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Comparing Variances and Other
Measures of Dispersion
Dennis D. Boos and Cavell Brownie

Abstract. Testing hypotheses about variance parameters arises in contexts
where uniformity is important and also in relation to checking assumptions
as a preliminary to analysis of variance (ANOVA), dose-response model-
ing, discriminant analysis and so forth. In contrast to procedures for tests on
means, tests for variances derived assuming normality of the parent popula-
tions are highly nonrobust to nonnormality. Procedures that aim to achieve
robustness follow three types of strategies: (1) adjusting a normal-theory test
procedure using an estimate of kurtosis, (2) carrying out an ANOVA on a
spread variable computed for each observation and (3) using resampling of
residuals to determinep values for a given statistic. We review these three
approaches, comparing properties of procedures both in terms of the theoret-
ical basis and by presenting examples. Equality of variances is first consid-
ered in the two-sample problem followed by thek-sample problem (one-way
design).

Key words and phrases: Comparing variances, measures of spread, permu-
tation method, resampling, resamples, variability.

1. INTRODUCTION

Tests for equality of variances are of interest in
a number of research areas. Increasing uniformity is
an important objective in quality control of manu-
facturing processes (e.g., Nair and Pregibon, 1988;
Carroll, 2003), in agricultural production systems (e.g.,
Fairfull, Crowber and Gowe, 1985) and in the devel-
opment of educational methods (e.g., Games, Winkler
and Probert, 1972). Biologists are interested in differ-
ences in the variability of populations for many rea-
sons, for example, as an indicator of genetic diversity
and in the study of mechanisms of adaptation.

Procedures for comparing variances are also used as
a preliminary to standard analysis of variance, dose–
response modeling or discriminant analysis. For ex-
ample, SAS PROC TTEST presents theF test for
equality of variances as a tool for choosing between the
pooled variancet and the unequal variances Welcht .
The POOL= TEST option in SAS PROC DISCRIM
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uses Bartlett’s test of equal covariance matrices to de-
cide between fitting linear and quadratic discriminant
functions (SAS Institute, 1999). Fifty years ago, the
use of such nonrobust variance procedures before rel-
atively robust means procedures prompted Box (1953,
page 333) to comment, “To make the preliminary test
on variances is rather like putting to sea in a row-
ing boat to find out whether conditions are sufficiently
calm for an ocean liner to leave port!” It is unfortunate
that procedures condemned in 1953 are still in prac-
tice today, and Box’s comment is still relevant. On the
other hand, more robust procedures for testing equal-
ity of variances are now available, although many are
not easily implemented with commercial software. Our
plan is to describe the development and properties of
these more robust procedures and so encourage their
use.

Testing equality of variances, or other measures of
scale, is a fundamentally harder problem than com-
paring means or measures of location. There are two
reasons for this. First, standard test statistics for mean
comparisons (derived assuming normality) are natu-
rally standardized to be robust to nonnormality via the
central limit theorem. (Here we refer torobustness of
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validity, that is, whether test procedures have approx-
imately the correct level.) In contrast, normal-theory
test statistics for comparing variances are not suitably
standardized to be insensitive to nonnormality. Asymp-
totically, these statistics are not distribution-free, but
depend on the kurtosis of the parent distributions. Sec-
ond, for comparing means, a null hypothesis of iden-
tical populations is often appropriate, allowing the use
of permutation methods that result in exact level-α test
procedures for any type of distribution. For variance
comparisons, a null hypothesis of identical populations
rarely makes sense—at minimum, we usually want to
allow mean differences in the populations. Given that
it is necessary to adjust for unknown means or loca-
tions, permutation procedures do not provide exact,
distribution-free tests for equality of variances, because
after subtracting means, the residuals are not exchange-
able.

There are three basic approaches that have been used
to obtain procedures robust to nonnormality:

1. Adjust the normal theory test procedure using an
estimate of kurtosis (Box and Andersen, 1955;
Shoemaker, 2003).

2. Perform an analysis of variance (ANOVA) on a
data set in which each observation is replaced by a
scale variable such as the absolute deviation from
the mean or median (Levene, 1960; Brown and
Forsythe, 1974). A related procedure is to perform
ANOVA on the jackknife pseudo-values of a scale
quantity such as the log of the sample variance
(Miller, 1968).

3. Use resampling to obtainp values for a given
test statistic (Box and Andersen, 1955; Boos and
Brownie, 1989).

Assuming normality leads naturally to tests about
variance rather than to tests about other measures of
dispersion. Approach 1 above is thus related to vari-
ance comparisons. The ANOVA and resampling meth-
ods, however, can be used with statistics that focus
on other measures of dispersion. A reason for empha-
sizing variances is that variances (and standard de-
viations) are the most frequently used measures of
dispersion and are building blocks in the formulation
of many statistical models. On the other hand, test
procedures that are based on alternative measures of
scale, such as the mean absolute deviation from the
median (MDM), can have superior Type I and Type II
error properties. In fact, taking these properties into
account, as well as simplicity of computation and in-
terpretation, lead us to recommend approach 2, using

ANOVA on the absolute deviation from the median
as the best procedure. This was also the recommen-
dation of the comprehensive review and Monte Carlo
study of Conover, Johnson and Johnson (1981). In
situations where power is more important than com-
putational simplicity, we recommend a bootstrap ver-
sion (approach 3) of this procedure (see Lim and Loh,
1996).

In Section 2 we briefly review the difference be-
tween asymptotic properties of normal-theory tests for
variances and for means. Important ideas in the de-
velopment of procedures robust to nonnormality using
the three approaches above, as well as Monte Carlo
estimates of performance, are reviewed in Section 3.
Several specific methods for the two- andk-sample
problems are described in more detail. Examples are
given in Section 4, followed by concluding remarks in
Section 5.

2. ASYMPTOTIC BEHAVIOR OF NORMAL-THEORY
TESTS FOR VARIANCES

In the groundbreaking papers by Box (1953) and
Box and Andersen (1955), a clear distinction was made
between the Type I error robustness of tests on means
and the nonrobustness of tests on variances. Box, in
fact, coined the term “robustness” in his 1953 paper.
We briefly outline the differences in robustness of the
two types of tests in the two-sample andk-sample de-
signs.

Our notation for the generalk-sample problem is
as follows. LetX11, . . . ,X1n1, . . . ,Xk1, . . . ,Xknk

be
k independent samples, each sample being i.i.d. with
distribution functionGi(x), mean µi and variance
σ 2

i , i = 1, . . . , k. The sample means and variances are
�Xi = n−1

i

∑ni

j=1 Xij ands2
i = (ni − 1)−1 ∑ni

j=1(Xij −
�Xi)

2, respectively, and the pooled sample mean and
variance are�X = N−1 ∑k

i=1 ni
�Xi and s2

p = (N −
k)−1 ∑k

i=1(ni − 1)s2
i , respectively, whereN = n1 +

· · · + nk .
We first consider the case of two samples and the

pooledt statistic:

tp = �X1 − �X2√
s2
p(1/n1 + 1/n2)

.

Under the null hypothesisH0 :µ1 = µ2 and assuming
equal variances in the two populations,tp is asymptot-
ically a standard normal random variablefor any type
of population distributions G1 andG2. Thus, if the two
populations have equal variances,tp will be asymptoti-
cally distribution-free underH0. Moreover, if variances
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are not equal,tp can be replaced by the asymptotically
distribution-free Welcht ,

tW = �X1 − �X2√
s2
1/n1 + s2

2/n2

.

In contrast, consider the logarithm of the normal-
theory test statistics2

1/s2
2 for H0 :σ 2

1 = σ 2
2 , suitably

standardized by sample sizes:

T =
(

n1n2

n1 + n2

)1/2

[logs2
1 − logs2

2].(1)

The usual test is to compares2
1/s2

2 to an F distribu-
tion with n1 − 1 andn2 − 1 degrees of freedom. As-
ymptotically this test is equivalent to comparingT to
a N(0,2) distribution. However, if we assume a com-
mon underlying distribution function for both popula-
tions,G1(x) = F0((x −µ1)/σ1) andG2(x) = F0((x −
µ2)/σ2), then underH0 :σ 2

1 = σ 2
2 , T converges in

distribution to a N(0, β2(F0) − 1) distribution, where
β2(F0) = µ4(F0)/[µ2(F0)]2 is the kurtosis ofF0 and
µi(F0) = ∫ [x − ∫

y dF0(y)]i dF0(x) is theith central
moment ofF0. Some authors use the term “kurtosis”
for γ2 = β2 − 3, butγ2 is more properly called theco-
efficient of excess or kurtosis excess.

Location–scale population models such asF0((x −
µ)/σ) have the same kurtosis as the parentF0. Nor-
mal distibutions have kurtosisβ2 = 3 and thus the
N(0, β2(F0) − 1) distribution is the correct limiting
N(0,2) distribution of (1) when the populations are
normal. However, if the populations have kurtosis
greater than 3, commonly observed with real data,
comparison ofs2

1/s2
2 to an F distribution is asymp-

totically equivalent to comparing a N(0, β2(F0) − 1)

random variable to a N(0,2) distribution. For exam-
ple, the true asymptotic level of a nominalα = 0.05
one-sided test would be

P

(
Z >

√
2

β2(F0) − 1
1.645

)
,

whereZ is a standard normal random variable. Thus, if
β2(F0) = 5, then the asymptotic level is 0.122. Table 1
of Box (1953) gave similar levels for two-sided tests
for comparing two or more population variances. In
fact, the problem is even worse when comparing more
than two variances.

Assuming the populations are normally distributed,
Bartlett’s modified likelihood ratio statistic forH0 :
σ 2

1 = σ 2
2 = · · · = σ 2

k in the k-sample problem is given
by B/C, where

B =
k∑

i=1

(ni − 1) log
s2
p

s2
i

,(2)

C = 1+ 1

3(k − 1)

{[
k∑

i=1

(
1

ni − 1

)]
− 1

N − k

}

andC is a correction factor to speed convergence to a
χ2

k−1 distribution.
Now let us relax the normal assumption and as-

sume that eachGi(x) is from the location–scale fam-
ily generated byF0, Gi(x) = F0((x − µi)/σi). Then
under H0, B and B/C converge in distribution to
(1/2)[β2(F0)−1] times aχ2

k−1 random variable. Thus,
for a test at nominal levelα based onB/C with χ2

k−1
critical values, the asymptotic level will be

P

(
χ2

k−1 >

[
2

β2(F0) − 1

]
χ2

k−1(1− α)

)
,

whereχ2
k−1(1 − α) refers to the upper 1− α quantile

of the χ2
k−1 distribution. For example, when compar-

ing k = 5 population variances, ifβ2(F0) = 5, the true
asymptotic level of a nominalα = 0.05 test is 0.315.

In contrast, the one-way ANOVAF statistic for
means,

F = 1

k − 1

k∑
i=1

ni

( �Xi − �X )2

s2
p

,(3)

with F(k − 1,N − k) critical values is asymptotically
correct for all types of distributionsGi under the null
hypothesis of equal means and assuming equal vari-
ances. Box (1953) and others have pointed out that (3)
is fairly robust to unequal variances in the case of equal
sample sizes.

3. DEVELOPMENT OF TYPE I ERROR
ROBUST METHODS

In this section we explain three basic strategies for
constructing Type I error correct methods for compar-
ing variances or other measures of dispersion. All three
approaches originate from ideas in Box (1953) and in
Box and Andersen (1955). For specific procedures, we
note whether asymptotic validity holds and summarize
results for small sample properties obtained via Monte
Carlo simulations, often citing the large survey study
performed by Conover, Johnson and Johnson (1981) as
well as the more recent studies by Boos and Brownie
(1989), Lim and Loh (1996) and Shoemaker (2003).

3.1 Kurtosis Adjustment of Normal-Theory Tests
on Variances

Box (1953, page 330) commented that an “inter-
nal” estimate of the variation of the sample variances
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s2
i should be used to reduce dependency of a normal-

theory test statistic on kurtosis. In that paper, Box pro-
posed dividing each sample into subsets, computing
the sample variances2

ij for each subset and using (3)
on the logs2

ij . This ad hoc approach actually inspired
the strategies of Section 3.2. The idea of an internal es-
timate of the variation also led to the proposal in Box
and Andersen (1955) to divide the statisticB of (2) by
a consistent estimate, based on sample cumulants, of
(1/2)[β2(F0)−1]. Layard (1973) proposed the less bi-
ased kurtosis estimator

β̂2 = N
∑k

i=1
∑ni

j=1(Xij − �Xi)
4[∑k

i=1
∑ni

j=1(Xij − �Xi)2
]2 .(4)

Conover, Johnson and Johnson (1981) used Layard’s
β̂2 to “correct” Bartlett’s statistic. Thus they compared
B/[C(1/2)(β̂2 − 1)] to percentiles of theχ2

k−1 dis-
tribution and referred to the resulting procedure as
Bar2. In their Monte Carlo study of 56 procedures,
Conover, Johnson and Johnson (1981) found that Bar2
holds its level well for symmetric distributions, but is
liberal for skewed distributions. For example, for the
square of a double exponential distribution withk = 4
and n1 = n2 = n3 = n4 = 10, Conover, Johnson and
Johnson (1981, Table 6) reported that the estimated
level of Bar2 for nominalα = 0.05 is 0.17. Boos and
Brownie (1989) found that Bar2 lost power when com-
pared to bootstrapping of Bartlett’sB/C, especially for
largek, sayk ≥ 16.

Shoemaker (2003) proposed several approximate
F tests for the two-sample case by matching mo-
ments of log(s2

1/s2
2) with the moments of the loga-

rithm of anF random variable. The estimated degrees
of freedom use Layard’s estimate of kurtosis (4). For
k > 2, Shoemaker proposed using a sum of squares on
log s2

i , standardized using (4), withχ2
k−1 percentiles.

Shoemaker’s simulations suggest that, similar to Bar2,
the procedures hold their level fairly well for symmet-
ric distributions, but can be liberal for skewed distribu-
tions.

3.2 ANOVA on Scale Variables

Levene (1960) proposed using the one-way ANOVA
F statistic (3) on new variablesYij = |Xij − �Xi |
or, more generally,Yij = g(|Xij − �X|), where g is
monotonically increasing on(0,∞). Miller (1968)
showed that ANOVA on Levene’s variables|Xij − �Xi |
will be asymptotically incorrect if the population
means are not equal to the population medians (essen-
tially requiring symmetry) and that the problem can be

corrected by using medians instead of means to center
the variables. Brown and Forsythe (1974) and Conover,
Johnson and Johnson (1981) studied the small sam-
ple properties of ANOVA onYij = |Xij − Mi |, where
Mi is the sample median for theith sample. Conover,
Johnson and Johnson (1981) found that this procedure,
referred to as Lev1:med, had satisfactory Type I and
Type II error properties for a variety of distributions,
although more recent simulation studies have shown
that Lev1:med can be conservative with corresponding
loss of power (Lim and Loh, 1996; Shoemaker, 2003).
Conover, Johnson and Johnson (1981) also reported
good properties for ANOVA on normal scores of the
ranks of the|Xij − Mi |. The asymptotic validity of
this rank ANOVA has not been demonstrated, however,
and O’Brien (1992) reported loss of power of the rank
ANOVA compared to Lev1:med. Other spread vari-
ables have been proposed with the goal of producingF

tests with good Type I error properties (e.g., O’Brien,
1978, 1979).

Miller (1968) provided the basis for an asymptot-
ically correct approach to develop scale variables to
which the ANOVAF test can be applied. The method
is based on the jackknife and was prompted by Box’s
ANOVA on log s2

ij , the s2
ij being based on splitting

each sample into two or more subsets. Miller applied
his jackknife approach to logs2

i , which is not a scale
estimator, but rather a monotone function of the scale
estimatorsi . The F statistic (3) is calculated on the
jackknife pseudovalues

Uij = ni logs2
i − (ni − 1) logs2

i(j),

where s2
i(j) is the sample variance in theith sample

with Xij left out. Miller (1968) proved that the sample
variances of theUij converge in probability toβ2 − 1
and that the means of the pseudovalues in theith sam-
ple are asymptotically normal with mean logσ 2

i and
variance(β2 − 1)/ni . Together these facts give the
asymptotic correctness of (3) applied to theUij . In
small samples, especially with unequalni , the proce-
dure does not hold its level as well as ANOVA on the
Levene-type variablesYij = |Xij −Mi | (e.g., Conover,
Johnson and Johnson, 1981; Boos and Brownie, 1989).

The beauty of the jackknife approach, however, is
that it can be applied to any chosen scale estimator for
which the jackknife variance estimate is appropriate.
For example, Gini’s mean difference

1(ni

2

) ∑
j<k

|Xij − Xik|(5)
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is a measure of scale that could be used in Miller’s
jackknife-plus-ANOVA method. Although Gini’s mean
difference is not fully robust, it has similar robustness
properties as the mean absolute deviation from the me-
dian. Moreover, as aU statistic it is unbiased for any
sample size and, therefore, the mean of the pseudoval-
ues for each sample is exactly equal to (5).

Procedures based on nonrobust scale quantities such
as s2

i , logs2
i or MDMi are surprisingly powerful for

heavy-tailed distributions. However, in the face of ex-
tremely large outliers, say generated from the Cauchy
distribution, one might want to consider more robust
scale estimators such as those based on trimmed av-
erages of the|Xij − Xik| (e.g., GLG of Boos and
Brownie, 1989, page 73) or single ordered values (Qn

of Rousseeuw and Croux, 1993). For these more ro-
bust scale estimators, the resampling methods of the
next subsection are more appropriate because the cor-
responding jackknife variance estimates are deficient
in small samples.

3.3 Resampling Methods

Box and Andersen (1955, page 16) introduced
the permutation version of the two-sample test of
H0 :σ 2

1 = σ 2
2 with known means based onF ′ =

n2
∑n1

i=1(X1i − µ1)
2/n1

∑n2
i=1(X2i − µ2)

2. They then
transformed to a beta random variable and gave anF

approximation to the permutation distribution involv-
ing the permutation moments that in turn are functions
of the sample second and fourth moments. Estimating
the means then led to an approximateF distribution
(with estimated degrees of freedom) for the standard
test statisticF = s2

1/s2
2. Thus, although motivated by

the permutation approach, this method correctly be-
longs in Section 3.1.

Boos and Brownie (1989) implemented the permu-
tation approach implied by Box and Andersen (1955).
That is, they used the permutation distribution based
on drawing samples without replacement from

�S = {eij = Xij − µ̂i, j = 1, . . . , ni, i = 1, . . . , k},(6)

where theµ̂i are location estimates such as the sam-
ple mean or trimmed mean. They implemented the ap-
proach in the two-sample case forF = s2

1/s2
2 and for a

ratio of robust scale estimators. Note that because the
residualsXij − µ̂i from different samples are not ex-
changeable, such a permutation procedure is not exact,
but Boos, Janssen and Veraverbeke (1989) proved that
the procedure is asymptotically correct for a large class
of U statistics.

Since the permutation method based on�S is not ex-
act, it makes sense to consider sampling with replace-
ment from�S, in other words, to bootstrap resample
from the residualsXij − µ̂i . Formally, the procedure
is to generateB sets of resamples from�S and com-
pute the statistic of interestT for each set of resamples,
resulting in T ∗

1 , . . . , T ∗
B . Then p̂B = {# of T ∗

i ≥ T0}
is an estimated bootstrapp value, whereT0 is the
statistic calculated for the original sample. It might
be more intuitive to think of generating residualse∗

ij

and then adding the location estimatesµ̂i , resulting
in a bootstrap set of resamples(X∗

ij = µ̂i + e∗
ij , j =

1, . . . , ni, i = 1, . . . , k), as is the case for bootstrap-
ping in regression settings. However, test statistics for
comparing scale are invariant to location shifts, so that
adding thêµi back in is not necessary. Note also that
drawing each sample from (6) produces a null situa-
tion of equal variablility (and equal kurtosis, etc.) that
is crucial for the bootstrap to work correctly. We men-
tion this because in applications of the bootstrap to ob-
tain standard errors and confidence intervals, it is more
usual to resample separately from the original individ-
ual samples.

Monte Carlo results in Tables 1–3 of Boos and
Brownie (1989) show minor differences between the
Box–Andersen approach with estimated degrees of
freedom, the permutation approach based on�S and
the bootstrap approach based on�S. Generally, though,
the bootstrap seemed to be the best procedure and so
only bootstrap resampling was studied for thek > 2
cases. In those cases, the bootstrap approach applied
to Bartlett’sB/C statistic in (2) was comparable to the
kurtosis adjusted version ofB/C (called Bar2) in terms
of Type I error, but the bootstrap had an advantage in
terms of power. In fact, bootstrapping can be used to
improve the Type I error (and possibly Type II error)
properties of any reasonable procedure. Thus, Lim and
Loh (1996) found that bootstrapping Lev1:med results
in a procedure that is less conservative and has better
power than usingF percentiles to obtain critical val-
ues. It is also worth noting that bootstrapping a Studen-
tized statistic such as Lev1:med produces better Type I
error rates compared to bootstrapping an unstudentized
statistic likeB/C, due to improved theoretical conver-
gence rates (see, e.g., Hall, 1992, page 150).

3.4 The Case Against Linear Rank Tests

Rank tests are noticeably absent from the robust
methods reviewed. Tests for dispersion based on lin-
ear rank statistics do not compare favorably with other
robust methods for the following reasons:
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1. Linear rank statistics are not typically asymptoti-
cally distribution-free under the null of equal scales
(i.e., do not hold the correct level in large samples)
unless the medians are equal or are known and can
be subtracted (rarely the case, but of course then
permutation methods give exact tests), or the me-
dians are estimated and subtracted before perform-
ing the rank tests and the underlying populations are
symmetric (e.g., Boos, 1986, Theorem 1).

2. Even if the tests hold their level, Klotz (1962) found
that small sample performance of linear rank tests
did not match expectations based on their asymp-
totic relative efficiency (ARE) values. For example,
the normal scores test has ARE= 1 compared to the
F test for normal data. For two samples atn1 = n2
andα = 0.0635, he obtained small sample efficien-
cies from 0.803 to 0.640 as the ratio of scale pa-
rameters ranged from 1.5 to 4. The most powerful
rank test did not perform much better, having ef-
ficiencies from 0.810 to 0.688. Thus Klotz states,
“It appears that the loss in efficiency is inherent in
the use of ranks for small samples with a rather high
price being paid for the insurance obtained with
rank statistics.”

4. EXAMPLE

To facilitate the study of pheromone blend com-
position in two interbreeding moth species (Heliothis
subflexa andHeliothis virescens), Groot et al. (2005)
investigated the use of pheromone biosynthesis acti-
vating neuropeptide (PBAN) to stimulate production
of pheromone in mated females. Total production (and
blend composition) was compared for virgin and mated
PBAN-injected females in each of two seasons for
both species. One of the interesting (and unexpected)
findings was that variation in pheromone amounts
among individuals appeared to be smaller for the mated
PBAN-injected females than for virgin females. We
use these data to illustrate a number of the tests for
variance equality described in Section 3.

Measurements of the total amount of pheromone
(nanograms) produced by females in each of eight
groups are displayed graphically in Figure 1. Table 1
gives summary statistics for each group. The groups
are arranged by species(Hs,Hv), season(1,2) and
PBAN (0= virgin female; 1= mated PBAN-injected
female). The data tend to be right-skewed with evi-
dence of variance heterogeneity. Before carrying out an
ANOVA to compare means, common practice would
be to log-transform or square-root-transform the data.

FIG. 1. Box plots of total pheromone for eight treatment groups:
Hsij refers to the Heliothis subflexa in season i = 1 or i = 2 and
j = 0 (virgin) or j = 1 (injected ). Notation for the four Heliothis
virescens groups is similar.

When interest is in variability, rather than mean re-
sponse, there is less justification for employing a “vari-
ance stabilizing” transformation. We therefore carried
out tests for differences in variation, both on the orig-
inal scale and on square-root-transformed data (a log-
transformation produced negative skewness).

Table 2 gives thep values for the following compar-
isons:

1. Bartlett’s statisticB/C from (2) compared toχ2
k−1

critical values (Bartlettχ2).
2. StatisticB/C divided by (1/2)[β̂2 − 1] compared

to χ2
k−1 critical values (Bar2χ2).

3. Shoemaker’sX2 = ∑k
i=1(ni − 1)(Zi − �Z)2/(β̂2 −

(ni − 3)/ni), whereZi = logs2
i , compared toχ2

k−1
critical values (ShoeX2).

4. The ANOVAF (3) on the|Xij − Mi | compared to
F critical values (Lev1:medF ).

5. StatisticB/C compared to bootstrap critical val-
ues withB = 9999 resamples using fractional 20%
trimmed means in (6) (Bar boot trim).

6. The ANOVAF (3) on the|Xij − Mi | compared to
bootstrap critical values (Lev1:med boot trim).

TABLE 1
Summary statistics for pheromone production

Statistic Hs10 Hs11 Hs20 Hs21 Hv10 Hv11 Hv20 Hv21

Sample size 13 23 13 14 7 9 18 14
Mean 414 201 166 231 196 260 317 279
Std. dev. 261 101 149 106 116 112 194 130
MDM 175 82 103 85 91 95 147 107

NOTE. MDM is the mean absolute deviation from the median.
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TABLE 2
p values for variance equality among groups in the

pheromone study

Test 1 vs. 2 All groups PBAN

Bartlettχ2 0.000 0.002
Bar2χ2 0.056 0.306
ShoeX2 0.049 0.390
Lev1:medF 0.039 0.192 0.058
Bar boot trim 0.028 0.144
Lev1:med boot trim 0.021 0.143

NOTE. PBAN main effect contrast.

To illustrate two-sample tests we consider only
groups 1 and 2, and report the two-tailedp values
in column 1 of Table 2. The Bartlett test is very sig-
nificant, but Layard’ŝβ2 in (4) is 8.7, suggesting that
the Bartlett test cannot be trusted. Each of the five ro-
bust tests suggests that variation is lower in the PBAN-
injected females, with the bootstrapped Bartlett and
Lev1:med having lowerp values than Shoemaker’sX2

and Bar2.
Equality of variances for the eight groups was tested,

ignoring the 23 factorial structure, to illustrate the
k-group analysis. Layard’s estimate ofβ2 for the eight
groups was 6.5. Results for the tests appear in col-
umn 2 of Table 2, and ignoring Bartlettχ2, only the
bootstrap tests are close to significance, agreeing with
Monte Carlo results that show greater power compared
to procedures that utilize an explicit correction for kur-
tosis excess.

With the exception of the bootstrap procedures, test
statistics andp values can be obtained, with a little ef-
fort, using standard software such as SAS (SAS Insti-
tute, 1999). (PROC MEANS followed by a data step
can be used to compute absolute deviations from me-
dians, and also second and fourth central sample mo-
ments.) The Lev1:medF is produced directly fork ≥ 2
groups using the MEANS/HOVTEST= BF option in
SAS PROC GLM. The bootstrap procedures are not
available in any commercial software that we know of.

Finally, to address the question of whether PBAN
increased uniformity of response, Lev1:med was used
to test the main effect contrast for PBAN (easily
computed by applying PROC GLM, followed by a
CONTRAST statement, to the|Xij − Mi | values). The
third columnp value of 0.058 is consistent with the
results for groups 1 and 2, and suggests that variation
in the amount of pheromone produced is lower among
mated PBAN-injected females compared to virgin fe-
males.

When the same analyses are carried out on square-
root-transformed values (not shown), an indication of
increased uniformity among mated PBAN-injected fe-
males is provided by the bootstrapped Bartlett test for
groups 1 and 2 (p value= 0.098) and by the PBAN
main effect contrast (Lev1:med,p value= 0.074).

5. CONCLUDING REMARKS

We have presented the three main approaches for
comparing measures of scale or spread with proper
Type I error control under a range of distributional
types. The computationally simplest Type I error robust
procedure is based on comparing means of the scale
variable Yij = |Xij − Mi |. This appealing approach
(Lev1:med) is based on an efficient scale estimator—
the mean absolute deviation from the median—and
can be generalized to factorial designs and multivari-
ate data.

A number of Monte Carlo studies have found,
however, that in thek-sample problem Lev1:med
has significance levels below the nominal level, and
especially low if the sample sizes are small and odd.
Lim and Loh (1996) demonstrated that this conser-
vatism can be eliminated by using the bootstrap of
Section 3.3, but then the computational simplicity
is lost. Shoemaker (2003) argued persuasively for
kurtosis-adjusted normal-theory methods in situations
where the distributions are approximately symmetric.
Simulations by Shoemaker (2003) and Lim and Loh
(1996) showed good power properties for these meth-
ods whenk ≤ 4. However, our own simulations showed
that for largerk (k = 8 not shown;k = 16,18 in Boos
and Brownie, 1989, Table 6), these methods lack power
compared to Lev1:med (even with the more conserva-
tive F percentiles) and bootstrapping Bartlett’s statis-
tic.

If computational simplicity is not important, we
agree with Lim and Loh’s (1996) recommendation for
the use of Lev1:med with bootstrap critical values.
Moreover, once a decision is made to bootstrap, there
is incentive to consider a statistic based on one of the
more robust scale estimators mentioned at the end of
Section 3.2.
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