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Spatial Statistics
Ted Chang

Abstract. When the distribution ofX ∈ R
p depends only on its distance to

someθ0 ∈ R
p, we discuss results from Hössjer and Croux and Neeman and

Chang on rank score statistics. Similar results from Neeman and Chang are
also given whenX and θ0 are constrained to lie on the sphere inR

p. Re-
sults from Ko and Chang onM estimation for spatial models in Euclidean
space and the sphere are also discussed. Finally we discuss a regression type
model: the image registration problem. We have landmarksui on one image
and corresponding landmarksVi on a second image. It is desired to bring
the two images into closest coincidence through a translation, rotation and
scale change. The techniques and principles of this paper are summarized
through extensive discussion of an example in three-dimensional image reg-
istration and a comparison of theL1 andL2 registrations. Two principles
are important when working with spatial statistics: (1) Assumptions, such as
that the distribution ofX depends only on its distance toθ0, introduce sym-
metries to spatial models which, if properly used, greatly simplify statistical
calculations. These symmetries can be expressed in a more general setting by
using the notion of statistical group models. (2) When working with a non-
Euclidean parameter space� such as the sphere, techniques of elementary
differential geometry can be used to minimize the distortions caused by using
a coordinate system to reexpress� in Euclidean parameters.

Key words and phrases:Nonparametric statistics, directional statistics,
spherical regression, image registration.

1. INTRODUCTION

Spatial statistics arises when the data are points in
some Euclidean space, usuallyR

2 or R
3, or some sur-

face, usually the unit circle or the unit sphere (which
we denote by�2 and �3, resp.). For example, we
might have a satellite image of an Arctic ice floe and a
data point consists of the locationX of a marker pre-
viously placed on the floe. Since the ice floe is on the
surface of the Earth, in principleX ∈ �3. More conven-
tionally, one notes that the ice floe is unlikely to travel
away from the Arctic. Using a “flat Earth” approxima-
tion to map the Arctic into the plane, we can think of
X ∈ R

2.
This example illustrates one important class of ap-

plications of spatial statistics: the data consist of the
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measured locations of points. Especially in the earth
sciences, the points are on the surface of the Earth
and, hence, spherical statistics are important. However,
spherical and, more generally, spatial statistics have
arisen in a plethora of contexts (see, e.g., Fisher, Lewis
and Embleton, 1987).

Suppose the “true” location ofX ∈ R
2 is θ0 ∈ R

2.
We might wish to assume that

the distribution ofX depends only

on its distance fromθ0.
(1.1)

Letting f (x; θ0) denote the density ofX, it can be
shown that this condition implies

f (Cx;Cθ0) = f (x; θ0)(1.2)

for any matrixC of the form

C = R(ρ) =
[

cos(ρ) −sin(ρ)

sin(ρ) cos(ρ)

]
.
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Equation (1.2) is also true if

C = R =
[

1 0
0 −1

]

or, more generally, any matrixC of the formR(ρ)R.
A second way to understand the condition (1.2) is

to think of C as a change of basis matrix. Matrices
of the formR(ρ) [resp.R(ρ)R] are exactly those for
which the rows form an orthonormal basis [with the
same (resp. opposite) orientation as the original basis].
In this interpretation the condition (1.2) is equivalent to

the distribution ofX does not depend on

which orthonormal basis is used to write it

as a two-dimensional vector.

(1.3)

Thus spatial statistics is often very different from
conventional multivariate statistics. For example, if the
components ofX were to be the height (in inches) and
weight (in pounds) of an individual, condition (1.3)
would be very unnatural. In particular, it would change
meaning if centimeters and kilograms were used in-
stead.

The matrices of the formR(ρ) form a group, de-
noted bySO(2), in the sense of abstract algebra. Sim-
ilarly, the matrices of the formR(ρ)Rδ, δ = 0,1, form
a group, conventionally written asO(2). When condi-
tion (1.2) holds, we are said to have astatistical group
model. Spatial statistical models are often statistical
group models and when this occurs, we see that the
usual asymptotic calculations are usually greatly sim-
plified.

Suppose now thatX andθ0 lie in the sphere�3 and
that condition (1.1) holds. An example of such a distri-
bution is theFisher–von Mises–Langevindistribution
on�3 whose density is

f (X; θ0) = c(κ)exp(κXT θ0),(1.4)

whereκ is aconcentration parameterandc(κ) is a nor-
malizing constant. The mode of (1.4) isθ0. For largeκ ,
X is concentrated close toθ0 and its distribution ap-
proaches a (singular) multivariate normal distribution
with covariance matrixκ−1(I3 − θ0θ

T
0 ).

Since XT X = θT
0 θ0 = 1, X and θ0 have only two

independent components. For the purpose of doing
the usual asymptotic calculations, we are tempted to
rewrite them as two-dimensional vectors. Thus we
are finding a map� :R2 → �3 and doing our calcu-
lus in R

2. For example, if we calculate in latitudeα
and longitudeβ, we are implicitly using the map
�(α,β) = [cos(πα/180)cos(πβ/180)cos(πα/180) ·

sin(πβ/180)sin(πα/180)]T . We refer to such a� as
acoordinate system.

Unfortunately, it is the bane of map makers that there
is no map� such that the distances on�3 correspond
to distances onR2. Thus if condition (1.1) holds on�3,
it will be destroyed by the map�. Our calculations will
be complicated by a plethora of terms whose sole math-
ematical purpose is to undo the distortions introduced
by the artifical map�.

Mathematicians long ago introduced constructions
in elementary differential geometry to solve this prob-
lem. As we later see, if these constructions are used,
much beautiful and simple structure in the distribution
theory for the estimators in spatial statistics becomes
manifest. The focus of this paper is not to summarize
results in spatial statistics that can be found elsewhere
(and are cited below), but rather to give a heuristic un-
derstanding of the use of the mathematical tools from
differential geometry and group theory. Traditionally
the tools of differential geometry are explained at a
substantially higher level of detail and abstraction, but
we take the attitude that, at the level we need them,
they are simple generalizations of the constructions of
multivariable calculus. The goal of this paper is that
the reader will find the citations more natural and less
mysterious.

In this paper, Euclideanp-dimensional space is
written as R

p and the unit sphere inRp written
as �p. Thus �2 is the circle and�3 is the sphere,
which can be used to represent the Earth on which
we live. Elements ofRp and �p are represented as
p-dimensional vectors. In the mathematical literature
�p is usually written asSp−1.

In general dimensions, ap × p matrix C satis-
fies (1.2) exactly whenCT C = Ip, whereIp is ap × p

identity matrix. Such matrices form a group denoted
by O(p). If we add the condition det(C) = 1, we
get the groupSO(p). GroupsSO(2) and SO(3) rep-
resent the rotations inR2 or R

3, respectively, whereas
O(2) andO(3) represent the rotations and reflections.

The S-Plus code used in this paper is posted on the
websitewww.stat.virginia.edu.

2. RANK SCORE STATISTICS ON EUCLIDEAN
SPACES AND SPHERES

For X1, . . . ,Xn ∈ R
1, the Wilcoxon rank scoresta-

tistic is defined by

W(θ) = ∑
i

R(|Xi − θ |)S(Xi − θ),(2.1)
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whereR(|Xi − θ |) is the rank of|Xi − θ | among|X1 −
θ |, . . . , |Xn − θ | andS(X − θ) is the sign ofX − θ .
If the Xi are i.i.d. with a densityf (x) which depends
only on |x − θ0| for someθ0 ∈ R

1, then:

S(X1 − θ0), . . . , S(Xn − θ0) are i.i.d. with

Pr
(
S(Xi − θ0) = 1

)
(2.2)

= Pr
(
S(Xi − θ0) = −1

) = 0.5.

All permutations of

R(|X1 − θ0|), . . . ,R(|Xn − θ0|)(2.3)

are equally likely.

R(|X1 − θ0|), . . . ,R(|Xn − θ0|)
are independent of(2.4)

S(X1 − θ0), . . . , S(Xn − θ0).

Properties (2.2)–(2.4) are sufficient to derive the distri-
bution ofW(θ0); see, for example, Hettmansperger and
McKean (1998).

To see how to generalize the Wilcoxon (or more
generally rank score statistics) to arbitrary Euclidean
spaces, note that�1 = {x ∈ R

1 | |x| = 1} = {±1}.
For X, θ ∈ R

p define

S(X − θ) = (X − θ)/‖X − θ‖ ∈ �p,(2.5)

where‖X − θ‖ = √
(X − θ)T (X − θ). Under the as-

sumption thatX1, . . . ,Xn are i.i.d. with a distribution
which satisfies (1.1), (2.2) becomes

S(X1 − θ0), . . . ,S(Xn − θ0)

are i.i.d. uniformly distributed on�p.
(2.6)

Under the same assumptions, if we letR(‖Xi − θ‖)
be the rank of‖Xi − θ‖ among ‖X1 − θ‖, . . . ,
‖Xn − θ‖, then (2.3) and (2.4) hold with only the most
minor change of notation. Under this reinterpretation,
the Wilcoxon statistic (2.1),W(θ0) ∈ R

p, and the prop-
erties of its null distribution can be easily derived. For
example, we have the following theorem whose proof
follows readily from Lemma 2.2:

THEOREM 2.1. SupposeX1, . . . ,Xn ∈ R
p are

i.i.d. with a distribution which satisfies(1.1).Then

E[W(θ0)] = 0,

Cov[W(θ0)] = n(n + 1)(2n + 1)

6p
Ip.

LEMMA 2.2. SupposeS is uniformly distributed
on�p. ThenE[S] = 0 andCov[S] = p−1Ip.

PROOF. Clearly E[S] = 0 and Cov[S] is a multi-
ple of Ip. Now TrCov[S] = Tr E[SST ] = E[Tr SST ] =
E[ST S] = 1. �

Additional results onW(θ0) as well as other rank
score statistics are given in Neeman (1995), Neeman
and Chang (2001) and Hössjer and Croux (1995).
Möttönen and Oja (1995) developed a Wilcoxon sta-
tistic for Euclidean space models which satisfy (1.2)
for the group{±I}.

For spherical data, we use the following lemma,
a formal proof of which can be found, for example, in
Watson (1983).

LEMMA 2.3. SupposeX, θ0 ∈ �p and the distrib-
ution ofX satisfies(1.1).Let t = XT θ0 and

S(X; θ0) = X − tθ0√
1− t2

.(2.7)

Then t and S(X, θ0) are independent andS(X, θ0)

is uniformly distributed on�p−1(θ
⊥
0 ) = {v ∈ R

p |
vT v = 1,vT θ0 = 0}.

Notice thatθ⊥
0 = {x | xT θ0 = 0} defines a(p − 1)-

dimensional hyperplane ofRp, �p−1(θ
⊥
0 ) is the unit

sphere in that hyperplane andX − tθ0 is the projection
of X ontoθ⊥

0 .
Some insight into the geometric reasonableness of

Lemma 2.3 can be obtained by considering the Earth,
represented as�3. First of all, the spherical distance
betweenX andθ0 is ρ = arc cos(t). If we are located
at θ0 we can specify a pointX ∈ �3 by giving its dis-
tance and direction fromθ0. By custom, directions are
given in terms of North and East, but this description
does not work whenθ0 is the North Pole (and all direc-
tions point South) or whenθ0 is the South Pole (and all
directions point North). If we were to stand atθ0 and
point in the direction ofX, we would be specifying a
unit length vectorv which is perpendicular toθ0, that
is, a vectorv ∈ �p−1(θ

⊥
0 ), andS(X; θ0) is exactly the

unit length vector in the direction ofX from θ0. Indeed

X =
√

1− t2S(X; θ0) + tθ0

= sin(ρ)S(X; θ0) + cos(ρ)θ0.
(2.8)

By assumption (1.1), the distribution ofX depends
only onρ and all directions are equally likely. This is
what Lemma 2.3 says.

The correct definition for the spherical Wilcoxon is
now reasonably clear. GivenX1, . . . ,Xn ∈ �p, we use
S(Xi; θ0) as the “sign” ofXi from θ0. It is tempting to
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TABLE 1
Sample spherical Wilcoxon calculations

Xi S(Xi;θ0) Ti Ri

0.3993 0.8968 −0.1908 0.3614 0.3891 0.8474 0.9434 13
0.2506 0.8197 −0.5150 −0.9356 0.1420 −0.3231 0.9988 1
0.1906 0.7646 −0.6157 −0.6209 −0.2337 −0.7482 0.9865 6
0.1869 0.8792 −0.4384 −0.7536 0.5208 0.4012 0.9900 3
0.0646 0.5260 −0.8480 −0.3941 −0.3727 −0.8401 0.8712 15

−0.3406 0.5451 −0.7660 −0.8076 −0.0661 −0.5860 0.7257 16
0.8794 0.4101 −0.2419 0.9551 −0.2460 0.1655 0.7151 17
0.6012 0.5413 −0.5878 0.8090 −0.4920 −0.3215 0.9125 14
0.5091 0.6287 −0.5878 0.7729 −0.5118 −0.3751 0.9563 11
0.5624 0.7199 −0.4067 0.9500 −0.1971 0.2420 0.9558 12
0.4636 0.6873 −0.5592 0.8049 −0.4944 −0.3280 0.9762 9
0.3971 0.7164 −0.5736 0.6629 −0.5520 −0.5058 0.9875 5
0.4238 0.8318 −0.3584 0.6981 0.1729 0.6949 0.9817 8
0.4147 0.8140 −0.4067 0.8105 0.0627 0.5823 0.9886 4
0.3676 0.7538 −0.5446 0.7071 −0.5388 −0.4580 0.9947 2
0.1355 0.8554 −0.5000 −0.9468 0.3190 −0.0416 0.9862 7
0.1144 0.7223 −0.6820 −0.6314 −0.2260 −0.7418 0.9627 10

rank the spherical distances arc cos(XT
i θ0). However, if

ρ = π in (2.8),X = −θ0 for any choice ofS(X; θ0). It
follows that if Xi is close to−θ0 and we assign a high
rank to such anXi , the corresponding Wilcoxon will
be unstable with small changes inXi . For this reason,
Neeman (1995) and Neeman and Chang (2001) defined
the spherical Wilcoxon forθ ∈ �p as

WS(θ) = ∑
i

R
(
arc cos(|XT

i θ |))S(Xi; θ)(2.9)

and we note thatWS(θ) ∈ θ⊥. In essence they ranked
a pointXi by its distance to the closer ofθ0 and−θ0.
We now have the following theorem:

THEOREM 2.4. SupposeX1, . . . ,Xn ∈ �p are
i.i.d. with a distribution which satisfies(1.1).Then

E[WS(θ0)] = 0,

Cov[WS(θ0)] = n(n + 1)(2n + 1)

6(p − 1)
[Ip − θ0θ

T
0 ].

For example, Fisher, Lewis and Embleton (1987)
gave 17 measurements of magnetic remanence from
specimens collected from the Tumblagooda Sandstone
in Western Australia. The data, converted into Euclid-
ean coordinates, are given in Table 1. We test ifθ0 =
(0.2962,0.8138,−0.5000), which is the Euclidean co-
ordinates for a declination of 70◦ and an inclination
of −30◦ (θ0 has been arbitrarily chosen for illustrative
purposes only).

Table 1 also gives the values of the signS(Xi; θ0),
Ti = XT

i θ0 and the corresponding ranksRi . No-
tice we rank arc cos(|Ti |), not Ti . Summing,WS =∑

i RiS(Xi; θ0) = (34.2676,−27.0342,−23.7008).
Using Theorem 2.4,10710

12 ‖WS‖2 = 2.764 should be
compared to aχ2

2 distribution, and we fail to reject the
null hypothesis atα = 0.05.

The set ofθ which are not rejected can be used to
produce a 95% confidence region. The resulting region,
together with the data, is shown in Figure 1.

We refer the reader to Neeman (1995) and Neeman
and Chang (2001) for further discussion of rank score
statistics for spherical data. The example is discussed
more exhaustively in Neeman and Chang (2001).

FIG. 1. The95%confidence region for modal direction.
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3. M ESTIMATION IN STATISTICAL MANIFOLDS

From the viewpoint of a directional data analyst,
when spheres have been conquered it is natural to look
at other surfaces (ormanifolds) in R

p. Downs (1972),
Rancourt, Rivest and Asselin (2000) and Jupp and
Mardia (1989) gave some examples of this type of data.

The precise mathematical definition of a manifold is
somewhat abstruse. Somewhat loosely, ad-dimensio-
nal manifoldM is a subset ofRp, for somep, which
can be written as a union of open setsUi such that
eachUi has a 1–1 bicontinuous mapφi :Ui → R

d

(i.e.,φi andφ−1
i are continuous). For example, we can

map any portion of the Earth bicontinuously ontoR
2

and this implies that�3 is a two-dimensional manifold
in R

2. Notice, however, that any map of the entire Earth
must cut the Earth somewhere (such as at the North
and South Poles and the International Date Line for the
most common projection), and hence at least twoUi ’s
are needed.

Lemma 2.3 is the basis for the definition of the spher-
ical Wilcoxon and other rank score statistics on�p.
For reasons given in Chang and Tsai (2003), I believe
(but have not proven) that Lemma 2.3 cannot be gen-
eralized to more than a very small collection of man-
ifolds, principally Euclidean spaces and spheres. For
other manifolds, fully nonparametric inference may
not be possible andM estimation offers a useful al-
ternative.

So supposeX1, . . . ,Xn in the sample spaceX are
i.i.d. with a densityf (x; θ) for someθ in the man-
ifold �. Given an objective functionρ0(x; θ), the M
estimatêθ minimizes the objective function

ρ(θ) = ∑
i

ρ0(Xi; θ).(3.1)

For example, supposeX = � = �p. Then we could
use the sum of the spherical (great circle) distances
ρ0(x; θ) = arc cos(xT θ). The resultinĝθ is called the
spherical medianand was introduced by Fisher (1985).
Alternatively, we could use the sum of the linear
(through the Earth) distancesρ0(x; θ) = ‖x − θ‖ =√

2− 2xT θ , which yields the so-callednormalized
spatial median. Another common choice is theL2 es-
timator, which usesρ0(x; θ) = ‖x − θ‖2. In this case,
θ̂ = X/‖X‖ is thespherical mean.

For M estimators when� = R
p and under regular-

ity conditions, Brown (1985) showed that
√

n(θ̂ − θ0)

is asymptotically multivariate normal with mean0 and
covariance matrixB(θ0)

−1A(θ0)B(θ0)
−1, where the

matrices are defined by

A(θ0)ij = Covθ0

[
∂

∂θi

∣∣∣∣
θ=θ0

ρ(X; θ)

(3.2)

· ∂

∂θj

∣∣∣∣
θ=θ0

ρ(X; θ)

]
,

B(θ0)ij = Eθ0

[
∂

∂θi

∣∣∣∣
θ=θ0

ρ(X; θ)

(3.3)

· ∂

∂θj

∣∣∣∣
θ=θ0

log(f (X; θ))

]
,

whereθ = (θ1, . . . , θp). [There are several forms forB
which are all equivalent whenEθ0ρ(X; θ) has a critical
point atθ = θ0. Equation (3.3) is a slight generalization
of the third form given by Hettmansperger and McK-
ean (1998), equation (6.1.2). Under the same condition,
B is symmetric.]

Our reformulationA and B for manifolds is simi-
lar to previous reformulations of Fisher information.
These reformulations require the notion of atangent
vectorto the manifold.

Equation (2.8) can be used to understand how tan-
gent vectors can be defined for general manifolds (at
least those embedded in some Euclidean space). Sup-
pose we fixv = S(X; θ0) and lets = ρ vary in (2.8).
We get a curve

γ (s) = sin(s)v + cos(s)θ0(3.4)

which satisfiesγ (s) ∈ �p ⊆ R
3 for all s, γ (0) = θ0

andγ ′(0) = v. Here,γ ′(0) is the derivative ofγ as a
mapR

1 → R
3. So for a manifold� and a pointθ0 ∈ �,

we define thetangent spaceto � at θ0 to be {γ ′(0)},
whereγ (s) is a curve in� ⊆ R

p [so thatγ (s) ∈ � for
all s] with γ (0) = θ0.

Here is a simple lemma which establishes that for
spheres�p, the new definition (in terms of derivatives
of curves) of a tangent vector atθ0 ∈ �p coincides with
the old definition (a vectorv such thatvT θ0 = 0).

LEMMA 3.1. Let γ (s) be a curve in�p. Then
γ ′(0)T γ (0) = 0. Conversely, if v ∈ θ⊥

0 , thenv = γ ′(0)

for some curveγ (s) in �p with γ (0) = θ0.

PROOF. Sinceγ (s) ∈ �p for all s, 1= γ (s)T γ (s).
Therefore, 0= d

ds
γ (s)T γ (s) = γ ′(s)T γ (s) + γ (s)T ·

γ ′(s) = 2γ ′(s)T γ (s), where the last equality follows
since bothγ (s) andγ ′(s) are column vectors. The con-
verse assertion is established by (3.4).�

To reformulate Fisher information suppose, tem-
porarily,� = R

p. The Fisher information matrixI (θ0)
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is the matrix whose(i, j)th entry is

I (θ0)ij = Eθ0

[
∂

∂θi

∣∣∣∣
θ=θ0

log(f (X; θ))

· ∂

∂θj

∣∣∣∣
θ=θ0

log(f (X; θ))

]
.

(3.5)

Notice that ifγ1, γ2 are curves inRp with γ1(0) =
γ2(0) = θ0, then

(γ ′
1(0))T I (θ0)(γ

′
2(0))

= Eθ0

[
d

ds

∣∣∣∣
s=0

log
(
f (X, γ1(s))

)

· d

dt

∣∣∣∣
t=0

log
(
f (X, γ2(t))

)]
,

(3.6)

where the left-hand side of (3.6) is matrix multiplica-
tion. Equation (3.6) follows from (3.5) and the chain
rule

d

dt

∣∣∣∣
t=0

g(γ (t)) =
p∑

i=1

∂

∂θi

∣∣∣
θ=θ0

g(θ)vi,

whereg :Rp → R
1 andγ (t) is any curve inRp with

γ (0) = θ0 andγ ′(0) = (v1, . . . , vp).
Notice that the right-hand side of (3.6) makes sense

for any manifold. Thus we can define, for general�

and θ0 ∈ �, Fisher information atθ0 to be an inner
product, defined on the tangent space to� at θ0 by

〈v,w〉I (θ0) = Eθ0

[
d

ds

∣∣∣∣
s=0

log
(
f (X, γ1(s))

)

· d

dt

∣∣∣∣
t=0

log
(
f (X, γ2(t))

)](3.7)

for any curvesγ1, γ2 in � with γ1(0) = γ2(0) = θ0 and
γ ′

1(0) = v, γ ′
2(0) = w. The notation on the left-hand

side of (3.7) is designed to emphasize that we are think-
ing of Fisher information as aRiemannian metricon�,
that is, a family of inner products, one inner product on
each tangent space of�.

This approach to Fisher information has long been
known. It was used, for example, by Reeds (1975) to
explain the nonexistence of variance stabilizing trans-
formations for multivariate parameters.

Similarly we redefineA and−B as Riemannian met-
rics (the conventional definition ofB makesB negative
definite on each tangent space) using

〈v,w〉A(θ0) = Covθ0

[
d

ds

∣∣∣∣
s=0

ρ(X, γ1(s))

(3.8)

· d

dt

∣∣∣∣
t=0

ρ(X, γ2(t))

]

and

〈v,w〉B(θ0) = Eθ0

[
d

ds

∣∣∣∣
s=0

ρ(X, γ1(s))

(3.9)

· d

dt

∣∣∣∣
t=0

log
(
f (X, γ2(t))

)]
.

The advantages of using (3.7)–(3.9) instead of their
matrix formulations is that they allow us to compute
them without choosing any particular coordinate sys-
tem. We then apply these calculations using a conve-
nient coordinate system, one that generally depends
on θ0. This is our approach for avoiding the map
maker’s dilemna discussed in the Introduction. We il-
lustrate this using the sphere�p in the following theo-
rem.

THEOREM 3.2. SupposeX1, . . . ,Xn ∈ �p are
i.i.d. with a densityf (x; θ0), for θ0 ∈ �p, which satifies
log(f (x; θ)) = g(xT θ). Supposêθ is theM estimator
which minimizes an objective function of the form(3.1),
whereρ0(x; θ) = ρ̃0(xT θ). Letψ(t) = −ρ̃′

0(t). Then

〈v,w〉I (θ0) = E[g′(t)2(1− t2)]
p − 1

vT w,

〈v,w〉A(θ0) = E[ψ(t)2(1− t2)]
p − 1

vT w

and

〈v,w〉B(θ0) = −E[ψ(t)g′(t)(1− t2)]
p − 1

vT w.

Let � : θ⊥
0 → �p be defined by�(sv) = sin(s)v +

cos(s)θ0, wherev ∈ θ⊥
0 has unit length. Let ĥ ∈ θ⊥

0 be
defined by�(ĥ) = θ̂ . Then

√
n ĥ is asymptotically sin-

gular multivariate normal,

Np

(
0,

(p − 1)E[ψ(t)2(1− t2)]
E2[ψ(t)g′(t)(1− t2)] (Ip − θ0θ

T
0 )

)
.

PROOF. Let γ (s) be a curve in�p with γ (0) = θ0

andγ ′(0) = v. Then

d

ds

∣∣∣∣
s=0

log
(
f (X;γ (s))

)

= d

ds

∣∣∣∣
s=0

g(XT γ (s))

= g′(XT γ (0))XT γ ′(0)

= g′(t)vT (
X − (XT θ0)θ0

)
,

where we have used above thatv ∈ θ⊥
0 . Therefore, us-
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ing Lemma 2.3 and then Lemma 2.2,

〈v,w〉I (θ0)

= vT E

[(
g′(t)2(1− t2)

)(X − (XT θ0)θ0√
1− t2

)

·
(

X − (XT θ0)θ0√
1− t2

)T ]
w

= E[g′(t)2(1− t2)]vT Ip − θ0θ
T
0

p − 1
w

= E[g′(t)2(1− t2)]
p − 1

vT w.

The calculations ofA andB follow similarly. Now

�(0) = θ0,
d

ds

∣∣∣∣
s=0

�(sv) = v(3.10)

for all v ∈ θ⊥
0 . Write θ = �(h) for h ∈ θ⊥

0 , f �(x;h) =
f (x;�(h)) and ρ�

0 (x,h) = ρ0(x;�(h)). Then for
v,w ∈ θ⊥

0 ,

〈v,w〉A�(0)

= Cov�
0

[
d

ds

∣∣∣∣
s=0

ρ�(X, sv)
d

dt

∣∣∣∣
t=0

ρ�(X, tw)

]

= Covθ0

[
d

ds

∣∣∣∣
s=0

ρ(X,�(sv))
d

dt

∣∣∣∣
t=0

ρ(X,�(tw))

]
= 〈v,w〉A(θ0),

where the last equality follows from (3.10). The re-
mainder of the theorem follows by applying Brown’s
(1985) results tof � andρ�

0 as a density and objective
function on the Euclidean spaceθ⊥

0 . �
Several points about Theorem 3.2 should be made.

First, ĥ measures the deviation of the estimateθ̂

from θ0. Letting v = ĥ/‖ĥ‖ and recalling the dis-
cussion of Equation (3.4), the curveγ (s) = �(sv)

describes a great circle connectingθ0 to γ (‖ĥ‖) =
�(̂h) = θ̂ . Thus‖ĥ‖ is the spherical distance of̂θ from
θ0 andĥ/‖ĥ‖ represents the direction of the deviation
of θ̂ from θ0. In Euclidean space, we represent the de-
viation of θ̂ from θ0 by the Euclidean vector̂θ − θ0; for
manifolds, we need to use a tangent vectorĥ at θ0.

Second, instead of focusing on the distribution ofθ̂ ,
we focus on the distribution of thedeviation(as mea-
sured bŷh) of θ̂ from θ0. This is sufficient for statistical
inference. In the first problem of elementary statistics,
it is analogous to constructing confidence intervals by
using an estimateX and noting that the distribution of

X − µ is N(0, σ 2/n). It is also consistent with the ap-
proach used in nonlinear regression.

Finally, although no distance preserving coordinate
system is possible everywhere on�p, the map� is,
to first order, nondistorting in the region of inter-
est, namely theθ close toθ0. The precise required
conditions on� are given by (3.10). The map� is
essentially a “polar projection” centered atθ0. This
is our solution to the map maker’s dilemma: To map
Australia, a polar projection centered at the North Pole
would be highly deceptive, whereas centering the pro-
jection at Ayer’s Rock would be excellent. The coor-
dinate system to be used depends on the area to be
mapped.

The map� approximates�p close toθ0 by its tan-
gent spaceθ⊥

0 . This is quite natural: Calculus teaches
us to linearly approximate functions using tangent
lines.

Kirkwood, Royer, Chang and Gordon (1999) gave an
example (from paleomagnetism) in which it is shown,
by simulation, that the curvature effects inherent in
nonlinear regression are lower when the coordinate
system� is used on�3 instead of latitude and longi-
tude. Chang (1993) gave an example from plate tecton-
ics in which� = SO(3), the group of rotations ofR3

[note that the position of a rigid body moving on�3
relative to its past position at fixed time is given by an
element ofSO(3)]. It is shown there that if a coordinate
system� on SO(3) which depends onθ0 (in a similar
way to dependence of�) is used, vastly simpler formu-
las result than when a popular fixed coordinate system
for SO(3) is used.

The constant (p − 1)−1E[ψ(t)2(1 − t2)], and
henceA, can be estimated from a sample by(np −
n)−1 ∑

i ψ( t̂i )
2(1 − t̂ 2

i ), wheret̂i = XT
i θ̂ . Notice that

this estimate does not require choice of a particular
form for f . The following proposition from Chang
(1986) allows for “nonparametric” estimation ofB.

PROPOSITION3.3. We have

E[ψ(t)g′(t)(1− t2)]
= (p − 1)E[ψ(t)t] − E[ψ ′(t)(1− t2)].

Recall that theasymptotic relative efficiency(ARE)
of two estimatorŝθ1 andθ̂2 is

ARE(θ̂1, θ̂2) = lim
n→∞ Cov(θ̂2)/Cov(θ̂1)(3.11)

whenever the right-hand side of (3.11) makes sense.
For example, under the assumptions of Theorem 3.2,
if Ai andBi are theA andB matrices of̂θi , then (in
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any coordinate system of�p) A1,A2,B1 andB2 are
all multiples of each other. It follows that Cov(θ̂2) is a
multiple of Cov(θ̂1) and the following corollary holds.

COROLLARY 3.4. SupposeX1, . . . ,Xn ∈ �p are
i.i.d. and the assumptions of Theorem3.2 hold. Let
θ̂1 andθ̂2 beM estimators withψ functionsψ1 andψ2,
respectively. Then

ARE( θ̂1, θ̂2) = E2[ψ1(t)g
′(t)(1− t2)]

E[ψ1(t)2(1− t2)]

· E[ψ2(t)
2(1− t2)]

E2[ψ2(t)g′(t)(1− t2)] .
For example, the maximum likelihood estimator

for the Fisher–von Mises–Langevin distribution (1.4)
is the spherical mean [ψ(t) = t ]. Comparing it to
the spherical median [ψ(t) = 1/

√
1− t2] and us-

ing (2.2.2) from Watson (1983), we get

ARE(spherical median,spherical mean)

= E2[√1− t2]
E[1− t2]

=
[∫ 1

−1
eκt (1− t2)(p−2)/2 dt

]2

·
([∫ 1

−1
eκt (1− t2)(p−1)/2 dt

]

·
[∫ 1

−1
eκt (1− t2)(p−3)/2 dt

])−1

.

(3.12)

When p = 3, (3.12) is due to Fisher (1985) and, in
this case, (3.12) is a decreasing function ofκ and ap-
proachesπ/4 asκ → ∞. For generalp,

lim
κ→∞ ARE(spherical median,spherical mean)

= 2�2(p/2)

(p − 1)�2((p − 1)/2)
.

(3.13)

These results on the asymptotic distribution ofM esti-
mators on�p were derived by Ko and Chang (1993).
For Euclidean space data we have similar results (see
Chang and Ko, 1995):

THEOREM 3.5. SupposeX1, . . . ,Xn ∈ R
p are

i.i.d. with a densityf (x; θ0) which satisfies condi-
tion (1.1). Let θ̂ be theM estimator which minimizes
an objective function of the form(3.1),whereρ0(x, θ0)

depends only on‖x − θ0‖. Then

〈v,w〉I (θ0) = 4E[g′(s)2s]
p

vT w,

〈v,w〉A(θ0) = 4E[ψ(s)2s]
p

vT w

and

〈v,w〉B(θ0) = 4E[ψ(s)g′(s)s]
p

vT w,

where we writelog(f (X, θ0)) = g(s), ρ0(X, θ0) =
ρ̃0(s) and ψ(s) = ρ̃′

0(s) with s = ‖X − θ0‖2. There-
fore,

√
n( θ̂ − θ0) is asymptotically distributed

Np(0, kIp), where

k = pE[ψ(s)2s]
4E2[ψ(s)g′(s)s] .

PROPOSITION3.6. We have

E[ψ(s)g′(s)s] = −E[ψ ′(s)s + (p/2)ψ(s)].
COROLLARY 3.7. SupposeX1, . . . ,Xn ∈ R

p are
i.i.d. and the assumptions of Theorem3.5 hold. Let
θ̂1 andθ̂2 beM estimators withψ functionsψ1 andψ2,
respectively. Then

ARE( θ̂1, θ̂2) = E2[ψ1(s)g
′(s)s]

E[ψ1(s)2s]
E[ψ2(s)

2s]
E2[ψ1(s)g′(s)s] .

The spatial median, introduced by Brown (1983),
minimizes

∑
i ‖Xi − θ‖. He showed that if theXi are

distributedNp(0, σ 2Ip), then

ARE(spatial median,X ) = 2�2((p + 1)/2)

p�2(p/2)
,(3.14)

a result which also follows from Corollary 3.7.
Notice that the right-hand sides of (3.13) and (3.14)

become identical ifp is replaced byp − 1 in (3.14).
This is hardly surprising since ifX ∈ �p has the distri-
bution (1.4), then asκ → ∞, X becomes increasingly
close toθ0 and hence the curvature of�p becomes
irrelevant. We have also noted that the distribution of
X approaches a singular normal distributionNp(θ0,

κ−1(Ip − θ0θ
T
0 )).

Furthermore (3.14) increases withp. Thus, for ex-
ample, ifp = 3, the use of the spatial median protects
against long tailed distributions at the modest cost (in
standard error terms) of(3π/8)1/2 − 1 = 8% when, in
fact,X would have been optimal.

4. IMAGE REGISTRATION IN EUCLIDEAN SPACE

Suppose we have fixedui ∈ R
p and independent ran-

domVi ∈ R
p, such that the distribution ofVi depends

only on ‖Vi − γ0C0ui − b0‖ for someC0 ∈ SO(p),
b0 ∈ R

p and positive real numberγ0. The numberγ0
is interpreted as a scale change. Although the results
outlined below can be generalized to arbitrary dimen-
sions, for the sake of simplicity, we restrict attention to
the cases of greatest practical interestp = 2,3.
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This model arises in the problem ofimage registra-
tion. We have two images (usually at different times)
of the same object. Theui represent the position of
some landmarks on one image and theVi represent the
position of the same landmarks on the second image.
We are interested in estimating the best rotationC and
translationb to bring the images into alignment.

Alternatively, we might have a prototypical shape,
say of a kidney. We have an image of a kidney and we
want to find the rotation and translation to bring the im-
aged kidney into closest alignment with the prototypi-
cal kidney shape. This might be a prelude to automatic
processing of a large number of kidney images.

Chang and Ko (1995) provided a data set that con-
sists of the digitized locations of 12 pairs of landmarks
on the left and right hands of one of the authors. These
data are replicated in Table 2. Because of the opposite
orientation of the left and right hands, one of the hands
must first be reflected (in any plane) before finding the
rotation, translation and scale change to best bring the
two hands into alignment. This is essentially a three-
dimensional image registration.

Let �
Ṽ

be the matrixn−1 ∑
i (Ṽi − Ṽ)(Ṽi − Ṽ)T .

The eigenvalues of�
Ṽ

are 4.80, 3.31 and 0.56. The
eigenvector that corresponds to the smallest eigenvalue
is the direction of the least variation in the measured
points of the right hand and is presumably perpendic-
ular to the plane of the palm. We reflect theṼi around
this plane. This turns the right hand into a left hand and
produces the new pointsVi shown in Table 2.

Forp = 2 let� :R1 → SO(2) be defined by�(h) is
the rotation ofh radians around thez axis forh ∈ R

1.
Forp = 3,� :R3 → SO(3) is defined by�(h) is right-
hand rule rotation of‖h‖ radians around the axish/‖h‖
for h ∈ R

3. For generalp, � is defined using a matrix
exponential map.

Chang and Ko (1995) rewroteC ∈ SO(p) in the form
C = C0�(h). Notice, in this way,SO(p) is parameter-
ized close toC0 by a coordinate system which depends
on C0. The following theorem was proved in Chang
and Ko (1995).

THEOREM 4.1. Let u1, . . . ,un ∈ R
p be fixed. Let

V1, . . . ,Vn ∈ R
p be independent random vectors such

that the density ofVi is of the formf (v;γ0C0ui + b0)

for someγ0 > 0 ∈ R
1, C0 ∈ SO(p), b0 ∈ R

p. Assume
log(f (x; θ)) = g(s) with s = ‖x − θ‖2. Writeβ = b +
γ Cu.

Supposêγ , Ĉ and β̂ minimize an objective func-
tion of the form

∑
i ρ0(Vi;γ C(ui − u ) + β), where

ρ0(x, θ) = ρ̃0(s) with s = ‖x − θ‖2. Write ψ(s) =
ρ̃′

0(s). Finally, let � = n−1 ∑
i (ui − u )(ui − u )T .

Then, asymptotically:

(i) γ̂ , Ĉ, and β̂ are independent.
(ii)

√
n(β̂ − β0) is Np(0, kIp).

(iii) (a) If p = 2, write Ĉ = C0�( ĥ ) for ĥ ∈ R
1.

Then
√

n ĥ is asymptoticallyN(0, k/Tr(�)).
(iii) (b) If p = 3,write Ĉ = C0�( ĥ ) for ĥ ∈ R

3. Let
� = λ1ξ1ξ

T
1 + λ2ξ2ξ

T
2 + λ3ξ3ξ

T
3 be the spectral de-

composition of�. Then
√

n ĥ is asymptotically trivari-

TABLE 2
Twelve digitized locations on the left and right hands

Left hand ui Right hand Ṽi Flipped right hand Vi

A 5.17 11.30 16.18 5.91 11.16 16.55 6.28 12.72 16.73
B 7.40 12.36 17.50 8.63 10.62 18.33 8.86 11.60 18.44
C 8.56 12.59 17.87 10.09 10.60 18.64 10.16 10.90 18.67
D 9.75 13.62 17.01 10.89 10.95 17.90 10.76 10.40 17.84
E 11.46 14.55 12.96 12.97 10.13 13.88 13.19 11.04 13.98
F 7.10 13.12 12.56 8.79 11.21 13.17 9.00 12.11 13.27
G 8.85 13.82 12.60 10.70 11.10 13.42 10.75 11.30 13.44
H 6.77 13.07 10.32 8.47 11.09 11.35 8.86 12.74 11.54
I 6.26 11.62 13.34 7.28 12.52 14.04 7.03 11.46 13.92
J 6.83 12.00 13.83 8.05 12.42 14.56 7.73 11.09 14.41
K 7.94 12.29 13.84 9.07 12.39 14.86 8.64 10.60 14.66
L 8.68 12.71 13.67 10.15 12.17 14.44 9.73 10.40 14.24

NOTE. A, top of little finger; B, top of ring finger; C, top of middle finger; D, top
of forefinger; E, top of thumb; F, gap between thumb and forefinger; G, center of
palm; H, base of palm; I, little finger knuckle; J, ring finger knuckle; K, middle finger
knuckle; L, forefinger knuckle.
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ate normal with mean0 and covariance matrixk[(λ2+
λ3)

−1ξ1ξ
T
1 + (λ3 + λ1)

−1ξ2ξ
T
2 + (λ1 + λ2)

−1ξ3ξ
T
3 ].

(iv)
√

n(γ̂ − γ0) is N(0, k/Tr(�)), where

k = pE[ψ(s)2s]
4E2[ψ(s)g′(s)s]

= pE[ψ(s)2s]
4E2[ψ ′(s)s + (p/2)ψ(s)] .

(4.1)

Examining Theorem 4.1, we see that the asymptotic
covariance of(γ̂ , Ĥ, β̂ ) is determined up to a con-
stantk by the geometry of theui (as summarized by
the matrix�). Only the constantk depends on the den-
sity or on the objective function, and this constantk is
the same as in Theorem 3.5.

Another consequence of Theorem 4.1 is that the as-
ymptotic relative efficiencies of Corollary 3.7 also ap-
ply to the image registration problems. In particular,
to protect against outliers (perhaps misidentified land-
marks), we could use theL1 estimator ofC0, b0 andγ0,
which minimizes

∑
i ‖Vi − γ Cui − b‖, instead of

the more conventionalL2 estimator, which minimizes∑
i ‖Vi − γ Cui − b‖2. Whenp = 1, this results in a

penalty (in standard error) of
√

π/2 − 1 = 25% for
normal errors when theL2 estimator is optimal. How-
ever, the penalty decreases withp and is only 8% when
p = 3.

Indeed, lets̃i and ŝi be the square residual lengths
for theL1 andL2 fits, respectively, and letk1 andk2 be
the respective constantsk in Theorem 4.1. Using (4.1)
with ψ( s̃i) = 1/

√
s̃i andψ(̂si) = 1, we have for the

hands datâk1 = 0.023 and̂k2 = 0.086. Notice that if
the errors in theVi were normal, Corollary 3.7 would
imply thatk1/k2 = 3π/8 = 1.18. For the hands data set
k̂1/k̂2 = 0.26. A quick and dirty estimate (computed by
Taylor linearization) of the standard error in this ratio
is 0.23. It is likely that the data come from a distribu-
tion which is long tailed relative to the normal distrib-
ution.

The L1 and L2 estimated values ofγ are γ̂1 =
1.0086 and γ̂2 = 0.9925, respectively. Using The-
orem 4.1(iv), we calculate that the standard errors
of these two estimates are 0.0150 and 0.0293, re-
spectively. Thus we cannot reject the null hypothesis
γ = 1—that the two hands have the same size.

Notice that ifĈ = C0�( ĥ ), thenC0 = Ĉ�( ĥ )T =
Ĉ�(−ĥ ). Therefore, using Theorem 4.1(iii)(b), an as-

ymptotic confidence region forC has the form{
Ĉ�(h)

∣∣∣ n

k

[
(λ2 + λ3)(hT ξ1)

2

+ (λ3 + λ1)(hT ξ2)
2

+ (λ1 + λ2)(hT ξ3)
2] < χ2

3,α

}
,

(4.2)

whereχ2
3,α is an appropriate critical point of aχ2 dis-

tribution with 3 degrees of freedom. Recall that�(h) is
the rotation of‖h‖ radians around the axish/‖h‖. Thus
the region (4.2) expresses the possibleC in the form
of a small rotation�(h) followed by the best fit rota-
tion Ĉ.

The eigenvalues of� = n−1 ∑
i (ui − u )(ui − u )T

areλ1 = 5.004,λ2 = 3.255 andλ3 = 0.105. The vari-
ablesξ1 andξ2 are in the directions of the length and
width of the left hand, andξ3 is in the direction of the
normal to the plane of the left palm. From (4.2), we can
see that the covariance ofh is largest in the direction
ξ1 and smallest in the directionξ3.

If a rotation of φ = ‖h‖ radians around the axis
ξ = h/‖h‖ is applied to a pointpi = ui − u, thenpi is
moved a distance of approximatelyφ · (distance ofpi

to ξ). Let Wi = γ̂ −1ĈT (Vi − β̂ ) be the back trans-
formedVi under the estimateŝγ , Ĉ, β̂. If we fix φ and
vary ξ , we see that fit of thepi to theWi will be more
degraded if the distances of thepi to ξ are large than if
they are small. Alternatively, ifξ is chosen so that the
distances of thepi to ξ are small, then, for the same
degradation of the best fit,φ is less constrained than if
the distances of thepi to ξ are large. This is why the
covariance ofh is largest in the directionξ1 (the length
of the hand) and smallest in the directionξ3 (the normal
to the palm).

This example was further explored by Chang and Ko
(1995). The emphasis there is to study the influence
of the data on the estimateŝC, β̂, and γ̂ . Their tech-
niques could be used if, for example, the image reg-
istration were unsatisfactory in some aspect (rotation,
translation or scale change) and one wanted to deter-
mine which points should be reinspected.

5. STATISTICAL GROUP MODELS

Recall that if X, θ0 ∈ �p satisfy condition (1.1),
then (1.2) will follow for all C in the groupSO(p).
If X, θ0 ∈ R

p satisfy condition (1.1), thenf (Cx +
b;Cθ0 + b) = f (x; θ0) for all (C,b) with C ∈ SO(p)

andb ∈ R
p. Such(C,b) form the group ofEuclidean

motions.
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Usually spatial statistical models exhibit a great deal
of symmetry and such symmetry is expressed using a
statistical groupmodel. In a statistical group model,
we have a groupG, a sample spaceX and a para-
meter space�, together with mapsG × X → X and
G × � → �. The images of(g,X) and (g, θ) under
these maps are usually denoted byg · X andg · θ , and
we assume thegroup actionconditions(g1g2) · X =
g1 · (g2 · X) and 1· X = X, where g1g2 represents
multiplication inG and 1 represents the identity inG.
A similar condition is placed ong · θ . We also assume
Prg·θ [g · X ∈ g · A] = Prθ [X ∈ A] for anyA ⊂ X. Our
objective function is also assumed to satisfy an invari-
ance condition:ρ0(g · x, g · θ) = ρ0(x, θ).

Notice that the forms ofI, A and B in Theorems
3.2 and 3.5 are all of the formcvT w for some con-
stant c. Only the constantsc depend on the precise
form of the densityf or of the objective functionρ.

Chang and Rivest (2001) showed that often the sta-
tistical group model condition places strong restrictions
on the form ofI, A and B. Heuristically speaking in
terms of matrices (these are actually irreducible group
representations),I, A andB often have a block diago-
nal form. The form of the blocks is determined up to
a constant by the action ofG on �. Only the constants
depend on the specific form off andρ.

In our examples ofSO(p) acting on �p or the
Euclidean motions acting onRp, there is only one
“block.” Chang and Rivest (2001) also gave a nu-
merical example, arising from cardiography, with two
“blocks.” In this example, the group action determines
the asymptotic distribution of̂θ up to four constants,
two each forA andB.

Another “coincidence” we have observed is that the
asymptotic relative efficiencies of Corollary 3.7 also
apply to the image registration problem. This is also
a result of the group action: Chang and Tsai (2003)
have shown that to any location statistical group model
there is a corresponding regression group model, and
that theA andB Riemannian metrics of the regression
group model can be derived from those of the location
group model.

6. SUMMARY

Two general principles apply when working with
spatial models:

1. Spatial statistical models are often characterized by
a great deal of symmetry. This symmetry is ex-
pressed using a statistical group model and when
the group structure is properly used, many statisti-
cal calculations are greatly simplified.

2. Spatial statistical models also often have a parame-
ter space� which is aq-dimensional manifold in
some Euclidean spaceRp. To do statistical compu-
tations it is often necessary to reexpress� in q coor-
dinates. To avoid distortions caused by the choice of
coordinates, it is advisable to choose a coordi-
nate system which depends on the true parameter
θ0 ∈ �.

By properly applying these two principles, we are
able to reach statistical insights which are mathe-
matically natural and elegant, and which lead to a
deeper understanding than obtained from simple num-
ber crunching.
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