just a
analogy is suggestive, for indeegl has the usual neat trick for analytic calculation of the momentsof
N(0, 1) asymptotic distribution whe| < 1, itwould  pyt rather a class of powerful tools for analytical eval-
be a most unforgivable mistake in basic statistics or ation of moments of ratios and logarithms, two of the
probability to rely on the analogy to assert thatis o5t common transformations in statistics. The prob-

asymptotically standardized in general. lem of calculating the moments of nicely illustrates
Indeed, the asymptotic distribution of is no longer ¢ power of this class of methods.
N(0, 1) as soon agp| > 1. The case op =1 has re- Specifically, if we letX = 1(W2(1) — 1) and Y =

ceived the most attention in the literature, partly be-
cause of its implications in practice, because it models
random walk phenomenon (e.g., in economic time se-
ries), and partly because it signifies unit-root type prob-
lems in general. [Indeed, for the Studentized statistic Mx.y (11, 12) =
studied by White (1959), the asymptotic normality My y(—t1, —12)
holds also foll¢| > 1, making the case ¢p| = 1 even '

JEW2(1)dt, then T = X//Y. White (1958) estab-
lished that (with a minor correction by Abadir, 1993;
also see Rao, 1978) the joint MGF fdf and Y,
E(exp(t1X +12Y)), is given by

more fascinating and unique.] When= 1, it is well _ exp(t—l)
known that (see Chan and Wei, 1987; Tanaka, 1996,(l 3) 2
Chapter 3) ' no. -1/2
1 (12 : [cosr(\/Z_tz) + Esmh(\/z_tz)} ,
T}‘L:(Zy[z) (¢n_¢) t]_ER, tzzo

(1.2) =0

D (W2(1) —1)/2 A Since the joint MGF uniquely determines the distribu-

- UIW2(t) di ]2 =% tion of (X, Y) (under regularity conditions), it also de-
0 termines any moment of ary(X, Y), which gives us

whereW (¢) is the standard Wiener process[@n1]. hope of directly linking a moment to the joint MGF

Clearly z is not N (0, 1), but it is conceivable that it without first inverting the MGF to obtain the den-
might still have mean 0 and variance 1. Putting it dif- sity. This is indeed possible fog(X,Y) = X*/¥?,
ferently, it is not immediate what its mean or variance \ynererk is a nonnegative integer ardis arbitrary, as

should be just by inspecting its stochastic expression ag emma 1 of Section 2 asserts that (under very mild
given in (1.2); the dependence between the numeratorregularity conditions)

and the denominator af complicates such a determi-
nation. Of course one can always resort to simulation, Xk 1 00 _

. e e .. (1 4) El—)=—" M(kvo)(o —Z)lb 1dt
which would easily indicate that the meangfis in ' Ye) Ty Jo TXYT ’
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where M1k (11, 1,) denotes (3K1T%2p (11, 1))/
azflazgz. Applying (1.4) with (1.3) then yields straight-
forwardly

E(r)= — 1 /00 1 [_tanr(s)]ds
(1.5) V2r Jo ./coshs) s
= —0.42309564..
and
1 1 tant? (s
(1.6)E(r2)=zfo W[s—i—?: S()}ds—l
=1.14159507. .,
which implies that V(r) = Et? — (E1)? =

0.96258515. .. Therefore, not onhyE () # 0, but also
V(t) # 1, although, somewhat intriguingly/ (t) is
much closer to 1 tharE(t) is to 0. [Why is that?
Lin (2003) speculated that the negative correlation be-
tween the numerator and the denominator citten-

X.-L. MENG

3, 4 and 5 present, respectively, three applications in
the contexts of the Stein estimator, bias of a sample cor-
relation and optimal bridge sampling; Section 6 traces
the relevant history back to a work by R. A. Fisher in
1930 onk statistics. All four of these sections are in-
tended to be self-contained (except for their common
references to Section 2) and therefore can be read in
any order. Section 5 is most technically involved be-
cause it tackles an open problem in a theoretical study
of bridge sampling, so it should not be a part of any re-
laxing bedtime reading unless you have trouble falling
asleep.

Finally, a disclaimer is necessary for any article that
attempts to overview a topic of such diversity. The
76 listed references (and the references therein) are
the result of literally months of search and research,
vertically and horizontally, of the literature. Undoubt-
edly they are only a (honrandom) sample of the articles
that could be cited, in view of the enormous literature
on Laplace transforms—because identities like (1.4)

uates its intended mean much more than its intendedare part of the general multivariate Laplace transform

variance.] The closeness &f(r) to 1 makes it much
more difficult to determineV (r) # 1 via simulating

technigues—and related topics in and outside of statis-
tics and econometrics. | thus offer my apology to those

the distribution ofr,,, because one can (and should) al- whose relevant contribution is not given appropriate
ways wonder whether the observed difference is duecredit in this article, and express my gratitude to any-
to finite n, however large, even if the Monte Carlo one who can further enrich my—as well as others'—
error is of no concern. All reported numerical values knowledge on this topic.

and/or digits in (1.5)—(1.6) are obtained and confirmed
with a number of different numerical integration rou-

tines, such as MATLAB and Maple. [Note intrigu-

2. THE JOINT-MGF APPROACH

. > e C 2.1 Integrating a Moment Generating Function
ingly that E(z“) has its first six digits the same as
m — 2] These numerical values are also consistent with ~ As a direct analogy to the well-known formula (0.1),
the values reported in Gonzalo and Pitarakis (1998), but with the differentiation operator replaced by the in-
E(r) = —0.4231 andE(t%) = 1.1417, except that tegration operator, one can verify that (e.g., Cressie,
(1.6) implies that the last digit in theiE(z2) should ~ Davis, Folks and Policello, 1981) iP(Y > 0) = 1,
be 6, a reflection of rounding discrepancy between their then for any positive intege,
numerical series-expansion evaluation and our numer- E(y
ical integration evaluation. Using the same integration
approach, Gonzalo and Pitarakis (1998) also obtained(2-1) 00 00 k
moments for several other related statistics. :/o _/0 My (‘Ztl)dtl"' diy.

This article is the result of encouragement from i=1
all those who shared my joy over the simplicity of This, however, is not a very useful formula because
(1.5)—(1.6) [in contrast to the expressionwin (1.2)] it involves multidimensional integration when> 1.
and who assured me that | was not alone in feeling that[One can also successively integrate a probability gen-
something is missing in our general textbook knowl- €rating function to obtain negative integer moments;
edge of the joint-MGF approach. This article is thus in- S€€ Chao and Strawderman (1972) and the references
tended to narrow the gap, so others can spend less tim&erein.] . _ o
and experience less frustration than | did dealing with A more useful formula is obtained by noticing that
similar analytic problems. Section 2 contains a num- foranyy > 0andb > 0,
ber of variations and extensions of (1.4), as well as re- 22) P T oy
lated theoretical and historical development. Sections\“ yo= F(b)/o e I
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that is,g(y) = y~? is the Laplace transform df(r) = k=b=1in(2.4), whereZ ~ N (0O, 1). Then the left-
t»=1/T(b). Consequently, by identity (0.3), where hand side of (2.4) does not exist but the right-hand side
Fubini's theorem is obviously applicable because theis zero becauseM(lzz(O t2) =0 for all r, > 0. The

integrand here is nonnegative, we obtain same error was made earlier in Sawa (1972), who con-
1 o, sidered Lemma 1 in the case whénand k are the
(23) Ex ™M= Tb)/o "My (—1) dt, same integer. Sawa’s (1972) result has been extended

and applied frequently in econometrics for evaluating
which not only avoids multidimensional integration, moments of estimators of coefficients for various mod-
but more importantly handles negative fractional mo- els, such as simultaneous equation models (e.g., Mehta
ments [obviously the right-hand side of (2.1) can be and Swamy, 1978), dynamic regression models (e.g.,
simplified into that of (2.3) by a change of variables Hoque, 1985; Peters, 1989) and many autoregressive

via sy = Z —1i ands] =1j for j > 2]. For integem, or autoregressive integrated moving average (ARIMA)
identity (2.3) was given in Cressie, Davis, Folks and type models (e.g., Sawa, 1978; De Gooijer, 1980;
Policello (1981). Evans and Savin, 1981, 1984; Nankervis and Savin,

Combining (0.1) and (2.3), we obtain the follow- 1988; Abadir and Larsson, 1996, 2001; Pitarakis,
ing lemma, which is a more complete and rigorous 1998). The error in Sawa’s (1972) result was spotted
formulation of several previous results (e.g., Sawa, by Mehta and Swamy (1978). However, due to the
1972; Mehta and Swamy, 1978; Cressie, Davis, Folksway they constructed their proof, Mehta and Swamy
and Policello, 1981). To simplify notation, we uge (1978, page 8) seemed to imply that the source of the
as a generic notation for probability measure of any error occurred in the interchange of integration with
(joint or marginal) random variable and usg for differentiation that leads to (A.2) in our proof given in
the Lebesgue measure on tiiedimensional product  Appendix A. Our proof shows that (A.2) holds in gen-
space(0, c0)?. To ensure the lemma is applicable as eral and the error was in a subsequent interchange of

generally as possible, we adopt the notionqoési- integrals when no condition of Fubini's theorem was
integrability of a functionf, which only requires either  satisfied, as our simple counterexample shows.
(f)T or (f)” to be integrable, where)™ and(-)~ are Although not every statistician cares about regularity

the standard positive-part and negative-part functions,conditions as such, they are important in applications
respectively. This relaxation on integrability makes such as our motivating example. Our goal there was
verification of the conditions needed for (1.4) much to compute the moments af, but we did not even
easier, as in our motivating example (see below). know whether these moments exist or, at least, it is
not obvious why they do. Lemma 1 provides a very
effective way to determine the existence of any mo-
ment of positive-integer order afas well as its value.
Specifically, for any integek > 0, it is easy to derive
from (1.3), by using the differentiation chain rule, that

LEMMA 1. Supposek isa nonnegative integer and
b>0,PY >0 =1, Mxy(t1,0) exists in a neigh-
borhood of r; = 0, and X¥/Y? is quasi integrable
with respect to P. Then M(k O)(0 —tz)t s quasi-
integrable with respect to )ﬁ and the identity

yk 0)(0 1)
(k 0) b—1
(24) E(Yb) F(b)/ —)t dt _ (_1)k
holds, where the values +co are allowed. (2.5) 2k\/coshiy/212)
Although (2.4) is not hard to verify formally, we k ; " tanh(v/212)
provide a rigorous proof of Lemma 1 in Appendix A 'Z(_l) (2 = 1! ( ) [ N } ’

in view of some oversights in the literature concern-

ing special cases of Lemma 1. Cressie, Davis, Folkswhere(2i — D)!! = (2i — 1)(2i — 3)--- 1. Clearly, for
and Policello (1981) considered the case whés an k even, the conditions of Lemma 1 are satisfied be-
integer and stated that (2.4) holds “when either inte- cause any fixed-sign random variable (i£,> 0) is
gral exists,” without assuming the quasi-integrability quasi-integrable and thus (2.4) is applicable. Fodd,

of Xk/Yb. A simple example indicates that this as- we havelr|¥ < 1+ %+ and thust® is integrable since
sumption cannot be relaxed. Take= Z, ¥ = Z2 and ¥+l s integrable, because the right-hand side of (2.5)
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is integrable over, € (0, c0) for any k > 0. Conse-
quently, for any integek > 0, E(t%) is finite and its
value can be found via (2.4) with= k/2. Letting

. _/OO [tanhs)I'
K=o Jcosks)

then a simple change of variable= \/2¢, yields
k
E(h = E(X—>
Yk/2

O (=DF
- 26k=2/2p(k/2)

k ) k
SO =1i@i - (l. ) ai
i=0

which gives (1.5)—(1.6) wheh= 1, 2. For higher mo-

k—i—lds

(2.6)

notation) for finite or infiniten, as in the unit-root
problem, (ii) it suggests further useful generalizations
such as those provided in Section 2.3 and (iii) by
letting Y = X, it provides a formula for evaluating
positive fractional moment& (X“), wherea > 0 and
P(X > 0) = 1. Cressie, Davis, Folks and Policello
(1981) mentioned the possibility of using fractional
derivatives to evaluate fractional moments via the MGF
[i.e., a generalization of (2.1)] and Laue’s (1980) work
to connect fractional moments with fractional deriva-
tives of a characteristic function. Indeed, such results
were presented by Wolfe (1975) and, in fact, were used
by Fisher in 1930 (see Section 6); similar results were
also presented by Cressie and Borkent (1986) and were
further discussed by Jones (1987a, b). The derivation
provided below, as a simple consequence of (2.4), is
more straightforward and appealing to researchers who

ments (e.g., those needed for exact skewness and kurare unfamiliar with the concept of fractional deriv-
tosis of 7) the following recursive formula, obtained atives. The results are obviously equivalent, because
via integration by parts, is useful for reducing the com- both methods are used to establish the same identity.

putational burden:

20k —i — 1)
Qi = — (5. Gi—1k-2
’ 2i —1 ’
2.7) i1
%ai_z,k_z, O<i<k, k>2,

whereq; ; is zero when < 0.

Indeed, a fractional derivative is defined in terms of in-
tegration; see Ross (1975) for an overview of fractional
calculus.

Specifically, suppos® (X > 0) = 1, Mx (¢) existsin
a neighborhood of = 0 anda is a positive noninteger
[X can be negative for certain choicesaofe.g., ¥3),
but we avoid such a complication here]. Lef] be the

Although one might not find the general expres- Smallest integer that exceedsand let(a) = [a] — a.
sions (2.6)—(2.7) in the published literature, the joint NOW letk = [a], b = (a) andY = X in (2.4). Since
MGF approach was used in the literature to deal with Mx.x (f1. 12) = Mx (11 + 12), Lemma 1 implies
similar moment calculations involving ratios. In ad- xlal
dition to the aforementioned work by Gonzalo and E(X%) = E(W)
Pitarakis (1998), Tanaka (1996, Chapter 1) used this(2.8)
approach to compute the momentsdi= %(Wz(l) — _ 1
1)/1 /4 W(t) dt], and Nielsen (1997) applied the same I'({a))
approach to find the expansions of the moments?of  and one side of (2.8) is finite if and only if the other side
In particular, (1.6) was given by Nielsen (1997) as the js. Note that (2.8) reduces to (0.1) wheis an integer,
mean ofr2. This is also an example of using the joint by taking (a) — O (this can be verified directly or by
MGF method to find moments of a ratio of quadratic ysing fractional derivatives). We also note in passing
forms of normal variables, a class of problems we dis- that by lettingY = X1 andb = « in (2.3), we can
cuss further in Section 2.2. obtain E(X%) by integrating the MGF o —1:

o0
/ M}((ra-l)(_t)t(a)—ldt’
0

2.2 Fractional Moments and Fractional Derivatives 1 o0 _1
(2.9 EXY = —/ My-1(—t) t*"*dt.

In most of the literature mentioned in Section 2.1, ['(a) Jo
b was restricted to be an integer. The extension to non-This identity was used by Shepp and Lloyd (1966) in
integerb is immediate since (2.3) holds for noninte- their study of limiting distributions of cycle lengths in a
gers as presented by Stuart and Ord (1987, page 101)andom permutation. For another discussion of the re-
This trivial extension turns out to be important be- |ationship between positive and negative moments, see
cause (i) it facilitates exact calculation of moments of pPjegorsch and Casella (1985) and the accompanying
“Studentization,”T, = (6, — 6)/v'V, (in an obvious  comments, as well as Khuri and Casella (2002).
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Historically, the derivation of (2.8) was presented by as seen in the following lemma, the proof of which is
Mathai (1991) wherX is a positive quadratic form in  again deferred to Appendix A.
a (possibly singular) _normal variable. Mathai's (1991) LEMMA 2. Suppose a is a positive noninteger,
argl_Jment, however, is really gengrgl because the nor-, _ 0and P(X>0,Y >0)=1.Then
mality was used there only to justify interchange of in-
tegrals, as in deriving (2.3), which was also presented E(X_“)
by Mathai (1991) under the normality setting. There Yo

also have been a considerable number of articles on 1 0 oo

calculating (integer) moments of ratios of quadratic “TWanTd Jo o XY 1,2
forms in normal variables, and the joint MGF approach @1 p1
seems to be the most popular one; see, for example, 0 Tt Tdndn

Jones (1986), Morin (1992) and Tsui and Ali (1994) a4 one deisfiniteif and only if the other sideiis.

and references therein. Closely related work includes

finding the exact distribution of a ratio via the in-  Note that as a special case of Lemma 2 (i.e., with

verse Mellin transform of its moments; see Provost and ¥ = 1), the conditionP (X > 0) = 1 for (2.8) can be

Rudiuk (1994) and references therein, and the book by'€laxed toP (X > 0) = 1, and the condition thali/x ()

Springer (1979). As we see here, the technique is use £XIStS in @ neighborhood of= 0 is also not needed

ful in general as long as the required MGF is available. [Put recall Mx (1) always exists for < 0 whenX is

This was emphasized by Jones (1987b), who discusse&'pnnega.‘t've]' We also n_ot_e that if we do not insist on

the use of fractional derivatives in general for comput- directly mteg_ratlng th? joint MGF, then_we can ex-

ing multivariate fractional moments, press (2:11) in an equivalent form described by Evans
As a simple illustration of the use of (2.8) in a non- and Savin (1981):

normal case, consider the stable distributior{@ro), (X_“) _ 1 /OO E[X%e— 1L ds

which has the MGF (see Feller, 1971, pages 448-449) Yt ) T(®b) Jo ’

This result eliminates the double integration in (2.11),
but, as a trade-off, it requires the expression of
ForO<a < 1, we havela] = 1 and(a) = 1 — a, and E[X“e~'Y], which may not be directly available to
thus by (2.8), after letting = c1®, the investigator even if the joint MGF is. Of course,
if one recognizes and uses the fact tB§K“e~"Y] can

be obtained via differentiating and integrating the joint
MGF, then effectively one is implementing (2.11).

Mx(—t) =exp(—ct*), ¢>0,1>0, 0<a <1

ay __ Ca/a o —s ,—aja
(2.10) E(X" = ri—a e’s ds.
—a)Jo

Since the right-hand side of (2.10) is infinite when 2.3 Further Extensions and Variations

« <a <1, we conclude thatE(X“) = oo when- Lemmas 1 and 2 can be easily extended to more
evera > a. When O< a < a, the right-hand side of  general identities that may be useful for analytic
(2.10) isc*/*T' (1 — a/a)/ T'(1 - a), which is also the  calculations of more complicated moments, such as
value of E(X“) whena < 0, as can be verified di- multivariate moments (see, e.g., Jones, 1987b and
rectly by using (2.3). The same result was obtained Mathai, 1991). The following Theorem 1 is a gen-
by Wolfe (1975) via the fractional differentiation ap- eral result that includes both Lemmas 1 and 2 as spe-
proach. Although fractional moments are often more of cial cases, although its proof is essentially the same
theoretical interest, there has been some work on usingas that for Lemmas 1 and 2 (combined) but only with
fractional moments in constructing estimators; see, for more complicated notation (hence the proof of The-
example, From and Saxena (1989) and the referencesrem 1 is omitted from Appendix A). It also cov-

cited there. ers a formula used by Davies, Pate and Petruccelli
The identity (2.8) also reminds us that we can ex- (1985) to find exact moments of the sample cross cor-
tend Lemma 1 to cases where thén X* is noninte- relations of multivariate autoregressive moving aver-

ger (again, assuming is nonnegative, although this age models. For simplicity, an operation applied to a
assumption can be relaxed). The price one has to payvector means that it is applied componentwise [e.g.,
for this generality is the need for double integrations, [a] 2 (Ta1l, Tazl, ..., TauD'].
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THEOREM 1. Let X = {X1,..., X1}, Y = {VY3,

LYyt and Z = {Z4,...,Zy}, where P(Y > 0,
Z >0 =1 Let Kk =1{kq,...,kz} be L nonnega-
tive integers, let a = {a1,...,ay} be M positive
nonintegers and let b = {b1,...,by} be N positive
numbers. Suppose [T, X}/ [TM_, var /TN, zbr is
quasi-integrable with respect to P and that Mx v z(t.,
Oy, Oy) exists in a neighborhood of t; = 0z, where
Op denotes a D-dimensional vector of zeros. Then
M)((kaag O (0L, —u, —v) [T, ulém = I ot s
quasi-integrable with respect to Al VAN and the identity

k m
E<I—[l 1X[ m 1Ya )
Hn:l

oM
T e 0w

M N
. H uqu’”_l l_[ vﬁ”_l:| dudv}
m=1

n=1

(2.12)

M N -1
: { []TWan) [] r(bn)}
m=1 n=1

holds, where the values 0o are allowed.

with respect to P if and only if M(1 1)( t1, —12) -
gr (11, 1) IS quasi-integrable with respect to )OL Fur-
thermore,

E(logX —logY)*

(2.14)
- / / MED (—11, —t)gu (1, 12) drr dta.

In particular,

E(logX)

o)
(2.15) :_/ MP (—1)logr di —
0

Var(log X)

(2.16) =/0 MY (—r)(logr)?dt

2

Q) 2 =z
- MP(—t)logrdt) — —
(/(.) X ( l‘) ogt l‘) 6

E(logX — logY)?

2.17) f / My (—11. ~12)
2

- (logtz — logt1)? dty dty — %

and

The above extension is more or less obvious once we

see the common patterns given by Lemmas 1 and 2.
That is, any positive-integer moments are taken care of
by differentiation and any pure positive fractional mo-

where y = 0.57721566490.. is Euler’'s constant. In
all of these identities the value oo is allowed.

The proof for Theorem 2, as given in Appen-

ments (i.e., after taking out the largest positive-integer dix A, is considerably more involved than that for
moments) and negative moments are dealt with by in-Lemmas 1 and 2 (and hence Theorem 1), partially

tegration. However, the extension W = log(X/Y)

because the conclusion of Theorem 2 is stronger—

takes a much less obvious form. The extension is (2.14) holds in the strongest possible sense, as given by

possible becausafy (1) = E[(X/Y)"] and thus we
can use Lemma 2 to connect the momentsiibfto

My y(11, t2). The following theorem is a result of such

a connection.

THEOREM 2. For any r1 > 0, 2 > 0 and nonnega-
tive integer k, let

B ok 1 /t2\! sin(rr)
gk(tl,tz)—{ﬁKE) wt “tzo

[k/2]

=Y a;(logrz —logr
j=0

(2.13)
k=2,

where [k/2] is the integer part of k/2 and «;; =
(1) 7% k! /[(2] + D)!(k — 2j)!]. Suppose P(X > 0,
Y > 0) = 1. Then (log X — logY) is quasi-integrable

the “if and only if” statement. This is possible because

Mt 1)(t1, t2) is nonnegative even though 10g/Y)
does not have a fixed sign in general. This new result
provides a way to tackle the otherwise intractable prob-
lem for determining the finite-sample optimal bridge in
bridge sampling (Meng and Wong, 1996), as reported
in Section 5.

3. A GALTONIAN CONSTRUCTION OF THE
JAMES-STEIN ESTIMATOR

3.1 Stigler’s Galtonian Perspective Revisited

Consider the well-known setting for shrinkage esti-

ind

mators,xilnfvEpN(Gi, 1,i=1 ..., k, whered = (04,
.0 T are unknown parameters. Perhaps the most

startling and well-known discovery in classical sta-
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tistics is that the obvious estimator 6f x = (x1, itself, instead of just for its numerator. This is because
., xx) T, is uniformly don)inated interms of:the com- k—2
posite quadratic risiR (6, 6) = Zf.;l E¢(6; — 6;)% by Ey (1— ﬁ)
any estimator of the form (3.3) dim1X]
A~ C Z =1 l i
31 6.=(1-——|x, O 2k — 2), < ) for any6
G = (1) 0ze<ze2 S

whenk > 3. Although Stlgler (1990) did not use (3.3)

whenk > 3. Within this class, the best choice ofis _ | i
to interpret this unbiasedness property of the James—

k — 2, which corresponds to the well-known James— o
Stein estimator (James and Stein, 1961). Since theSt€in choice ofc, he proved (3.3) and used it in
discovery of the James—Stein estimator, there have@" €légant proof of the fact that (3.1) dominates
been many interesting extensions; see, for example, 6o = x. Stigler provided two proofs of (3.3): one re-
Brandwein and Strawderman (1990). Also see Maatta!l€S ON an invariance argument and the other uses
and Casella (1990) for a related development concern->t€in's (1981) integration-by-parts formula concern-
ing variance estimation. ing the normal distribution. Lemma 1 leads to a rather

The Bayesian explanation for (31 is aimost mme- SZER TSR, B0 T TORe Sy
diate [see, e.g., Efron and Morris (1973)]. Among var- Persp 9 9

» forward constructive derivation of the James—Stein es-
ious non-Bayesian explanations of this “paradoxical

. ) ) . _timator, a derivation that reveals how naturally we
phenomenon, Stigler’'s (1990) Galtonian perspective .. . .
: . . S . first choose (3.1) as our candidate class and then im-
is particularly appealing and insightful. Stigler argued 0seEy () = Es(fs) to arive at the optimal choice
that the “obvious” estimatafly = x is inferior because S_ P P
it corresponds to regressixgon 6 [since E (X|6) = 6], N '
which is the “wrong” regression line when we want 3.2 A Non-Bayesian Constructive Derivation
to predictd from x, which should use£ (9]x). Since
we do not make any distributional assumption alsut

we would approximatet (61x), say, bypx, which in- yo0q otp (4. 4). By taking expectations of both sides
cludesé6y = x as a special case. Stigler then invoked of the well-known regressmn decomposnl@(@ _
the idea of “data augmentation,” namely, if we had the 2_ 2

) +3°(6; — wherepy is
values of6, then the best choice ¢ under the loss Bxi)? = (B~ fo)” L7 + .0 — foxi)®, o

L@®,6)=Y*_,(6; — 6;)?> would be

Inspired by the Galtonian perspective, we SBEX)
such thatd = ﬂ(x)x (strictly) dominatesfp = x in

given by (3.2), we have

k Ay —
, < 0x; R(,0) = Eo| (B(x
(3.2) o = =iz 0% ©.0 9[ po= (Zx )}
21X (3.4) )
Since 6 is unknown, we would like to estimatfy. + Y Eo(6; — Boxi)?.

Stigler noticed that if the numerator in (3.2) is replaced

by its unbiased estimatory_;_; x? — k, then (3.2)isin  we thus only need to deal with the first term on
the form of (3.1) withc = k. The need to have at least the right-hand side of (3.4), which we denote by
three points of(6;, x;) is also quite intuitive from the  p(B(x)|6). At this moment, we (as non-Bayesian)
Galtonian perspective, because with only two points have little idea what the form qg(x) might be, but
the two regression lineg} on x andx on 6, would it is intuitively clear that it is impossible to minimize
be the same. The extra constraint of zero intercept ap-p(3(x)|9) over all possible(x) simultaneously for
pears to be compensated on average by the fact thagll 9. We thus restrict the class of candidatesA¢x),
E(61X2 — 62X1]61, 62) =0 for any6; and6s. and the simplest general class férappears to be
There is a small disappointment in the argument B(x, «), that is, a class indexed by a scalar quantity
above, since it did not lead to the best choice- That is, much like reducing all possible models by pa-
k — 2. Furthermore, the choice= k satisfies O< ¢ < rameterizing, the simplest type is a parametric family
2(k — 2) only whenk > 4, a condition stronger than indexed by a scalar parameterWe still have no idea
necessary. It turns out that this problem can be easilywhat this class/family looks like, but iB(x, «) is a
fixed if we seek an unbiased estimator far of (3.2) differentiable function otx, then seeking the optimal
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«a amounts to solving SinceMy y (11, 0) exists for anyr; and
—D(B(X, a)|6) M0, ~12)
T 2
(3.5) B,B(X a) (142 —k/2|:§79 B } _ el t2>
= 2E| (Bx, ) — Z (2 o, — 0 "1 5, )
-0 by (2.4), after lettings = (1 + 2r,)~* and performing

. . . an integration by parts, we obtain
simultaneously for alb. Evidently, the easiest way to g yp

solve (3.5) is to set . ng LExi — ao)
3B(x k K x?
(3.6) M(fo) — constant (3.10) =1%i
do , T T
= = = 56250 a2
—= — 5| (k— Qo (Vk-2 ,
and Gk jer2 ™ )"
(3.7) Eg[B(X,a) — Bp] =0 for all6. where
The differential equation (3.6) immediately suggests 1 o/ 2
that @11) v = [ 5" D exp( s~ 1) )ds
c1o
(3.8) pix.c) =co+ = Z 2’ Therefore, whel§g =0,
and the requirement thét: 1 belong to this class (to Zle 0;x; — oo
ensure that the optimal estimator we find dominates E Sk 2 )
6o = X) setsco = 1. We can rewritej« asa sinceu is (3.12) !
arbitrary, and then the unbiasedness requirement (3.7) _ 1 =261 [k — 2) + o]
is equivalent to determiningp such that 2
YK 6ix; —ag and thus (3.9) holds if and only ifg = —(k — 2), the
(3.9 Ey <—Zk_1x-2 ) =1 foralle. James-Stein choice.

i ) ] ) Similar arguments can be used for the Efron—Morris
Once such amg is found, then (3.4) indeed is min- (1973) estimator

imized by 8 = B(x,ag)x becauseD(B(x,a)|6) is

a convex quadratic function of for A(x,«) given AEM - _
by (3.8). Lemma 1 is a very handy tool for search- 0" =Ll + (1_ (o _2)2>(X — L),
ing for (instead of proving) such amy. Note that by =1

the Cauchy—Schwarz inequality, the random variable O<c<2(k-3),
in (3.9) is bounded above byd|? + |ao|(X x?) 1 .
and thus the left-hand side of (3.9) exists whten 2.~ Wherex is the average ofxi, ..., x,} and L =

T i i _
Therefore, Lemma 1 is applicable as longkas 3. (1,..., 1. In particular, the best choice of=k —3
To apply Lemma 1, we leX = Y%, &x; — ap and corresponds to the unbiased estimator of the regression

Y = Y%, x2, and we use generdl = (£1,....&) " slope based on the “augmented data,” that is,

in X instead of¢ because of the bias calculations we k—3
discuss later. Then the joint MGF @Kk, Y) is easily E(l— ﬁ)
obtained by forming an appropriate quadratic form for 2= (i = X%)
eachx;,i=1,...,k, as :E<Z{'{:1(xi_i)(9i_é))
My y(t1, 12) YK (i —%)2
—k/2
=@1-2)7" whenk > 4. [It is easy to verify that, after a rotation
1611222 + 28 TO11 + 2)|0]%12 transformation, the above expression is the same as
eXF’[ fiao + 2(1— 21 } (3.3) withk replaced by — 1.]
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3.3 Convenient Expressions for Studying Risk and
Bias of 6,

The identity (3.12) also provides a trivial way to cal-
culate the risk ob, in (3.1). Because

k A
>0 — 6;)?
i=1

Sk 16ixi+c/2

k.2
i=1%;

k
= (i =02 =2+ 2c<

i=1

)

(313) R(O.6) =k — 5120 = ) = cln—2(10]).

settingag = —c¢/2 in (3.12) yields

Because/,_»(||0]]) > 0 for any®, if we only look for

a nonconstructive proof, then (3.13) is all we need be-
cause it trivially implies that (1§, dominates), if and
only if 0 < ¢ < 2(k — 2) and (2)R (9, 6,) is minimized
when ¢ = k — 2. Among rigorous proofs of Stein’s

paradox (e.g., as discussed in Stigler, 1990), this per-
haps is the most elementary one given (3.13), which (3.17)

itself is a straightforward application of Lemma 1.

To calculate the bias @., we need the more general
identity (3.10). Specifically, by settingo =0,£;, =1
and§& =0 fori # j in (3.10) in turn for eachy, we
obtain

cye(161D)
—F0.
2

In deriving (3.14) we have used the simple recursive
relationship

(3.15) ym(x) =x72[2— (m — 2 Ym_2(x)],

which is obtained via integration by parts.

(3.14) Biasd.) 2 E@,) -0 = —

m > 3,

o

el

Fic. 1. Riskand bias-squared

151

Although there are many other ways to calcu-
late risk or bias of9. (e.g., using series expansions
as in Bock, Judge and Yancey, 1984), expressions
(3.13) and (3.14) are particularly convenient for cer-
tain theoretical derivations [as well as for numerical
evaluation because of (3.15)] by taking advantage of
the known properties of the function of (3.11). To
better facilitate our discussion, we first “standardize”
the indexc in 6. via b = [c — (k — 2)]/(k — 2) and,
accordingly, with a slight abuse of notation, rewiite
as 6. This reindexing removes the dependence: of
on k, that is, the region G ¢ < 2(k — 2) is trans-
formed into —1 < b < 1, whereb = 0 indexes the
James—Stein estimator amd= —1 is the maximum
likelihood estimator (MLE). More importantly, it ex-
plicitly displays the symmetry of the risk as a function
of b (for fixed ||6]]):

(3.16) R(8,0p) =k — 3(k — 22(L— b?)yr—2(llO ).

In contrast,|| Bias(@,)|? is a strictly increasing func-
tion of b € [—1, 1] for fixed || 0| because (3.14) implies

|| Bias(9) 12
= 2k =22+ b)2101272I0 1.

Comparing (3.16) with (3.17) reveals some interesting
features ob), for b € [-1, 1]. For example, we observe
that for any O< b < 1, 6_, and 6, have the identical
maximal risk amongd, £ {05, |8| < b}, yetd_, has
the least bias (in terms of its magnitude), wheréas
has the maximum bias in the same clégs In partic-
ular, 81 can be vjewed as the “worst” estimator within
the entire clas$6y, |b| < 1} because it has the largest
risk as well as the largest bias. This is directly visible
from Figures 1 and 2, which plot the risk surface and
the bias-squared surface, respectively, oe 3 and
k=4.

|Bias|?

surfaces of 9, when k = 3.
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|Bias|?

[¢] el

FIG. 2. Riskand bias-squared surfaces of 6, when k = 4.

The figures also reveal that for fixed the risk is  thermore, because
a mono'For?e' mcregsmg functlon' 48| move; from | Bias(ép) || i || Bias(dp) ||
zero to infinity. This can be easily proved via (3.16) sup—— = —_—
becausey,, (x) is a strictly decreasing function of ocri 19l e1=0[ie
with y,,(0) = 2/m andy,, (c0) = 0. Consequently, for ¢ 0) = <1_ g)(1+ b)
any —1<b <1, the risk oféb increases strictly from - 2yk o k ’
2+ b*(k — 2) to k as ||| moves away from the origin e learn that the maximal magnitude of the relative
to infinity. This, of course, confirms our intuition that bias occurs at the origin. For the James—Stein esti-
as the tru#® moves away from zero, the shrinkage fac- mator, this maximal relative bias is-1 2k—1, which
tor in (3.1) becomes closer and closer (stochastically) monotonically increases witk but is bounded above
to 1 and, therefored, should have increased risk un- by 1.
til it reaches the maximal value becausé, behaves As a further illustration of the utilities of (3.16)—
more and more like the MLE. (3.17), because lim, o X2y, (x)/2 = 1 for anym > 1
The same intuition also suggests that the biag,of [for m > 3, this is a consequence of (3.15) and for
decreases as the underlyiignoves away from zero 7 = 1,2, it can be verified directly], we can easily
since the MLEx is unbiased fof. Itis evident fromthe ~ A€7ive the rate at which the re%uctlon in risk (com-
figures, however, thafBias(d;)|? is not a monotone pared to the MLE) and| Bias(®) ||~ approach zero as
gures, , thaf Bias(o) || 16 — oo
function of ||| for fixed b. Indeed, it is easy to verify

from (3.17) that| Bias(6),) | approaches zero whéd || (k —22(1—b?)

k— R, 0,) =

approaches either zero or infinity and reaches its max- 3.18 1612 ’
imum when||6| = zx, the solution ofy(z) = 2/(z% + (3.18) ) (k — 2)2(1 + b)2
k — 1). [Why the absolute bia$Bias(éy)|| reaches the I Bias(9y) [ =

16112

These “Cauchy density” type tails are quite visible in
Figures 1 and 2 (for the risk surfaces, when viewed
upper side down). Furthermore, becaugg(x) <
2/x2 for all m > 2 [again a consequence of (3.15)

maximum at this particular value is a theoretical cu-
riosity for which an intuitive explanation is yet to be
found.] This does not imply that our intuition is wrong.
It actually is accurate: What went wrong was the in-
appropriate mathematical formulation of our intuition. when m >3 and directly verifiable form = 2, but
The correct formulation is to ugelative bias, relative not for m — 1], the right-hand side of each equiva-
to the size of the estimart which indeed in generalis  |ent relationship in (3.18) also serves as a sharp up-

a more meaninngI measure of bias. It is then trivial to per bound of the Corresponding left-hand Side’ except
see from (3.17) that the relative magnitude of the bias for the case ofk — R(9,6,) when k = 3 [because

I Bias(éc‘)||/||9|| =k —2)(L+b)y(1611)/2 monoton- y1(x) > 2/x% whenx > xg, the solution ofy;(x) =
ically decreases to zero with the increase|®ff. Fur- 2/(x2 - 1)].
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4. BOUNDING THE BIAS IN
A SAMPLE CORRELATION

As a simple illustration of the usefulness of Theo-
rem 1, going beyond bivariate MGFs as covered by
Lemmas 1 and 2, consider the problem of estimat-
ing a population correlatiop by a sample correla-
tion r,, wheren indexes the sample size of a simple
random sample. It is well known that, unlike a sam-
ple mean or a sample varianog, is generally a bi-
ased estimator gf, and the exact distribution af, is
generally very complicated, even when the underlying
joint distribution is bivariate normal. Indeed, assuming
joint normality, Fisher (1915) via an elegant geometric
argument found the density functiongfto be

(1 _ pZ)(n—l)/Z

al'(n —2)
arccos—pr)

dn—2
{ Jim

d(pry"=2
It is clear thatf (r) is not particularly easy to manip-
ulate analytically, for example, for finding the mean
of r,. By expressing (4.1) in terms of a hypergeomet-
ric function, we can express(r,) via a hypergeomet-
ric series (e.g., Hotelling, 1953; Stuart and Ord, 1987,
pages 529-531),

(1— r2)n=4/2

I

-1<r<1.

fr)=

(4.1)

2(1
E(r) = - pl’ (2”1)
4.2) C(301— DIT{3(n + 1))
F(3.3. 301+ 1), 0%,
where
F(a’ﬂ’y’z)
L @B a@+DBB+D ,
_1+y.1z+ vy D) -1.2 "+

(Higher-order moments can also be expressed via
hypergeometric series, as in Johnson, Kotz and
Balakrishnan, 1995, Chapter 32.) We now show that
with the help of Theorem 1, we can find an integral rep-
resentation off (r,;,) from which we can easily derive
some useful bounds for the relative bi@d&r,) — p)/p
without having to deal with (4.1) or (4.2), and the re-
sults do not rely on large-sample approximations.

BOuND I. Suppose (xi,yi), i =1,...,n, are a
simple random sample from a bivariate normal dis-
tribution with population correlation p. Then, for
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anyn>2,
1 E —
—— M<O when 0 < p2 <1,
43) n P

E(rp)=p

PROOF As detailed in Appendix B, applying The-
orem 1 to the current setting yields

2n—1Dp

when p =0, 1.

E(rp) =

oo pm/2
@4 - /0 /0 [(1— p?) sinP(20)r2

+2r + 17" 2 a0 4r.
When 0< p2 < 1, since forr > 0 and 0< 6 < /2,
2r+1<1—p?)sif@0)r’+2r +1< (r+1)3
we obtain from (4.4) that

1 00 dr
<1_ E) :("_1)/0 (L4 rynt

< At 2oz =1

and hence (4.3)§(r,) = p whenp? =0 or 1 is obvi-
ous]. O

Bound | is handy to use in practice, since it says
that for 1> p > 0, r, underestimateg, and for—1 <
o < 0, r, overestimates, but the absolute relative
bias [i.e., |[E(r,) — pl/|p|] never exceeds /k for
anyn (> 2). Thus the finite-sample bias is usually of
no practical concern as long asis not too small
(e.g., n > 10). [Nevertheless, an unbiased estimate
of p, in the form ofr, F (3, 3, 3(n — 1), 1—r2), where
F(x, B, v, z) is the hypergeometric series used in (4.2),
was suggested by Olkin and Pratt (1958).] Whether this
exceedingly neat bound also holds for some other dis-
tributions is a question of both theoretical and practical
interest.

Although bound (4.3) is sufficient and appealing for
most practical purposes, it can be improved upon if one
is willing to carry out a few more algebraic steps, as
illustrated below.

BounD II. Assuming the same condition as in
Bound I, for any n > 4,
1 1_:02 E(ry) —p
- < <0
(4.5) n—31+p? o

when 0 < p2 < 1.
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PROOF  Since(a + br)~"*+D/2 is a convex func-

tion of r whena andb are positive, by the Jensen in-

equality, we obtain from (4.4) that

E(rn)

>m—-1

. fw[(l— ,02)r2

0
/2
: (3/ sin2(29)d9>
(4.6) 7 Jo
—(n+1)/2
+2r + 1] dr

=mn-1

o1 (1 — o2 —(n+1)/2
f [7( P )r2—|—2r+lj| dr.
0 2
Let R(t) =a + bt + ct? and A = 4ac — b2. Then

_ 2(2ct +b)[R(1)]" 7 V/2

4.7 DA
4d(n — 2)c —(1—1)/2
+ 7(’1 DA [R(1)] dt.

Applying (4.7) to (4.6) yields, when > 4,

E(ry) 2
>—
p 1+ p?
1— p?
— —2
1+p2(n )
0o (1 — p2 —~(n-1)/2
/ [wr2+2r+1] dr
0 2
2
>—
1+ p2
1—p? o0 1
——n—2/ 1+2r)~=V/2 g,
1+,02( ' Jo ¢ )
. 1-p% 1
N 14+p02n -3

which proves (4.5). O

Compared to Bound I, Bound Il is closer (for langke

Stuart and Ord, 1987, page 531)

E(ry) — 1— p? 1
(r; p__( znp)+0(ﬁ)’ 0 £0.

If desired, one can repeatedly use (4.7) to improve the
bound in (4.5). Of course, the bounds become more and
more complicated and thus lose their practical value.
However, the derivation of (4.5) (as well as its fur-
ther refinement) demonstrates that Theorem 1 can lead
to rather accurate bounds without ever invoking large-
sample arguments, illustrating the potential usefulness
of Theorem 1 (and its various special cases and exten-
sions) in finite-sample theoretical investigations.

5. SEARCHING FOR FINITE-SAMPLE
OPTIMAL BRIDGE

Bridge sampling is a generalization of importance
sampling for simulating (ratios of) normalizing con-
stants of probability models. Computing normaliz-
ing constants is a common computational problem in
statistics as well as in other fields such as physics
and genetics. The basic setting for bridge sampling
is easy to describe, yet the problems to which it is
applicable can be exceedingly complex (e.g., com-
puting exchange frequencies in quantum crystals; see
Ceperley, 1995, pages 341-343). Indeed, the method
originated in computational physics for computing
free-energy differences, a problem that essentially
defeats the standard importance sampling technique
(see Bennett, 1976). For recent theoretical and em-
pirical studies of bridge sampling and closely re-
lated methods, refer to Meng and Wong (1996), Meng
and Schilling (1996, 2002), DiCiccio, Kass, Raftery
and Wasserman (1997), Gelman and Meng (1998) and
Kong, McCullagh, Meng, Nicolae and Tan (2003). We
discuss only material that is directly related to our cur-
rent topic and we ignore all regularity conditions.

Suppose we have two densitipgw), i =0, 1, with
respect to a common measurgw). We can evalu-
ate p;(w) up to a normalizing constant;: p;(w) =
gi(w)/ci, i =0,1. We also have draw$w;;, j =
1,...,n;} from p;(w). The powerful Markov chain
Monte Carlo (e.g., Metropolis algorithm) allows us
to simulate from densities with unknown normalizing
constants; here we assume draws fragrare indepen-
dent of draws fromp1. Our goal here is to use these
draws to estimate = c1/co. The bridge sampling re-
lies on the following simple identity to construct esti-
mators forr. For simplicity, supposeg and p; share

to the asymptotic expansion of (4.2), which is (see a common suppoi® [but see Voter (1985) and Meng
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and Schilling (2002) when this assumption fails], and
supposex(w) is a nonnegative function an such that

0 < [a(w)po(w) pr(@)u(dw) < co. Then it is trivial

to verify that

1 Eolgi(@)a()]

co  Eilgo(@)a(®)]’

where E; denotes the expectation with respect to
pi(w),i =0,1. Thus, givernx and the drawsw;;, j =

(5.1)

1,...,n;;i = 0,1}, a simulation-consistent estimate
ofris

(1/n0) X121 q1(woj) e (wo;)
(5.2) 7y j=1 d d

~ A/m) YL qo(wipa(wr))

An obvious question then is the choice @f Indeed,
if we choosex = ¢4 %, then we have the standard im-

portance sampling estimator (e.g., Ott, 1979), which

has large variability when thg? distance betweepg
and p; is large. By sensibly choosing, we can re-

duce this variability by orders of magnitude, since a

good choice ofr can “bridge” pg and p1, and thus ef-
fectively shorten the distance betwegmand p;1 [see
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estimator which achieves the asymptotic minimum er-
ror. Empirical and theoretical evidence (e.g., Meng and
Schilling, 1996; Servidea, 2002; Romero, 2003) sug-
gests that (5.3) is typically a sensible choicexadven

with dependent draws. It is therefore useful to ex-
plore the finite-sample cases under the independence
assumption.

Given the intuitive nature (i.e., a mixture of
po and p1) of agpt in (5.3), it is of great theoretical
interest to find out what else can make fggeven
more accurate with finite samples. Since the asymp-
totic mean-squared error ignores the bias infjggve
expect the bias to have an important role to play in de-
termining the finite-sample optimal bridge; the issue of
reducing finite-sample bias is also of some practical in-
terest (e.g., see Meng and Schilling, 1996). Theorem 2
makes it possible to investigate such questions because

it allows us to derive an exact expression Rf,fé,),,l.
To apply Theorem 2, let

Meng and Wong (1996) and Gelman and Meng (1998) and

for detailed discussions]. The specific variability we re-
fer to here is the mean-squared error ofdggwhich is

asymptotically equivalent to the relative mean-squared

error of 7y, E(74 — r)2/r2. The log scale not only
makes the error symmetric abopy and pp, but it

is also more relevant in many applications (e.g., log-

likelihood ratios; free-energy differences).
To find thew« that minimizesR,(,%?,11 2 E[logr, —
logr]? in general is a very difficult problem even

asymptotically (see Romero, 2003). This is because(5_4)

R,%?nl in general is a very complicated functionalwf

due to the fact that the draws from the samei

0, 1, are not necessarily independent (recall we gener-

ally obtain draws using Markov chain Monte Carlo).

no
Xo=—)_ p1(wo;)a(wo))
ng iz
ni
X1=— Z po(w1j)a(wy;).
ni i=1

Then, using the fact that log — logr = log Xg —
log X1 and Mx, x, (t1, t2; o) = Mx(t1; a) Mx, (t2; ),
(2.17) can be simplified to

o0
R@ _/o (M (—t; 0) + M (—1; )] (log )2 d1

no,n1
o0
_ 2[/ M}((lo)(—t; ) |Ogtdt:|
0

[ee) 2

@, .. T
) [/0 My (=t; ) |Ogtdt] 3
@

However, when the draws are independent, it can beln deriving (5.4) we have used the fact thigt MX,.)(—I;

shown (e.g., Meng and Wong, 1996) that thehat
minimizes the asymptotiR,(,%,)n1 is given by

1
aopt(w) X
P sopo(w) + s1p1(w)
(5.3)
1
x ,
sorqo(w) + s1q1(w)
wheres; = n;/(ng + n1), i =0, 1, are assumed to be

strictly between 0 and 1 asymptotically. Since gt
depends on the unknown Meng and Wong (1996)

a)dt=1,i =0, 1.
Under the further assumption that draws from each
pi are independent, we have

(5.5) My, (t;a)= Ml-"i (nL’ oz), i=0,1,

whereM; (t; ) is the MGF of p1_; (w)ax(w) with @ ~
pi(w), i =0,1. Combining (5.5) and (5.4) gives us an
exact expression 0?,(1‘3,),11 as a functional ofr, which
can then be maximized by using the calculus of vari-
ations. The details of this exercise are rather involved

constructed an iterative sequence that converges to amnd thus are deferred to Appendix C. The end result is
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that the optimakrp must satisfy the integral equation reduces the mean-squared error and the bias relative
(we use thex notation because is determined upto  to the asymptotic choice (5.3) can be investigated by

a proportionality constant) asymptotic expansions &¥;, i = 0, 1. Clearly this in-
@0 () vestigation is beyond the scope of this paper; here our
(5.6) main purpose is to demonstrate how Theorem 2 has
o 1 ’ made such a previously intractable investigation possi-
sopo(w) Wo(w; ap) + s1p1(w) Wi(w; ap) ble.
where
Wi (w: ao) 6. ONCE AGAIN THERE IS A LINK TO FISHER
oot As discussed in Section 1, various cases of Theo-
Z/O /0 §1-i (1 20) rem 1, particularly Lemmas 1 and 2, have appeared in
(5.7) s the literature due to their usefulness in analytical mo-
-EXP(— - oo (w)pi (w)> dsdt, ment calculations. Even Theorem 2 is a mathematical
—1

consequence, albeit not in an obvious form. Cressie,
i=0,1, Davis, Folks and Policello (1981) mentioned that the
earliest work of this sort they were able to trace was
Williams (1941). In fact, the relevant literature can
be traced back to Fisher (1930), who considered the
problem of finding finite-sample moments of sample
measures of “departure from normality,” including the
sample skewness and kurtosis. Fisher made explicit
use of the moment generating function (which Fisher
called characteristic function even though his defini-
tion did not involvei = /—1), and established a sym-
bolic relationship between a joint MGF of a set of
random variables and a joint MGF of functions of these
random variables when the first MGF is evaluated at
the origin. From this relationship and under the nor-

&(t;0) = (logr — C1)

(5.8) et (

1

—i;a>, i=0,1,

n

andCi‘f‘j) is a constant given in (C.2) of Appendix C.
Thus, heuristically speaking, the finite solution dif-

fers from the asymptotic solution (5.3) by incorporat-

ing additional “weights” (i.e., in addition tey ands1)

W; (w; ap) when forming the mixture. Of course, the

limit of W;(w; @p) must be free ofw andi in view

of (5.3). This is indeed the case, because it is easy to

verify that for anyx (w) > 0,

lim W;(w;a)

01— 00 mality assumption, Fisher arrived at the identity
o 2 kakbke ... E(k&kbke . ..
=/ t[logs + (y + 109 Be)] exp(—1Ba) dt = B “, 6.1) E( 3K4K5 >= (kgkaks - -)
° K (d" [d15) Miy(12) =0

where y is Euler's constant an@, = M((,l)(o; o) =
MP(0: @) = [ a(@) po(@) pr(@)u(dw) > 0.

Although it is impossible to solve (5.6) analytically
for ap in general, expressions (5.6)—(5.8) allow us to
explore the structure of the finite-sample optimal solu-
tion. For example, we observe that thé; ) function
defined in (5.8), which plays a key role in determining
the finite-sample “weightsW;, also plays a key role in
determining the finite-sample bias of lag because

[ s a)Milj,.(—n’

1—i

wherek; is Fisher'sk statistic of orderj (i.e., k; is
the jth sample cumulant)}fy,(t2) is the MGF ofk;
(= sample variancely, b, c, ... are integers and is
chosen such that the ratio inside the left-hand side is
scale invariant. While (6.1) is a reexpression of Fisher’s
identity for the sake of modern readers, the notation
d" /dt; was explicitly used by Fisher (1930, page 28)
and it was clearly for a fractional derivative, since
only 2r was guaranteed to be an integer. The use of
. a) dt fractional differentiation is more evident from Fisher’s
/ symbolic operations that led to (6.1), where he intro-
= (-Di(cy - ) duced the notatio3Dy'* and DsD5/?, “where D,
; . stands forl/dt,” (Fisher, 1930, page 28).

= (=D'EllogXo —logX1], i=0,1, However, not unusual in his writing, Fisher (1930,
which is the (positive or negative) finite-sample bias of page 28) used these operators “without discussing what
logr,. The extent to which the finite-sample solution meaning should be attached to the fractional indices.”
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In particular, he gave also applied a version of (2.4) to derive exact expres-
dr sions of moments of ratios of central and noncentral
— M, (t2) sample moments when the data are generated from a
dt; 12=0 uniform on the unit interval, and they emphasized the
(6.2) (n+2r=3)---n+Dn—-1 , power of the MGF method in obtaining these finite-
- (n—21r o sample results. It is with the same emphasis that this

paper attempts to unify and extend various results as
given in Section 2, and the presented applications are
which, of course, i (k5) = aZ’E(XnZ[l)/(n -1, as intended to demonstrate the usefulness of these identi-
can be verified from (2.8) witlX = an_l_ It is possi- ties in finite-sample theoretical studies, such as the one
ble that Fisher had first obtained (6.2) for integemd  that Fisher (1930) pursued.

then formally generalized it to nonintegein the ob-

vious way. For the normal problem, this generalization EPILOGUE

turns out to be irrelevant since s always an integer
save for the odd moments which necessarily vanish” .
(Fisher, 1930, page 25), because the numerator on th inds of moments, many more than most of our text-

right-hand side of (6.1) is zero when B odd and thus OOKS, hgve ever taught us. Thg possibility .Of. qsing
these operators “find in fact only zero terms on which (0.3) is simply endless, because it works for infinitely

to operate” (Fisher, 1930, page 28). It would certainly Many pairs ok andh that satisfy (0.2) (cf. Gradshteyn

be interesting to learn what meaning Fisher would have 21d Ryzhik, 1992), as emphasized by Cressie and
attached to these operators had he chosen to work witf3°rkent (1986). For example,

nonnormal distributions, because how to define a frac- X o0
tional differentiation operator was still a topic of dis- E[—} :fo cosht) Mx (1) dr

X2-1
cussion and research more than four decades later (e.g., o
Ross, 1975; Johnson, 1975). when P(X > 1) = 1. Although the majority of these

Fisher's symbolic method is difficult to apply in gen- identities remain at mpst a mathematical c_uriosity, our
eral without the normality assumption, as Bowman and knowledge about their existences can bring us some
Shenton (1992) demonstrated. The simplicity under thehappy (research) moments, as the examples in this ar-
normality comes from the fact that the ratio in the ficle intend to demonstrate.
left-hand side of (6.1) is independent of its denom- In addition, our toolkit can be further expanded if we
inator (because the ratio is scale invariant) and thusreplace the Laplace transform by the Fourier transform
the expectation of the ratio is the ratio of expectations, OF €ven by a hybrid transform such &1 X+2"],
which leads to (6.1). In an earlier work where he intro- Wherei = v/—1, as suggested by Professor K. Lange
duced the celebratedstatistics, Fisher (1929) worked in @ personal exchange.
out how to obtainE (k4k5k---) via a joint MGF; Of course, all these would be stories for another day,
thus what his symbolic approach effectively accom- if you have a second moment.
plished was to evaluat& (k5) through therth deriva-
tive of My, (1) atr = 0, a predecessor of (2.8). Although APPENDIX A: PROOFS FOR SECTION 2
Fisher's method is not very effective without the inde-

) . PROOF OF LEMMA 1. Choose arns such that
pendence structure, it made it clear that the moments ofM 0) exists wh —e F q i
a ratio, including fractional moments, can be obtained . .X’Y(tl’ ) exists whenjzi| < ¢. For anyx and pos
directly from the joint MGF of its numerator and de- itive y,

n>2,

Moment generating functions indeed generate all

nominator, which is the central theme for the later work . |rx ]! o ex
discussed in this paper. Furthermore, it directly stimu- Z It exp(—rny) <e" +e
lated more workable approaches, such as (2.8). Al j=0 7V

For example, in an attempt to overcome the difficulty if |11] <& andrp > 0.

with Fisher's method, Bowman and Shenton (1992) ar-

rived at (2.8) witha = 1/2, which they used to obtaina Since the right-hand side of (A.1) is integrable with
series expansion of the mean of the sample standardespect toP under our assumption, we can inter-
deviation from a modified normal distribution. They change integration with summation (by Theorem 16.7
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of Billingsley, 1995, page 211) to obtain
00 tj _
Y LEXIe )
— jl
j=0

= E[exp(t1X — 2Y)]

= Mx y(t1, —12)

It follows then (see Billingsley, 1995, page 543) that,
for any integek > 0 andr > 0, M)((li’f) (0, —t1/%) exists
and is given by

forall |r1] <e, t2> 0.

(A2) MEP O —1Y") = E[x* exp(—1YY)].

Let B(X,Y;1) = XFexp(—t?Y). Sincex¥/v? is
quasi-integrable, we have, sa[(X*)*/Y"] < cc.
Then

o . +
E[/O (B(X,Y;1)) dt]
- E[(Xk)“L /oo exp(—tl/bY)dt}
0

(xXH*
—F(b—i—l)E[ v ]<oo

Consequently, by Fubini’s theorem (for quasi-
integrability; see Neveu, 1965, Chapter I111.2) and

by (A.2), My (0, —1Y/") £ E[B(X,Y;1)] is quasi-
integrable with respect to;, and (2.4) holds. O

PROOF OFLEMMA 2.
since

For anyr; > 0 ands > 0,

o
Y (rxl /jh) exp(—t1x — t2y) < exp(—(t1 — |t])x),
j=0
which is integrable with respect ® when|t| < 71, we
have (again by Theorem 16.7 of Billingsley, 1995)
j=0 J!

=Mxy(@—1t1,—12)

E(X’ exp(—nX —12Y))

forany|7| < #1.

It follows then (again see Billingsley, 1995, page 543),

for any positive integek, that

MY (—n, E[X*exp(—t1 X — t2Y)]

if 1 > 0 andr > 0.

—1) =

The rest of the proof follows trivially from Fubini's
theorem, noting that the value M)(([,“Y]’O)(—tl, —1p) at
t1 = 0 is not relevant for (2.11).

X.-L. MENG

PROOF OFTHEOREM 2.
andr, let

hi(x, y;t1,t2)

For any positivex, y, #1

(A.3) sin(rt)

t
= xyexp(—tx — t2y)< 2) ,
f

Tt

where the indext is an arbitrary real number and
the right-hand side of (A.3) is defined to be -
exp(—t1x — t2y) whent = 0. Since

1)?/
=LY G
j=0 ’
itis easy to see that (x, y; 11, t2) is differentiable with
respect ta to any order. Furthermore, for a given pos-
itive integerk and 1> ¢ > 0, one can find a constant
c(g, k) such that

. (i

sin(rmt)
wt

for all |7]| < o0,

sup

[t|<e

<c(e,k)xyexp(—t1x —12y)

() =)
11 11
- (1+ |logto — logr1|%).
Since the right-hand side of (A.4) is integrable in
(t1, 2) with respect ton] whene < 1, the following

interchange of integration with differentiation is justi-
fied by the dominated convergence theorem (DCT):

o o0

/0 /0 xy exp(—11x — 12y)&k (11, 2) dr1 dt2
_/"O/“{a]‘hz(x,y;tl,tz)
B otk
—{mk/ / hi(x, y;t1, tz)dtldtz} I

ak X k
= {ﬁ<§> |,_,= (09 ~logy"

In deriving (A.5), we used the identity(1 — 1)I"(1 +
t)=mt/sin(mt) for0O<r < 1.

Now suppose that(logX — logY)* is quasi-
integrable with respect toP, say, E[((logX —
logY)")t] < co.Let B(X, Y; 11, 12) = XY exp(—11X —
2Y)gr(t1,12) and B;(X,Y;t1,t2) = XY exp(—11 X —
2Y)(logty —logt1)',i =0,1,2,.... Then from (2.13)
we have

(B(X,Y;11,12)"

[k/2]

< Y o il(Br—2; (X, Yi11,2) "
=0

F*ne(x, y; 11, 12) ‘
ark

(A.4)

} drrdto
(A.5) =0

(A.6)
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Using the fact that((a + b))* < 2-1[((@)))* +
((b)))*] for any positive integet, we have(B; (X, Y;
)t < 271XYexp—nX —nY)[|log(tY) —
log(t1.X)|" + ((logY — logX)")*]. This implies that
forany 1<i <k,

E[/O /o (Bi(X,Y;11,12) " dry dtz}

< Zi‘l{/c)oo /Ooo exp(—s1 — s2)

- [log(sz/s1)|" ds1ds2

E[((log(X/ Y )] + 1}

< Q.

It follows then, by (A.6), DCT and Fubini’s theo-

rem, thatB(X,Y; 11, 2) is quasi-integrable with re-
spect toP x )L;, which implies thatE[B(X, Y; t1, t2)]
is quasi-integrable with respect Ec;F Using a simi-

lar argument as for (A.2), one can easily show that

(11)( 1, —t2) = E(XY exp(—11 X — 1Y) for any

t1 > 0 andr, > 0. Therefore, M(1 1)( t1, —12) gk (t1,
1) = E[B(X,Y; 1, t)] is quasi-integrable with re-

spect toxgr and (2.14) holds because of (A.5) and

Fubini's theorem.
Next we suppose, without loss of generality, that

(M (11)( 11, —12) gk (1, 12))

My (—11, —12) (g (11, 12)*

is integrable with respect ta3. It follows immedi-
ately by Fubini’'s theorem tha& (X, Y; 11, t2) IS quasi-
integrable with respect t& x ){ since

/ - / Y EUBX, Y: 1, 1)) Fld diz
— f / MED (—11, —12) (g (11, 12)) " drrdts

By Fubini’s theorem and (A.5),

o0 o0
(logX — logY )k é/ / B(X,Y;t1,t2)dt1dtn
o Jo

is quasi-integrable with respect fband (2.14) holds.

Identities (2.15)—(2.17) follow from (2.14) because

g1(11, tz) = |09¢2 — logr1 and ga(r1,12) = (logrz —
log1)?
the following facts: [5°e™" |Ogtdt =T = —y,
fgle(logn?dt = T"(1) = y? + =?/6 and
157 Jo° M(1 l)( f1, —t2)dt1dt, = 1, which is (2.14)
whenk = 0 O

N(O, (;

whereT =

— 72/3. To simplify the expressions, we used

APPENDIX B: DERIVATION OF E(ry)
IN SECTION 4
, , . iid
Without loss of generality, we can assun@, S
1)). With a simple rotation we have

-1
Z:l 1 Xi)i

[/z" L2 [y ;yz} - E[fffz]

i=1%i

E(rn)=E

To apply Theorem 1, we first calculate

Mx y,,v,(t1, 12, 13)
_{ 1
IR EINEG
[ ool -z nem-n ()]
P 5 Yy y
n—1
-dxdy} ,

(572) and= = (;

1 n—1
- (FrE—m)

= |l —x1|"("" b2

7). Thus,

Mx vy, v,(t1, 12, 13)

= [(1 - 2r2) (1 — 2t3) — 4p°tat3

—2p1y — (1 - pAef] V2

and

1,0,0
M (0, —ta, —t3)

B (n—="Dp
 [4ra13(1 — p?) + 212 + 13) + 1] HD/2]

Since Mx.y, v,(t1,0,0) exists for (at least)r1| <
(1+ p)~tand E(|r,|) < 1, we can apply Theorem 1
WthL=1,M =0,N=2andk1 =1,b1 =br=1/2)

to obtain
(n="Dp
E(r) = 2P
EYEIE!
@D [ [dda-A

4205 +13) + 1) "V 2 anydrs,
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With the transformations, = ./rsind and r3 =
J/rcosd, (B.1) becomes (4.4).

APPENDIX C: DERIVATION OF OPTIMAL «
IN SECTION 5

To derive the optimab: that minimizesR,([g?nl, we

follow the calculus of variations approach with a sim-
ple modification to accommodate the constraint that
is positive. We note that for any(w) that is bounded
on ©, we can find arg; > 0 such that whete| < g,
[1+ eh(w)]a(w) is positive on2. Now if ap mini-
mizesR,,, then& (e) £ R{EEM*0) must achieve its
minimum ate = 0 and thust’(0) = 0. This implies,
from (5.4) and (5.5), that

o0
f [Go(t; @0, h) + G1(t: o, )] di =0,
0

where, fori =0, 1,

Gi(t;ap, h)
M (s/ni; (L+ eh)ao)
de ds (6=0,5=—1)
-[(logn)? — 2¢{*) logt]
(C.1)
2@ o . _t ‘ ,
=A; T (DE;| exp SOOD1-i aopi1-ih
1
1 o
— —B; (¢
e (1)
! 2
- Ei|exp O P1- (@pp1-i)°h
with
S
i 0 i n.’
(C.2) ’
t
. Mi(l)(—n—i; ao) logrdt,
A@0) () — 3[fM,-rli71(—f/"i;Oéo)]
(C3) ' ot

-[(ogr)? — 2¢{*9 logt],

1t
B (1) = 1M 1(— —; ao>
n;

(C.4)
-[(ogt)? — 2¢{#9 log1].

i
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It follows then, by interchanging the integrations,
that

O:/;z{/ooo[Ag"O)(t) exp(—nLoozo(w)Pl(w)>

+ A% 1) exp(—nilao(w) po(a)))] dt

| [ B exp( - Lao@pe) ) ar]
0 no

(C.5) ' Oto(wn)(l)ﬂl(w)
- [ TG exp(—iao(w)pow)) dr}
0 ni
@0(w) po(w) }
ni

-0 (w) po(@) pr(w)h(w)p(dw).

This implies, becausk(w) is arbitrary besides being
bounded, that the expression inside the brace of (C.5),
as a function ofw, must be zero o2 almost surely
with respectu(w). This yields, after an integration by
parts as implied by (C.3) and (C.4),

/ &o(t; 0) exp(—LaO (a))pl(a))) dt
0 no

(C.6) o .
+ [Cae Oto)exp(——oto(w)l?o(w)> di
0 ni

=0,

whereé; (t; ap) is given by (5.8). Using the fact that
ffem®ds = (1— e )/a and the fact that ifro (v)
satisfies (C.6), thenw o (w) must satisfy (C.6) for any

¢ (# 0) that is independent @ becausé, 2 Fea [SEE
(5.2)], we can rewrite (C.6) as (5.6).
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