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Environmental Tobacco Smoke
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Abstract. Methods are introduced and illustrated for synthesizing evidence
from case-control and cohort studies, and controlled trials, accounting for
differences among the studies in their design, length of follow-up and quality.
The methods, based on hierarchical but nonexchangeable Bayesian models,
are illustrated in a synthesis of disparate information about the health effects
of passive exposure to environmental tobacco smoke.
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1. INTRODUCTION the data. Methods which are sensitive to the probabil-
ity distributions that govern the individual studies’ ob-
served outcomes can make more complete use of study
information and so can lead to more powerful statisti-
cal tests and to shorter credible intervals for uncertain
parameters.

Beginning with Fisher's (1934) early attempt to

The hazards of combining evidence naively from
multiple sources are well known. Even among sources
intended to be homogeneous, such as multi-center con
trolled medical trials, there will be some variation in
patient attributes and treatment regimens. This varia-

tion is strongly ex_acerbated in e_:pidemiological studies avoid the problem of heterogeneity in field trials by
because of differing study designs and methods, and.,yining individual p values to assess the overall
differing population characteristics: designs may vary gjgnificance level, a number of authors have introduced

according to their retrospective or prospective nature, oy e statistical methods intended to quantify an over-
their case-control, cohort or cross-sectional structure, 5| «effect size” and assess its variation. These meth-

length of follow-up, admission and classification cri- ods, referred to collectively aseta-analysis, have

teria, control of biases, consideration of confounders yeen described and compared by many authors, in-

and data collection procedures. Study populations varycluding Hedges and Olkin (1985) and the National Re-
in age structure, diet and other lifestyle factors, genetic search Council review (1992).

makeup, and environmental exposure to competing and pjore recently Bayesian and Bayesian-inspired
contributing risks. Investigators also vary with respect methods have been brought to bear on the meta-
to experience, motivation and skill. All of these issues anglysis problem, starting with the landmark papers
threaten the validity of methods which simply pool py puMouchel and Harris (1983), who introduced
the idea of constructing hierarchical Bayesian mod-
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synthesizing evidence include Berry (1990), Carlin 1.1 Evidence from Individual Studies

(81992),Ih [TUMOZ%C;ZeI L§199(1)§9;996r)1, nggtg)l_ns(;anznd Epidemiological studies offer direct evidence about
piegelhalter ( ) Liao ( ), who combin the conditional probabilities of outcome status (for co-

tables, Morris and Normand (1992), Normand (1999), ot studies) or exposure (for case-control studies) for
Smith, Spiegelhalter and Parmar (1996), Spiegelhalter,ine study populations and, through these, indirect evi-
Thomas, Best and Lunn (2002, in the BUGS software gence about the quantity of interest: usually, some mea-
examples) and Sutton and Abrams (2001). All of these syre of the association between exposure and outcome
approaches make at least some accommodation fokithin the entire population. Evidence is often avail-
study heterogeneity, commonly through inclusion of able about the size and impact of varying age distrib-
a single extra variance term in the hierarchical model utions, misclassification rates, and other confounding
structure, but each treats all the studies as exchangeablteatures and possible biases, but this evidence is rarely
(at least within groups). used in analyses. The methodology we present offers
In many meta-analytic applications the simplifying an opportunity to exploit this evidence.

assumption of exchangeability (de Finetti, 1930) is In a cohort study (CHS) subjects are drawn from a
simply untenable—studies differ too much in their SPecified population and classified as exposed or un-

designs, subject selection criteria or other details for €xPosed (Breslow and Day, 1987). They are then fol-

any analysis that ignores these differences to be conJoWed for ahsp_eci_fied length of timer?nd classified with
vincing. One approach would be to quantify how sim- respect to their disease status. Such studies may be con-

ilar the different studies are to each other (Draper, ducted prospectively or retrospectively. Evidence bears

Hodges, Mallows and Pregibon, 1993) or how similar directly on the condit_ional probabilities of becoming
they are to the target circumstances, and then exclude, oS Pele and pe, in the exposed and unexposed
i . ’ Study arms, respectively, through the likelihood func-

o_rd@c_ountm ad hoc ways those studies regarded gs toQion (Berger and Wolpert, 1988). In the simple case

dissimilar. Another approach, due to Eddy (1989), iSt0 \\here age and other covariates are not considered this

replace each study’s likelihood function with a subjec- g

tive estimate of “what would have been observed” had

that study followed the target circumstances exactly. Lens(Peles Pele)

Eddy coined the term “adjusted likelihood _functlon o (Pele)" (1 — pete)™™ (peje)" (L — pei)e,

for these replacements, a term we employ in our own

(related) approach introduced in Section 2 below. wheren., andng, are the numbers of cases and non-
We propose a different approach: the construction cases among the. exposed subjects, amd; andnz;

of a hierarchical Bayesian model with submodels, for aré the numbers of cases and noncases among the

each study or other source of evidence, that reflect and? Unexposed subjects, respectively. Occasionally these

accommodate important study-specific differences. In conditional probabilities may themselves be useful, but

this coherent approach the investigator begins by specM°"® often interest lies in some measure of their dif-

ifying in detail the target conditions—for example, the ference quantifying the assocu_atlon beMeen outcome
. : . and exposure, such as the simple differerge =

subject population, treatment or exposure details, and — ez, 10g relative riske us = 10G(pete/ peiz) OF

case or outcome details. Each individual study offers f;céeodé:lﬁétio LR = 0GR Pele/ Pele

direct evidence through its likelihood function about

the parameters that govern that particular study, with eLor = 109(pele Peje/ Péle Pelé)-

its specific d3_3|gne,dslilggélond(;nter_la, ahnd 30 for_tl?. We Each of these measures will be positive if greater expo-
construct ardjusted likelinood function that describes ¢ e js associated with higher levels of disease and zero

theindirect evidence offered by each study about the it hey are unrelated, and each can be estimated in a co-
questions of interest to the investigator under the Spec-nort study by its maximum likelihood estimator (MLE)
ified target conditions. Studies conducted under condi-sych asé or = 10g(n¢e n5s/ncz nz). These and other
tions quite similar to the target conditions lend strong measures have been discussed, illustrated and com-
evidence; studies less similar lend more uncertain ev-pared by many authors, including Breslow and Day
idence, leading in a natural way for them to be dis- (1980, Chapter 2), Cox (1970, page 20), Freeman
counted appropriately in an overall synthesis. (1987, pages 66 and 95) and Wolpert (1986).
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A variety of methods (see Berger, Liseo and Wolpert, |
1999) have been proposed for extracting information
about a quantity of interest like amid nuisance para-
meters; the Bayesian approach is to select a conditional
prior distribution w(dp |e) for p = (p¢je, peje) and
summarize the evidence abau@lone byLcys(e) =
[ Lens(p)m(dple). A change of variables to the log
odds ratice = ¢_or and independent Jeffreys’ reference |
priors for both case probabilitigs.. and p.; leads to
the likelihood

Lens(e) oce71(e® — 1yeleet

'/1 pred—pye
0 [1— p(d—ef)retl |
(2) -1, ¢ Nee€ . |'.l-1 1. -;n 1;'..:."
e (en — Dete Odda Ratic A_
2F1(ne+Ln.+1n+2,1—¢%),

Fic. 1. Marginal likelihood (solid) and prior density (dashed)
wheresFi(a, b; ¢; z) is the confluent hypergeometric  for odds ratio of survival R = exp(e.or) in the 1985 ECMO trial
function (Abramowitz and Stegun, 1964, page 558). (0109 scale).

With the implied priorr (¢) = e/272 sinh(e/2), the log
odds ratice or has posterior mean and variance and variance or with the approximate means and vari-
_ ) ances given in (3) and (4) above. Similar expressions
w=V e +1/2) =Y (nee +1/2) are available for the other measures of exposure effect
() —Y(nee +1/2) + Y (nee + 1/2) in cohort studies.
Similarly, in a case-control study (CCS) some num-

~log(neence /néencs),
bern. of cases are matched with noncases (controls)

02 =Y (nee +1/2) + ¥ (nze + 1/2) on the basis of demographic variables and other covari-
(4) + ¥ (nes + 1/2) + ¥ (nzs + 1/2) ates (Breslow and Day, 1980), and then within each of
these groups subjects are further classified into those
~1/nce +1/nze +1/nce + 1/nez, who are exposeth(,, nz.) and unexposetfsz, nz;).
wherey (z+1/2) =logz+ O (z=2) andy'(z +1/2) = Such a study can offer direct evidence only about the
1/z+ ©(z~3) are the digamma and trigamma functions conditional probabilities of exposure within case and
(Abramowitz and Stegun, 1964, Section 6.3.4). noncase groupgz.|c and p.jz, through the likelihood

For example, Figure 1 shows:s(¢) for the famous ~ function
1985 extracorporeal membrane oxygenation (ECMO)
trial (see Ware, 1989), in which 6 of 10 subjects sur- (g
vived in the control group and 9 o_f 9_sury|ved who X (Pele)"* (L= Peie)" (Pejc)"® (1 — peje)'e.
were “exposed” to ECMO. The solid line Bcys(e)
from (2), the dashed line is the marginal prior density Only indirect evidence is given about the remaining
function 7 (¢) and the vertical bar at,or =0 marks  probabilities. Independent reference priors for the un-
the null effect. The posterior probability of greater risk observed exposure probabilitigg: and p,. |- lead to
for ECMO is He or > 0] ~ 0.0107 with this prior (see  an adjusted likelihood function
Kass and Greenhouse, 1989 and Lavine, Wasserman
and Wolpert, 1991, for discussions of prior distribu- ©6)
tions for this problem). ' ' ' o Fi(ne+ 1, +1n+2:1—é),

For less extreme contingency tables, including all
of those in the environmental tobacco smoke (ETS) again approximately normal with meamu =
case study considered below, the distribution is very l0g(ncenzs/nzenc:) and variance? ~ 1/n., +1/nq; +
well approximated by a normal with the same mean 1/nz + 1/nzs.

LCCS(pelc'a pe\c_’)

Lees(e) oc e 2(ef — 1)eltee®
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1.2 Exchangeable Combination of Evidence tributions, e.g.) to

If study subjects comprise a simple random sam- glllgnéee

ple from some population, then both cohort studies (ef — DI
and case-control studies give evidence about the samé9) . . .
VECtor 6 = (Oce, Ocs, Oze, Ozz) Of probabilities that an Jl2Fin+Ln,+ 10" +2:1— ¢,
eligible subject drawn randomly from the target popu- iel
lation will be an exposed or unexposed case, exposedvhich is approximately normal again, but now with
or unexposed noncase, respectively, through their re-mean pre ~ 3 ¢/ Miff,-_z/ Yiero; © and variance
spective likelihood functions.cus(pele, pejz) (Since GIZZE ~ 1/ Y ier o—l.‘z, the precision-weighted mean of
Pele = Bce/Oe, Pele = 0Oce/0c) and Lecs(Pejes Peie)  the sample means; & log(n',nk;/nt n';) using vari-
(SiNCe pejc = Oce/Oc, Peic = Oze/0c). HENCe, itis con-  ancess? ~ [1/nl, + 1/nL, 4+ 1/n’, + 1/nL.]. This is
venient to express all studies’ evidence in term® of  the familiar fixed-effects model. The best choice of
before trying to combine them across study types.  x(dp|e) depends on the application. In the example
Evidence about a common parameter veétanay presented in Section 3, both reference and informed
be captured from a set éfindependent studies through  prior distributions are illustrated.
the joint likelihood functionL’ (6) = [T;c; Li(6). For While some invariance may be offered by using a
case-control studies, for example, this is equivalent to measure of exposure effect that is thought to be rel-
observing:/, = 3", ni, exposed and; =Y, n'; atively insensitive to study variation (e.g., usingr
unexposed cases;, = Y., n., exposed anal; = if the variations are expected to scale incideodds
Yicl nlce unexposed noncases in a single pooled study.by equal factors; see Wolpert, 1986), possible variation
However, in most cases, the underlying assumption ofacross studies in the effect measureshould be mod-
exactly the same conditional probabilities in Aitud-  eled explicitly. If we takes’ ~ No(e, o2, for example,
ies is just not reasonable. The studies almost alwaysindependent normal variates with common unknown
differ in important respects that affect their probabili- Mmeans and known variance?, and ascribe a diffuse
ties of exposure and outcome, and hence their evidencé&onjugate prior distributios ~ No(u, t2), the earlier
abouts. The effect of ignoring this variation is system- Nnormal approximations td.cps(¢Lor) and Lecs(€Lor)
atically to underrepresent uncertainty in the posterior 1ad to the familiar random-effects model whose ap-
distribution and sometimes to distort the location of the Proximately normal posterior distribution has mean
distribution as well. tre X Yier 1i(02 40D @2+ Y (0% +0P)™h
A first step toward accommodating study varia- and variancess ~ 1/(t72 4+ Y (02 + 0™,
tion is to allow the conditional case (resp., exposure) with the same study-specifip; and Giz as above.

LéE(s) X

probabilitiespez, peje (r€SP.,pejc, Pe|c) tO Vary across
studies, while still treating the measure of interest

Uncertainty about hyperparameter$ and o2 is re-
flected through prior distributions in the case study

as constant across all studies. Changing variables tgresented in Section3. Note that the fixed-effects

& = eL0r and pl, ; for cohort studies ang, ; for case-
control studies leads to

L&, plia)
(7) oc e [T[(pha)™ (L — plyp)"e

iel
1 - pla(l— e,
L(I:cs(g’ Pg\g)

(8) oc e l_[[(Péw)ni’ (1- Pé|5)nl"?
iel
(L pha(1— e ]
and in each case ta/(e) = [ L(e, p")n(dp'|e) for
evidence about (for independent Jeffreys’ prior dis-

model may be recovered in the limit as® — 0,
‘L'2 — OQ.

It is a small generalization of the random-effects
model to describe the variation in study-specific pa-
rametersp; explicitly. Modeling them as exchange-
able is equivalent (by de Finetti's theorem) to treating
them as conditionally independent identically distrib-
uted random vectors, given an overall hyperparame-
ter 6. If the exposure effect can be written as a
function of @ (or, more generally, it is conditionally
independent of thép;}, given#), then the joint prior
distribution fore, 6, and all the{p;} can be factored
asnm(de)m(db|e) [1ie; (dpi|0), giving the marginal
likelihood for the exposure effect the representation

(10) Liy(e) :/|:l_[/Li(Pi)”(dPi|9):|77(d9|8)-

iel
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This reduces to the random-effects model fbe=
(i, T, 0) and normal logistic conditional distributions
7 (dp;|0); to the fixed-effects model far = ¢ and beta
conditional distributionst (dp’,;10), 7 (dp};16); and
to simple pooling fo = (pce, pez, pée, pee) With unit
point masseg (dp;|0) at p; = 6.

1.3 Partially Exchangeable Combination
of Evidence

R. L. WOLPERT AND K. L. MENGERSEN

their subject populations and the study population. The
five synthesis methods presented in Section1 (simple
pooling, fixed- and random-effect models, and fully
and partially exchangeable hierarchical models) allow
for increasing degrees of heterogeneity among studies,
but they do not make use of collateral evidence about
the size and impact of varying age and exposure dis-
tributions, misclassification rates and other differences
that might be expected to affect the evidence.

Sometimes studies can be regarded as exchangeable gayeral methods have been proposed for discount-

within known groups, but the groups may differ sys-

ing evidence thought to be less reliable or to apply less

tematically among themselves. Health care at urbangjreqqy to the questions of interest in meta-analysis,

and rural facilities may differ, for example, or educa-
tional performance at public and private schools or uni-
versities. The possible effects of ETS exposure in the

example in Section 3 can be expected to differ across

different countries for any number of reasons (compet-
ing risks, differing levels of exposure, geographically
varying genetic propensities, etc.). In the simplest form

the groups may themselves be treated as exchangeabl(¥V

leading to a multistagpartially exchangeable hierar-
chical model of the form

e~m(de), 0 ~m(db|e),
0, ~ w(dhg|0), geG,
0" ~m(do'16,), iecg,

whereg € G indexes the groups ande g indexes the
studies within a group, and where each given distri-
bution is (implicitly) conditionally independent of all
parameters higher in the hierarchy. Now

LéEM(S)
I1 /[ :|7T(d9g|9)}

-/

-m(dO|e).

For example, normal prior distributions at each stage
could lead to the model~ No(0, t2), &% ~ No(e, 62),

g€ G, ¢ ~No(e8,0?), i € g, for the exposure ef-
fect ¢ (with suitable conditional distributions fa#",
given '), wheres? and o? are the group-level and
individual-level prior variances and is the large vari-
ance of the diffuse prior for the overall effeet al-
lowing for greater homogeneity among studies within
groups.

]‘[/Li(ei)n(deiwg)

icg

2. SYNTHESIZING HETEROGENEOUS EVIDENCE
Studies vary in the degree to which confounding ef-

some of which were first developed to address the sim-
ilar problems that arise in synthesizing the opinions of
several experts (Makridakis and Winkler, 1983; Gen-
est and Zidek, 1986; Wolpert, 1989). These include
threshold exclusion, in which studies thought to be
less applicable are simply excluded from the analysis;
eighted likelihood functions; block mixtures, in which
groups of studies of comparable quality or applicabil-
ity are successively included in the analysisxtures,

in which individual studies are included in the analysis
with probabilities based on their relative applicability;
andhierarchical models, in which treatment effects are
estimated separately for homogeneous groups of stud-
ies, to reveal systematic variation of apparent effects
across groups.

This paper investigates another alternative, intended
to extract, reconcile and synthesize information about
a quantity of interest despite study variations and
flaws: the systematiadjustment of the different studies
within the Bayesian paradigm to accommodate (and,
where possible, correct for) their differences from one
another and from the intended object of study.

2.1 Adjustment

A common problem in synthesizing evidence is that
of making inference about the paramet@ithat would
govern an ideal (owparadigm) study for a particu-
lar purpose—one for the population of interest to the
investigator, without misclassification or other weak-
nesses, on the basis of nonideal studies whose con-
ditions vary in important ways from the ideal. If the
ith study offers direct evidence about a paraméter
through a likelihoodL; (%), and if eachd’ (includ-
ing 0°) is related to a hyperparametérthrough a
known functional relationship’ = ¢; (9), then we can
“adjust” the evidence from thah study to bear directly
oné (and hence 0A°) through the relationship

fects and possible biases have been recognized and ac-

commodated, and in the levels of similarity between

(11) L2 @) = Li(¢:(9)),
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where the arbitrary functiog, (9) represents the value
of #* when the hyperparameter valueis

If the analyst studying a series of clinical trials be-
lieves that the success probability in ttle trial should
be only a fraction (say, half) of the success proba-

bility 6° under paradigm conditions, perhaps because

half of the subjects in that trial were noncompliant,
then s/he might také&® = ¢o(6) = 6 and set6’
¢;(0) = 0/2 for that trial. Of course, this choice im-
plies that the joint prior probability distribution for the
pair (6, ') is concentrated on the one-dimensional set
{(6,01):0<6' <1/2, 6 =20"} and in particular that
0’ < 1/2. Similarly, one analyzing a series of cohort
studies might use; (0) = 0.9 + 0.16, if 10% of the
subjects were thought to be misclassified from a group
with event probabilityp, rather the paradigm probabil-
ity 09=0.

A useful generalization is thearametric adjustment
model in which the adjustment functioff = ¢ (0, ;)
depends explicitly on a parameter, leading to

(12) LM @) = Li(¢ 0, o).

For example, we may allow an arithmetic shift in
the binomial success probability paramefeby set-
ting ¢ (@, ;) =0 + «;, or a logistic shift by spec-
ifying ¢/(1—¢) = e%6/(1—0), that is, ¢ (0, ;) =
Oei /[0e¥ +1—0].

Although (12) offers no real increase in generality
over the nonparametric adjustments made in (11), it is
often easier (in our experience) to elicit expert opin-
ion about parameter values than about transformatio
functions. Several examples illustrate the parametric
adjustment approach below.

If the parametery; in (12) is regarded as uncertain
and, therefore (in the Bayesian context), random with
a prior probability distributionr* (da;|6), then we can
form a conditional distribution foé! given6 by aver-
aging (12) over the possible valuesogf

mi(d6'16) = [ 8(6" - 4,6, @) (dai ),
and an adjusted likelihood function

dj i i
L26) = [ Liohmi@s'le)
(13)
= [ Litg®.a)ms ail6).
It is importantnot to use a noninformative prior far;,

since this ordinarily results in a constant likelihood
function Ll.AdJ (6) that lends no evidence whatsoever
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aboutd. This is the mathematical reflection of the fact
that an instrument whose bias or scale is entirely un-
known can give no evidence about a measured quan-
tity.

2.2 Specific Examples of Adjustment

In this section we examine two specific examples of
adjustments, each of the parametric or uncertain type
described above, to illustrate the concepts.

In both case-control and cohort studies, each subject
is classified three times: once when assessing eligibil-
ity, once when assessing exposure and once when as-
sessing outcome (case or noncase status). Thus three
fundamentally different sorts of classification error
may affect the analysis: eligibility violation, exposure
misclassification and case misclassification.

Anticipating the passive smoking application of Sec-
tion 3, in which current or former smokers are ineligi-
ble, we denote byp;ke the (true) fraction of theth
study population with case statyiss C = {c, ¢} (case
and noncase), exposure status & = {e, ¢} (exposed
and unexposed) and eligibility statdse § = {s, 5}
(ineligible, i.e., ever-smoker, and eligible, i.e., never-
smoker).

Interest centers on the vect®r= (6.,,6.;, 6%, 65,
of true classification probabilitiew;. = p§. s} jece Of
eligible (never-smoking) subjects, but through study
designs and classification errors the studies give direct
evidence only on the apparent classification probabil-
ities {q’,. ¢’ qL,, g;} of the ostensibly eligible sub-

njects admitted to the study, including both those who

are truly eligible and those who are not.

2.2.1 Eligibility violation. Under both CCS and
CHS designs, eligibility criteria may be subjective or
may be based on information which is potentially inac-
curate. Eligibility violations can distort evidence, par-
ticularly if violation rates differ across study arms. If
the probabilitya;i‘js that an ineligible individual in the
ith population of true classificatiohe €& will appear
to be eligible is greater than 0 or if the probabil:i»t%s-
that an eligible individual will be recognized as eligible
is less than 1, then the classification probabilii{i@%}
for ostensibly eligible subjects will differ from those
{63} for truly eligible ones:

iyl i i
(14) q]' —asljsp]s +as|]sp]s

i i + i i1

= O5jsPjs T %559 Ps-

This is a parametric adjustme6t = ¢ (6, «;) of the
form of (12) for the parameter vectar; = (ot

slje’
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pz.s)je@g,geg. The experimenter may specify particular not been ruled out entirely as explanations for any ob-
values for the eligibility misclassification probabilities served increase in relative risk of deleterious health ef-
and ineligible-subject classification probabilities or, as fects for those thought to be exposed to environmental
in (13), may reflect uncertainty about them through in- tobacco smoke (ETS). Three main quality issues are

formative or even reference conditional prior probabil- commonly identified as influential in the analysis of the
ity distributions. association between ETS exposure and lung cancer in

adults who have never smoked:
2.2.2 Misclassification of exposure and disease. In

studies of both CHS and CCS design a true case mightl- Misclassification of ever-smokers as never-smokers.

be misclassified as a noncase or vice versa. Similar LUNg cancer ratelf are rtmown to be much hlgEer
errors may arise in ascertaining or recording a sub- 2MONY ever-smokers than among never-smokers

ject’s exposure status. Thus a subject in any of the (whether or not exposed to I.ETS) and ever-smokers
four case—exposure classeg = {ce, cé, ce, ¢z} in a are more likely to have smok_lng spouses than never-
CHS or CCS might be misclassified in any of the smokers (the so-called marriage concordance). Thus

other classes. Denote hy., the conditional proba- there is concern that the inclusion of active or for-
. . Jlk. mer smokers in a study of never-smokers may lead
bility that a subject in study of true case—exposure

. o . i to a systematic overstatement of the effect of ETS
classk will be classified to clasg, for each, k € CE. exposure. The debate over the effect of this issue
If the true case—exposure class probabilities for ran- < peen lively. While some investigators such as
domly drawn subjects from the population under study s, (1999) and Boffetta et al. (1998) argued that the

in studyi are p' = (p¢,» Pegr Pie» Pe)» the study will bias is unlikely to explain the observed excess risk,
give only indirect evidence about’ through like- others such as Lee and Forey (1999) disagreed.
lihood function L'(¢"), which gives direct evidence 2 Misclassification of disease. The degree to which
about the apparent classification probabilitigs= disease classification is verified histologically dif-
(Gees dee- 9ze» 92) 9IvEN by fers markedly among studies, and errors in di-
. o agnosis of lung cancer deaths based on death
(15) qj = Za}‘kpfc. certificates or clinical diagnoses are widely recog-
k nized (Lee, 1992, pages 128-129; Table 23.3,
The 8x 8 classification probability matrix’,, page 87). McFarlane, Feinstein and Wells (1986)
j,k € €&$, would be the identity matrix for a study reported that such misclassification is differential

between active smokers and nonsmokers, but Lee

without classification errors, but in general must be ex- ; ;
(1992, page 129) countered that these differentials

pected to have some nonzero off-diagonal elements. .
If multiple classification errors are regarded as neg-  "2ve not been established for those exposed or un-
exposed to ETS.

ligibly likely, then o, will require that up to eight . e
Jlk ass -
misclassification probabilities be specified for each 3. Misdl flcatl_on of exposure.'Th_e measure of expo
sure to ETS is most often indirect and inadequate,

study; we illustrate this for the ETS example in Sec- . :
leading to speculation about under- or overreport-

tions 3.2.3 and 3.2.4. . . : P p "

ing and possible misclassification as “exposed” or
“unexposed.” Most studies in our data set adopt
“married to a smoker” as a surrogate measure of
exposure and do not use any objective measure of

Whether or not exposure to other people’s tobacco ~ €Xxposure (such as cotinine analysis, which itself is
smoke, ompassive smoking, is harmful to health is an prone to criticism since it measures only recent ex-
issue which has been widely debated over the past POSure). LeVois and Switzer (1998) suggested that
decade and which has broad implications in current variation of this m|scI§SS|f|cat|pn rate with case sf[a-
tort and public policy decisions. An important open S May lead to spuriously high observed relative
question remains about the impactshidy quality on risk.
individual study results and on the overall body of The Environmental Protection Agency (EPA Review,
evidence. Because lung cancer is a rare disease among992) and Lee (1992) provide comprehensive dis-
never-smokers, and the possible effects under studycussions and literature reviews of these problems for
are small, possible biases and misclassification have31 studies available at that time, of which relevant data

3. IS EXPOSURE TO ETS ASSOCIATED WITH
LUNG CANCER IN FEMALE NONSMOKERS?
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are available for 29. As a result, we focus on this high as+2.5) awarded in each of 19 categories, in-
data set and exclude more recent studies for whichcluding eligibility (never-smoker status confirmation),
such data are unavailable. In Section5 we show thatexplicit ETS-exposure criteria, lung cancer indication,
this does not limit the relevance of our conclusions to interview type, proxy respondents, follow-up, design
the present debate. issues and analysis issues (control of age, control of
The 29 studies are summarized in Table 1, based onother confounders, statistical methods). Studies in the
the EPA Review (1992, Tables 5-1 and 5-2) and Lee lowest (fourth) tier were regarded by the EPA Review
(1992, Table 3.13), where primary references appear.as unsuitable for inclusion in a meta-analysis.
Studies are categorized into quality tiers =lbest; Study heterogeneity was acknowledged in the EPA
4 = worst) by the EPA Review to reflect the study- Review by undertaking meta-analyseghin but not
specific level of care taken to control for various qual- across country groups (Greece, Hong Kong, Japan,
ity issues. The tier for each study was based on a sumUnited States, Western Europe, China). They em-
of penalty points (ranging from-0.5, a bonus, to as ployed a fixed-effects model, with the explicit assump-

TABLE 1
Twenty-nine studies of the association between lung cancer and exposure to spousal smoking among
never-smoking females

Cases Noncases
Exp Unexp Exp  Unexp Qual  Ctry
Studies Years? Nee Ree Nge ngs tierP grpb
Case control
1 Akiba et al. (1986) 71-80 73 21 188 82 2 JP
2 Brownson et al. (1987) 79-82 4 15 6 41 3 us
3 Buffler et al. (1984) 76-80 33 8 164 32 3 us
4  Chan and Fung (1982) 76-77 34 50 66 73 4 HK
5 Correaetal. (1983) 79-82 14 8 61 72 2 us
6 Fontham et al. (1991) 85-88 294 126 492 288 1 us
7 Gaoetal. (1987) 84-86 189 57 276 99 3 CN
8 Garfinkel et al. (1985) 71-81 91 43 254 148 2 us
9 Gengetal. (1988) 83-83 34 20 41 52 4 CN
10 Humble et al. (1987) 80-84 15 5 91 71 2 us
11 Inoue and Hirayama (1988) 73-83 18 4 30 17 4 JP
12 Kabat and Wynder (1984) 61-80 13 11 15 10 2 us
13 Kalandidi et al. (1990) 87-89 65 26 74 46 1 GR
14 Koo et al. (1987) 81-83 51 35 66 70 1 HK
15 Lam,T.etal. (1987) 83-86 115 84 152 183 2 HK
16 Lam, W. (1985) 81-84 37 23 64 80 3 HK
17 Leeetal. (1986) 79-82 22 10 45 21 2 EU
18 Liuetal. (1991) 85-86 45 9 176 26 4 CN
19 Pershagen et al. (1987) 61-80 37 33 153 141 1 EU
20  Shimizu et al. (1988) 82-85 52 38 91 72 2 JP
21 Sobue et al. (1990) 86-88 80 64 395 336 2 JP
22 Svensson et al. (1989) 83-85 24 10 114 60 2 EU
23  Trichopoulos et al. (1983) 78-80 53 24 116 109 3 GR
24  Wu et al. (1985) 81-82 19 10 38 24 2 us
25 Wu-Williams et al. (1990) 85-87 205 212 331 271 4 CN
Cohort
26  Butler (1988) 76-82 3 5 3128 6071 2 HK
27 Garfinkel (1981) 59-72 88 65 94792 81794 3 us
28 Hirayama (1984) 65-81 163 37 69482 21858 2 JP
29 Hole et al. (1989) 72-85 5 1 1290 488 1 EU

SOoURCE EPA Review (1992), Tables 5-1 and 5-2; Lee (1992), Table 3.13.
ayears refers to each study’s case accrual period.
bpescribed in the text.
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tion that studies within country groups are relatively approximations with means and standard deviations
homogeneous with respect to exposure, incidence,[(3) and (4)] of 01690+ 0.0487 for the case-control
risk and other confounders (EPA Review, 1992, studies and 8951+ 0.1146 for the cohort studies.
pages 5-31). The impact of study quality is inves- Fixed- and random-effects analyses, using Markov
tigated through cumulative meta-analyses of studieschain Monte Carlo (MCMC), give overall estimates
in the various quality tier ranges (Tier 1, Tiers 1-2, for eLor Of 0.20724 0.0471 and 849+ 0.1958, re-
Tiers 1-3), again within country groups. For some gpectively. The mean exposure probabilities and mean
country groups, the overall relative risk was inflated case probabilities are similar to those from the pooled
with the addition of poorer quality studies, while for egtimates, but the standard deviations are substantially
other groups the reverse occurred. For example, Marger, reflecting variability among the studies. Pos-
estimate of 1.92 (90% CI 1.13-3.23) was reported oo gistributions of individual study log odds ra-

for Tier 1-2 studies in Greece, compared to 2.01 . _ ; e e o i
oo tios and classification probabilitiep{,. and p’,-
(1.42-2.84) based on all studies in this country group, FLor & : P %"_ Peic
for CCS;p;,, andp,; for CHS) are also available from

while respective figures for the USA country group

were 1.23 (1.04-1.42) and 1.19 (1.04-1.35). this methodology.
In further analyses the EPA Review pays specific A partially exchangeable random-effects model can

attention to the quality issue of misclassification of P& constructed to accommodate the heterogeneity of
active smokers as never-smokers. Unlike previous ad-country groups simply by employing a hierarchical
justments (Wald, Nanchahal, Thompson and Cuckle, prior distribution for the study-specific log odds ra-
1986; National Research Council Committee on Pas-tios;, allowing for country-group-specific effects that
sive Smoking, 1986), in which only the overall relative arise from such sources as varying exposure standards,
risk was adjusted following analysis, the EPA Review intensities of spousal smoking and ambient air stan-
(1992) computed “corrected” relative risk estimates for dards. Results from such a model are presented in Sec-
each study and the consequent bias expressed as a réon 4.1.

tio of the corrected and uncorrected estimates (EPA _ _

Review, 1992, Table 5-8). The underlying methodol- 3.2 Nonexchangeable Models: Quality Adjustment

ogy, due to Wells and Stewart (Wells, 1990), is based The assumption of exchangeability that is implicit
on misclassification rates found in a small number jn all the methods of Section3.1 seems untenable
of cotinine studies and studies of discordant answers.jy jight of the acknowledged heterogeneity of the
Different (and larger) biases were found by Lee (see 29 ETS studies. We now turn to implementing the

discussion pages B-3-B-4, EPA Review, 1992), using ey methods for synthesizing heterogeneous evidence
essentially the same methodology, but different base-y eqented in Section2. While the studies differ in

Im_le_hestlmat';es. i fiem th dt (f many ways, we address the three specific examples
€se observations confirm th€ need o account 1or ¢ nonexchangeability described in Sections

mho_mo_genelty among _studles and VaT'a“O”S n SIUdyZ.Z.l and 2.2.2 to illustrate how these methods for ad-
quality in a meta-analysis of these studies. In this paper. " .= .~ ) )

) . . . . justing likelihoods may be used to improve inference.
we investigate alternative methods for doing this, based

not on crude overall or individual study adjustment, but b_II_Etach subject 'Sk.CIanS'f'e(T thrf:he tlrr;es:dflrst for E;I'g"
on integrating information about quality issues into the llity (never-smoking female), then for disease (lung

likelihood itself. cancer cgse) and then for exposure (married to a
smoker) in an order that depends on the study de-
3.1 Exchangeable Meta-Analyses sign (CCS or CHS). Altogether there are eight possible

Consider simple pooling of the data into two large classifications, and through errors any of these could be
studies with aggregate counts},,n%, nZ, nk) of (mis)classified as any other. In our approach we model
(1617, 946, 3499 2424 for the case-control studies €xplicitly the latent truepopulation proportionsp’,,
and (259, 108 176 143 147192 for the cohort stud- ~ With case statug € C = {c, ¢} (case and noncase), ex-
ies. With B&1/2, 1/2) reference priors on the pairs of posure status € € = {e, e} (exposed and unexposed),
conditional probabilities fe|c, pejc) and @cje, pejz), and eligibility status¢ € 8 = {s,s5} (ineligible, i.e.,
respectively, the posterior distributions for the expo- ever-smoker, and eligible, i.e., never-smoker). As in
sure log odds ratie or, With likelihood given exactly ~ Section 2.2 we denote bﬁyj.‘k the conditional proba-
in (2) and (6), are indistinguishable from the normal bility that a subject in study of true case/exposure/
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eligibility classk will be misclassified as class for q.,; andg:.., and from them, the derived conditional
J.k € &4, and find that study gives direct evidence probabilitiesqé‘cE and so forth that appear in the like-
only about (some aspects of) the apparent classificajihood functions (16). We now turn to the problem of

tion probabilities identifying the parameters needed to make inference
gi= > o'y pk. jeCe, about9’ andR’, from (16) and (17): the smoking preva-
keCES lences pi, smokers’ classification probabilities’;

for apparently eligible subjects, through their individ- and classification probabilitiexs?‘k, for j,k € C&34.

ual likelihood functions
3.2.1 Ever-smoking prevalence and classification.

Lecs(q') ¢ (@gi5)" e (1= Gope5)"ce Estimates of the study-specific population ever-
‘(qéla)ni—,e(l_qéla)ni—_é’ smoking prevalencep! are given in EPA Review
(16) _ . (1992, Table B-11). Ever-smokers’ exposure proba-
Leys(g') o (qé‘eg)”'ce(l—qglei)”lfe bility p,, = K6,/(K0, + 6;) is available from the
— — never-smokers’ exposure probability, . = 6, =
(qepee) " (1= qeigz)"e. 6!, +6:, and the marriage concordanke= (pes pzs)/

We now turn to estimating the classification prob- (pes pes), reflecting the propensity of spouses to have
abilities “;lk needed to make inference about the similar smoking habits. We follow Lee (1992, pages
true population-based classification probabilitigs ~ 158-160 and Table 3.40), who foud~ 3, although
and, through them, the true relative risk of expo- estimates as high as 5.52 have been reported in the lit-
surep.|es/ pejes, the nearly identical exposure odds ra- erature (Ogden et al., 1997).
ti0 Re = peefs Péz|s/ Peéls Peels OF its logarithme op = Because the relative risk of lung cancer associated
log R,. , . S with active smoking in théth study,R!, is in general
Denote by6' the vectord' = {6.,,6.;, 0.0z} Of  much higher than any that might be associated with
true classification pl’.ObabIh'[IeS for e!lglble membgr_s of passive exposure to environmental tobacco smoke (see
each study population (these are just the condltlonaIEPA Review, 1992, Table B-11) we take ever-smokers’

lassification pr ilities!, = p', s ). For th ;
classification probabilities, = pe;, etc.). For the case probabilitieg;,,; and p;;; not to depend on ex-

Ci
purpose of the present analysis, based on the availabil : -
ity of information about classification reliability in the ~POSUre status and to be given by, = R{p,;; see
29 studies we consider, we make the provisional sim- Section 4.3 for further comments. Since the overall
plifying assumption that double and triple misclassi- cancer rate may be writtep!. = pélspg' + p£|§p§ =
fications are sufficiently rare to be negligible, and we Pes(Ps Ry + pg), ever-smokers’ and never-smokers’
consider only the possibility of at most one misclassi- cancer rates may be computed as
fication per subject. Under this simplification only four
true classifications contribute to each apparent one, and ; PLR!
(1_4_1) and (1_5) lead toa S|rr_1ple expression fo_r the proba- Pels = m
bility of being classified (rightly or wrongly) in thih (18)

i

p.

study as an eligible exposed case, b= p
) . ) . . ST HiRi 41— pi
qéei ~ aélcespées + aéeilcefplcef Ps s Ps
F 05 Phas + Xhices Phes from the reported smoking prevalengé, smokers’
(17) L relative risk R: (EPA Review, 1992, Table B-11) and
= *5|ces Pees overall cancer ratg’. (EPA Review, 1992, Table C-2).
+ (e |cesBee + YejcssOes + ejcesOie) P Together, these values f, p;;, P, aNd py;, de-

termine all four ever-smokers’ classification probabili-

as the sum of the probabilities of being in fact an tieSp§S, jece.

ineligible exposed case or of being an eligible sub- o L
ject who is an exposed case (correctly classified), an NOw we turn to the classification probabilities,,
unexposed case (with misclassified exposure) and arwvhich depend on how well each study addressed the
exposed noncase (with misclassified case status), redifficulties of correct classification, that is, on study
spectively. Similar expressions are available zf@gg, quality.
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3.2.2 First study quality adjustment: Eligibility vio- 3.2.3 Second study quality adjustment: Misclassifi-
lations. Each of the 29 studies we considered requires cation of exposure. Next we need to find the study-
its eligible subjects to be never-smoking females; nev- and case status-specific probabilities; and p.z .
ertheless, for the reasons discussed at the beginning ofhat eligible (never-smoking female) individuals have
Section 3, one must expect a small number of current ortheir exposure status misclassified. A few studies report
former smokers to be erroneously included in some of estimates of thether conditional exposure misclassi-
the studies. In this section we implement the method fication probabilities—p;/.., for example, the fraction
presented in Section2.2.1 of adjusting the analysis toof women with negligible exposure among those clas-
eliminate the bias and to reflect added uncertainty. sified as exposed. We use Bayes’ theorem to invert

First we need to find the study-specific and case-the conditioning below. Friedman, Petitti and Bawol
exposure class-specific probabilitigss, that ever- (1983) estimated that 47% of currently nonsmoking
smoking individuals in the population from which the \yives of smokers have negligible (less than 1 per day)
?th study sample is drawn misrepresent their smok- exposure at home, and that 40-50% of women with
ing status as “never-smoker.” From Lee (1992, Ta- \,nsmoking spouses have significant ETS exposure (in
ble 3.38) and in accord with other estimates (Tables the workplace, e.g.). In contrast, Lee (1992, page 130)

3.36_and 3.37 of Lgeé 1; 5123 Tfatélg AB;R? a_nd thlegg;s— said that exposure misclassification “does not seem
\fvtzeszlso'[?m(;r'[]eaﬂgtefibo_ljt;"; of (()aver smolfc\a”rzvgen e,-v)e’:r”ke'y to be a majorissue,” and Jarvis et al. (2001) ar-
0 - “« . _—
smoking. The EPA Review and Lee consideredyse “gued that “married to a smoker” is a good surrogate
9. ; i Pfor “exposed.” We interpret Lee’s and Jarvis et al.'s
arately the effects of misclassified regular smokers : : o
and occasional smokers; in the present analysis we doremarks r? sa sqgglel stlc_)fr_1 ;hat approxm;atsly O_Sd/o of
not distinguish these subclasses of ever-smokers. Leg omen _avle rrlnsc assl '€ _%xggsurz S 6_1 u_s,oair(l) we
(1992, pages 156-157) suggested that the denial rate'>¢ Nominai va ues;\)lj;ﬁ‘e, i agggg‘e’T_bll 3.41
among cancer subjects may be a bit lower, while the as a comprc;fmlsg. t oug e? ( ; ’ ha € 3.44
EPA Review (1992, page B-10) and (paradoxically) page 161) offered an estimate of.2% for the over-

Lee (1992, page 151) reported evidence of “markedly all apparent exposure rage,., the empirical rates for
higher” denial rates among lung cancer patients thanthe individual studies we considered ranged from 15 to

among the general population. In light of this discrep- 87% in the EPA Review (1992, Table 5.2, pages 5-6—
ancy, we take them not to depend on case status (see>"/). Consistent with these values, we take a nom-
however, the discussion in Section 4.3). inal value of 036 for p. (approximately the sam-
There appears to be little evidence about whetherPle median), leading tQe = p.e pee + pzpere =
smoking misclassification rates vary with exposure sta- 0-3340,p; =1 — p, = 0.6660,p.z|c = p& pe|z/pe =
tus. One might imagine that exposed subjects (i.e.,0.1916 andp.; = p.e péqe/pe = 0.1351, irrespec-
those married to a smoker) might be more likely to dis- tive of case status. Thus about 14% of never-smoking
count any former or occasional smoking, and representwomen with negligible exposure to others’ tobacco
themselves as never-smokers. Conversely, one mighsmoke are married to smokers and so are treated in the
imagine that unexposed subjects find more social pres-studies as “exposed,” while almost 20% of women ex-
sure to deny former or occasional smoking. We explore posed to tobacco smoke do not have smoking spouses,
sensitivity to this aspect in Section 4.3, but following but rather are exposed from other sources. The EPA as-
the speculation of Lee (1992, page 157), we make thesigns penalty point®; ranging from—0.5 (a bonus)
provisional assumption that smoking misclassification to +2.5 for each study’s control of this source of bias
rates do not depend on exposure status. (EPA Review, 1992, Table A-2). We take these rates to
The EPA assigns “penalty pointst; ranging from  apply to those studies with the least control over ex-
—0.5 (a bonus) te-1.0 for each study’s control of this  posure misclassification, and again take error rates to
source of bias (EPA Review, 1992, Table A-2). We take double with each successive penalty point, leading to

error rates to be approximately 5% for typical studies, study-specific misclassification probabilities of
and to double with each successive penalty point, lead-

ing to

(19) o

Y ) e
Slces — aslces - aslces - O‘(slces

i
Ug|ces = %e|ces

—0.1916x 25i—25

—0.05 x 24, —0.1351x 28i—25,

i i
Uelcas = Ye|ces
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3.2.4 Third study quality adjustment: Misclassifica- We assign conditionally independent normal dis-
tion of cases. The final classification error we consid- tributions to the study-specific log odds ratify,, =
ered is that of misclassification of lung cancer. We need log(6;,6%,/6.;0%,), centered at a country-group-
to find the study- and exposure-specific probabilities specific levele$. The country-group means® are
P and p.z|. that eligible individuals have their case drawn from a normal distribution centered at an over-
status misclassified. The EPA Review (1992) attemptedall ¢, whose distribution in turn is normal centered at
to classify studies with respect to their ability to control zero. The relative risk for active smokers, which re-
this source of bias through the use of histological ver- portedly ranges fromR! = 1.66-163 (EPA Review,
ification. Although lung cancer misdiagnosis rates are 1992, Table B-11), is believed to exceed whatever rel-
known to differ for smokers and nonsmokers, there is ative risk [approximately exp!,.)] may be associ-
no evidence or suggestion that they differ with respect ated with ETS exposure. Consistent with this we chose
to ETS exposure. Lee (1992, page 129) cited stud-overall country-group-level and individual-level vari-
ies in which 30-40% of lung cancers seen at autopsyanceso?2, = 0%, = 03 = 0.33 to ensure a marginal

& &

are missed clinically. We take a nominal false-negative probability Aexp(e! ) > 10] ~ 5% with correlation

misclassification rate of .85, which we reduce for ot anout 23 within each country group and aboyt3l
each study by the fraction; of cases histologically ¢, studies in different country groups.
verified (Table 5-4 of EPA Review, 1992; Table 3.3

of Lee, 1992). The fraction of false positives is less
than the overall lung cancer rate, negligibly small in
the present context. Thus, Posterior distributions for the quantities of inter-
N est in our Bayesian hierarchical model are not avail-
~0, able in closed form, but are easily approximated
—0.350x (1—C)). using MCMC (Besag, Green, Higdon and Mengersen,
, _ S 1995; Gelfand and Smith, 1990; Gilks, Richardson
3.2.5 Ahierarchical prior distribution. Tocompléte  ang spiegelhalter, 1996; Tierey, 1994). Full condi-
our Bayesian model formulation it remains only t0 {jong| distributions are available for parameters from
specify the joint prior distribution of thé9'} and any  he gverall and group levels of the hierarchy, allow-

features of interest, such as a measui@ exposure g s to use Gibbs sampling at those levels, while a

4. QUALITY ADJUSTMENT RESULTS

i
Ucices = Ye|ces

i
OGces = %g|ces

effect. iSince9i’ can b? recovered fromf. = ?ée +0::  Metropolis—Hastings approach was used at the individ-
b, = 0i, + 0z, and e{op by solving for 6, in the  ya study level with proposal distributions drawn from

quadratic relationship a symmetric Gaussian random walk with step sizes

l_ 01,6 0l,(1—6i —6 +01,) chosen to attain an acceptance rate of about 30% for

exple o) = = ) proposed steps. The model is implemented in MatLab

eci‘éecé'e a (961 - ecle)(eé - Oci'e)

(MathWorks, 2002); source code and data sets are

we construct the joint distribution fa from that of available from the authors upon request. Inference is
6!, 0! ande'. based on 2500 equally spaced samples of nearly inde-
We employ a similar prior normal hierarchical dis- pendent observations from runs of 10 million steps af-
tribution for the logistics log. /6%) of the cancer rates  ter a burn-in period of 1 million steps, which appears to
6! = 6!, + 6! for eligible subjects in the studies, cen- be more than adequate to ensure MCMC convergence.
tered at conditionally independent country-group lev-
els which are centered in turn at an overall level with
prior mean the population-wide lung cancer rate, ap- It is apparent from Figure 2 that the degree of asso-
proximately 2510°, with low (0.5) precision at each  ciation between lung cancer and ETS varies markedly
level to express very little prior opinion about never- across country groups.
smokers’ cancer ratqsag. The model described in Section 3.2 with the misclas-
From our earlier estimate ¢f,. ~ 0.36 and observa-  sification probabilities«x; ; all set to zero forj # k,
tion that reported (apparent) exposure rates vary fromj, k € C&, reduces to the partially exchangeable model
15 to 87%, we assign independent normal prior distri- introduced in Section 1.3, a hierarchical model in
butions with meanu, ~ 10g(0.36/0.64) = —0.57 and which study-specific effects’ are taken to be simi-
varianceo? = 0.84? to the logistic of eact®’, chosen  lar within country groups. The posterior distributions

to ensure that .10 < 6! < 0.75] ~ 90%. of the study-specific quantities’ are drawn away

4.1 Unadjusted Results
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Fic. 2. Likeihood functions for country-group effects from the
EPA Review (1992, Table 5-7) for Greece, Hong Kong, Japan,
United Sates, Western Europe and China.

from their respective maximum likelihood estimates
(MLES) & = log(ncenzs/neenze) (or posterior means

g under independent reference prior distributions)
toward group level quantities?, for i € g, whose dis-
tributions in turn are drawn together toward an overall
level . This shrinkage effect, more pronounced for
smaller studies than for larger ones, is an expression o
the regression effect. Figure 3 illustrates this phenom-
enon, with MLEs indicated at the left (A), posterior ex-
pectations E'] in the left center (B), group posterior

sl [

O e

A 38
Fic. 3. Individual exposure odds ratios R., = exp(e’): (A) MLE,
(B) posterior mean, (C) posterior group mean and (D) overall ef-
fect (with posterior pdf) in a hierarchical model without quality
adjustment (all on log scale).
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FIG. 4. Posterior density of overall exposure odds ratio in a hi-
erarchical model without adjustment, with posteriors from naive
pooling, from a fixed-effects model and from a random-effects
model.

expectations E¢] in the right center (C) and the over-
all posterior mean ] at the right (D). Note the wide
variability of the posterior distribution far, shown as
a probability density function.

Figure 4 shows the posterior distribution for the

Toverall exposure odds ratif, = exp(e) with no ad-

justment (thick solid line), overlaid with the poste-
rior distributions from naive pooling of CCS and CHS
studies (dash—dot and dashed thin lines), and from
the fixed-effects and random-effects models of Sec-
tion 3.1 (dash—dot and dashed thick lines). Individ-
ual study MLEs are shown on the horizontal axis as
downward tickmarks (for CCS) and upward tickmarks
(for CHS), with lengths proportional to precision (i.e.,
larger studies exerting more influence on the overall
posterior distributions are indicated by larger symbols).
Note the larger variability of the hierarchical random-
effects model compared with the simple pooling and
fixed-effects models, more accurately reflecting all the
sources of variability and uncertainty, and its general
similarity with the (still more widely dispersed) poste-
rior density for the unadjusted model.

4.2 Adjusting Study Evidence for Quality
Variations

Studies differ in their degrees of effort and lev-
els of success in addressing each of the three types
of misclassification discussed in Section 3. We inves-
tigate the impact of adjustment for misclassification
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in two stages: first for eligibility and then for expo- 4.2.1 Atale of two studies. We illustrate the effects
sure and case status. The marriage concordance (Leeyf adjustment by examining how it affects the evi-
1992, pages 158-160) led many investigators (e.g.,dence from two studies, a Tier 4 CCS study (4, CHAN)
Lee, 1992, pages 143-145; EPA Review, 1992, Sec-from country group HK and a Tier 2 CHS study (28,
tion 5.2.2, pages 5-22-5-25 and Table 5-8) to expectHIRA) from country group JP (quality tiers and coun-
that disproportionately many exposed subjects in casery groups assigned by the EPA Review, 1992, are re-
controlled studies would be ever-smokers misclassifiedproduced in Table 1). Case-control studies offer evi-
as never-smokers, creating a bias that elevated the apdence about the population exposure rgtebut due
parent association between lung cancer and ETS. Weo their design, give no evidence about the population
thus anticipated that properly adjusting for eligibility case rate;. Conversely, cohort studies offer evidence
misclassification would reduce this bias and show a about6;, but not6,. Thus the posterior distributions

smaller degree of association. for these quantities differ markedly for the two de-
Figure 5 shows the posterior means for the study- Signs. Data proportionsi{/n.+., n./n.) are indicated
specific exposure odds ratio§E = exp(e')] within in Figure 6 by solid and dashed vertical lines, respec-

the unadjusted model (as in Figure 4) on the left (A), tively. Posterior distributions for the quantities not illu-
adjusted for eligibility in the middle (B) and adjusted Minated by the dateg{ for CCS;6, for CHS) remain
for all misclassifications on the right (C). Evidently, close to their prior distributions (also shown in Figure 6
our adjustment for eligibility misclassification led to as Unshaded curves). _
a very slight reduction in apparent association between Study evidence bears directly on the two apparent
ETS and lung cancer (the mean dropped froB01 conditional probabilities that govern the arms of the
l 1 1 1
to 1.291), while subsequent adjustments for case andIS:t_Udy_‘;elc’h e|c fhor erth an(;j‘ffde’ eie ffor CHSO'I
exposure misclassification led to slight reductions for |g{ufre ths ows t ? CIHeSI ?[0 q L;%“E?SA%@ an dot
some studies and slight increases for others, and genef-]C'e or the arms of L1 study ( . ) as a dot-
ally to slight increase in mean with a much larger vari- te_d Ilne,_along with their poste_rlor distributions in our
ability (95% Cl widened and rose frof9.800, 2.066] hierarchical model (dashed lines) and those of the
100,845 2.224]), contrary to our antici étior; o;‘acon— study-specific true classification probabilities for eli-
. i ' y ricipatio . gible subjectsg;,, and 6, ; (solid lines). Notice that
sistent downward trend, but consistent with an earlier L ;
analysis (EPA Review, 1992, Table B-11) and the re the likelihood (dotted curve), representing a face-value
. ’ ! . " acceptance of the immediate evidence without consid-
g?g?;sbfne;ﬁggg f[); Egtflfqeg\?e(rzeos?ia;?ii?:xzrs:]zzrj;?ering possible eligibility and classification errors, is far
mation of true association.

_1n| E ! o e A |
. | I [ -0 o001 001 A R ]
E 150 | — { Postanor Distributions of &_and 8 for CCS Study 4 (CHAN)

- I

a.7H| Jur—

n B C oo .o 0.1 05 075 09
Fosterior Distributions of 8 _and I'.-IIE for CHE Study 28 (HIFRA)

FIG. 5. Posterior means of exposure odds ratios R., in a hierar- ‘ .
chical model (A) without adjustment, (B) adjusted for eligibility FiG. 6. Prior and posterior distributions for 6. and 6, for CCS
misclassification and (C) adjusted for all misclassifications. and CHS studies on (separate) logistic scales.
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FiG. 7. Likelihood functions and posterior probabilities for can- studies on (separate) log scales, with different degrees of adjust-
cer case probabilities within exposed and unexposed arms of a ment.
CHS

narrower than the other curves which reflect the possi—everythl ng that is uncertain and that affects inference

bility that (through misclassification) the study’s sam- to any d(_egree, however small. The demspns abogt_ ex-
ple misrepresents its population and that the apparenfCtly Which features to model as uncertain, requiring
probabilitiesq’ lie closer to the immediate evidence f[he spe_czlflcatlon_of a cc_)ndltlonal prior distribution anc_i
of the likelihoods than do the study-specific estimates incréasing the dimension of the subsequent posterior
of the population-based classification probabiliiés ~ integration, are based on judgement or evidence about
Figures for CCSs and CHSs are similar; the plot for how sensitive our posterior inference is to their inclu-
the ¢’ posterior distributions are broader than their Sion.
likelihoods, but centered at the same location, while the In Section 3.2 we described our approach to find-
plots for thed’’s are very similar to those for thg'’s ing suitable estimates for the many quantities needed
for studies with low misclassification rates (where ad- to adjust the 29 studies we consider and make them
justment for possible classification errors has little more nearly comparable—the smoking prevalenges
effect) and are often shifted for studies with higher mis- smokers’ classification probabilitiqs‘]'.ls, the misclas-
classification rates (where adjustment effects are moregjfication ratesa’, for j # k, j.k € C€4, and the
pronounced). - means and precisions needed in our three-level hierar-
I?ostlerlor distributions for the study-specific log odds ;4| logistic normal model fo¢e’, 6, 61). The ETS
ratiose o, are drawn tgward the country-group m“ean case study we present here is unusual in that so much
for both types of studies. Thus in Figure 8 the “un- hard work has been done by others (particularly by Lee

adjusted” posterior distribution (solid line) is shifted . :
a bit to the right from the likelihood function (dashed 29 PY the EPA Review panel) to assess and quantify
population and study features in copious detail. Some

line) in the direction of the group mean. Unexpectedly, " . .
adjustment for eligibility violations (dotted curves) of these qur_;mtltles_, are known with Ies_s_, (_:ertalnty than
others. In this section we explore sensitivity to some of

makes little net change for either of these studies; ad- ; )
justment for misclassification of case and exposure sta-tN€ choices we made— smoking prevalances and some

tus (dashed curves) makes a slightly larger impact, Misclassification rates.

broadening the CCS study slightly and shifting the [N Section 3.2.3 we based estimates of the typi-
CHS study a bit to the right. cal exposure misclassification rates|. ~ 0.1916 and

Pz 2 0.1351, and true exposure ratemf ~ 0.3340,

on nominal literature values op.. ~ 0.36 for the
The process of building Bayesian models is really overall apparent exposure rate apg . ~ 0.25 and

dynamic. There is no hope of modeling explicitly p..z =~ 0.10 for the true exposure misclassification

4.3 Sensitivity
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probabilities for those classified as exposed and un-

.l

exposed, respectively; each of these nominal literature :’E % {
values was a compromise from widely varying liter- L' 1 .
ature estimates. If instead we were to take literally 1| g e '
the apparent exposure estimatg ~ 0.225 from Lee P e T
(1992, Table 3.41, page 161; well below the reported ,: — T e T =
exposure rates among our studies), and the misclas: KLAB
sification rate estimates gfz}. ~ 0.47 and p,z ~ | pe—r
0.40-045 from Friedman, Petitti and Bawol (1983) . L1
(ignoring the contrary evidence of Lee, 1992, page 130, m 5. 14
and Jarvis et al., 2001) we would find the far higher & .4}
error probabilitiesp.z |, ~ 0.7474 andp..z ~ 0.1970 1.2k
and higher true exposure rate mf ~ 0.4678. vl L . T =

This would distort our inference about quantities of ~ © e o wam s o

interest such as the overall odds rakip= exp(e,.or);

point estimates would rise from the valie ~ 1.374 FIG. 9. Senditivity of oddsratio inference to exposure-specific el-

we find in the present analysis to as high &7iwith ~ '9bility misclassification rates.

these (untenable, as we will see) values. CHS study

28 (HIRA) reportedn., = 163 cases among, = misclassification can distort the evidence in either di-

69, 645 apparenﬂy exposed Subjects’ am&i =37 rection. We can illustrate the point with an artificial ex-

cases among, = 21,895 apparently unexposed ones. ample. . . _

It is impossible to reconcile these with error rates ~ The top portion of Figure 9 illustrates the effect of

as high aspz|. ~ 0.7474, p..; ~ 0.1970; the num-  Various possibilities about eligibility misclassification

bers m; of subjects with true case—exposure clas- "ates for a true odds ratio df, =1 (i.e., if ETS and

sification j € C& are related to those of apparent Ung cancer were unrelated); each of the curves lies

classificationk € C& by a linear relationship:; = above the horizontal line &, = 1, indicating that in

S a;jum ;, whose solutioni: for these error probabil- all cases the effect of misclassification is to inflate the
J J

ities and case-counts would givie,, ~ 3182 cases apparent association. However, if the true odds ratio
ce ™ . .

amongiz, ~ 57,309 truly exposed subjects, about dou- )[/_vereiRg - 1'3’ta dvglutehcolqssttent Wlttr? mbartlg/ of the ?S'

ble the reported rate, and; ~ —10 cases among the cl):‘nlgi ejréegp (i)llruitrall?es ;;teifrirleéi os?ad gugn;c{)so\r/vlgrr;

m, ~ 10,657 truly unexposed ones, an obvious impos- g S EXpOSed Sub)

sibility. to have double the eligibility misclassification rate of

In Section 3.2.2 we recounted the contradictory ev- exposed ones (perhaps from social pressure to deny

. : . smoking), then the apparent association would fall
idence and published opinion about whether and hOWfrom Iégl 130 to B Nppi 22 as the exposed-subject

. - _pe . . pr - . . e ~ . e ~ . =
eligibility misclassification rates might vary Wlth case eligibility misclassification rate rises from; e — 0
and exposure status. The results presented in Figure §,°5 10 (dashed line), distorting the apparent relative
are based on the assumption that eligibility misclassi-

et : risk downward. Conversely, if exposed subjects were
fication rates do not vary with status [see (19)]. In @ {4 have half the eligibility misclassification rate of un-
sensitivity analysis we explored the consequences Ofgyposed ones (perhaps because their occasional smok-
changing this assumption, taking the eligibility mis- g seems insignificant), then the apparent association
classification rates ;; to vary with case—exposure \ould rise from R, ~ 1.30 up to the inflated figure
status; € C&. A surprising sensitivity was revealed, of R, ~ 1.63 (dotted line in Figure 9). Equal decep-
particularly to the possibility of rates that vary with ex-  tion rates also show an inflation in apparent association
posure status. (dash—dot line).

Under the hypothetical assumption of no true asso- Evidently risk estimates are quite sensitive to the
ciation between lung cancer and ETR,= 1, awide  very uncertain feature of possible variation of smok-
variety of eligibility misclassifications will all lead  ing denial rates with exposure status. Uncertainty about
to an apparent positive associati® > 1 (Tweedie, these rates poses an obstacle not only to synthesizing
Mengersen and Eccleston, 1994). It is perhaps surpris-evidence from several studies, but even to interpreting
ing that, for true value®, > 1, differential eligibility the evidence of a single study. Our observed sensitivity
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of the model to “apparently innocuous assumptions”is The unadjusted estimates in the present meta-
supported by the findings of Higgins and Spiegelhalter analyses of the relative risk of lung cancer associ-
(2002) in a comparison of the inferences that arise from ated with ETS exposure are consistent with the results
a meta-analysis and those from a megatrial. of other published meta-analyses (Wald et al., 1986;
It is of course possible to reflect uncertainty about National Research Council Committee on Passive
the deception rates within our modeling framework by Smoking, 1986; Tweedie and Mengersen, 1992; EPA
adding a new level of model hierarchy and introducing Review, 1992; Lee, 1992; OSHA, 1994; Hackshaw,
a joint prior distribution for the deception rates;,; } Law and Wald, 1997; Boffetta et al., 1998; Zhong,

and misclassification rate{ai.lk} as in (13), but we do Goldberg, Parent and Hanley, 2000; Boffetta 2002_).
not pursue that further herej For example, Hackshaw, Law and Wald (1997) esti-

mated R, ~ 1.24 (1.13-1.36), based on 37 studies;
Zhong et al. (2000) reported, ~ 1.20 (1.12-1.29)
based on 35 case-control and five cohort studies;

The hierarchical Bayesian approach described in thisBoffetta et al. (1998) reporte@, ~ 1.16 (0.93-1.44)
paper provides a new flexibility in meta-analysis by fa- in @ multicenter European study; and Boffetta (2002)
cilitating the formal adjustment of evidence for varia- found an overall relative risk ok, ~ 1.25 (1.15-1.37)
tions in important factors such as quality and design atbased on 51 relevant studies that comprised 7369 ob-
the study-specific level. The nonexchangeable modelsServed cases of lung cancer. A very recent reanalysis
advocated here accommodate such study-specific hetPy Enstrom and Kabat (2003) of the large American
erogeneity through careful specification of joint prior Ca@ncer Society's first cancer prevention study reported
distributions for study-specific parameters that adjust @ Point estimate less than unity and thus an overall
directly the evidence from each study's likelihood. Null effect. Moreover, the adjusted point estimates are
This coherent, likelihood-based approach is arguably " broad agreement with those that adjust using less

superior to alternative approaches such as naively com-fcc))rfrsnél"’:_)I r;eztggd_s, althoughh tourd95°go credible mtr?_rval
bining reported values without any adjustment, dis- (0.845-2.224) is somewhat wider because our hierar-

counting or excluding some or all studies on the basis phlcal Bayesian approach is more faithful in represent-

of perceived problems of quality or study design, or in- ing multiple sources of uncertainty. It is clear that the

. y data set considered here, despite its age, provides a ve-
voking (often unsupportable) exchangeability assump- . . -
. . - hicle for making relevant contributions to the current
tions in more traditional random effects models or

making often arbitrary adjustments at a broad Scalle.ongomg debate about the association between ETS and

. . ._'lung cancer.
Note that the 'ne'egl for adjustment_ and the size _Of Its Of course sources of bias other than study quality
effect do not diminish for large studies—a study with a

high misclassificat te will give distorted or biased may influence the results of this or any other meta-
Igh misclassitication rate will give distorted or biase analysis. For example, a topical issue is the potential
evidence, no matter how large its sample size.

)= . influence of publication bias, that is, the differential
‘Other methods for combining the evidence from o 4ency to publish small studies that show a positive
disparate studies have been suggested in the “tera(whether or not significant) effect, but not to publish
ture. For example, Thompson and Sharp (1999) pro-gmg)| studies that show a negligible or negative effect.
posed we|ghteq| regression in place of a_hlerarch!calAn attempt to “control” the quality of included stud-
model for obtaining estimates of effect size for dif- jog by restricting meta-analysis to published studies
ferent covariate values. A multivariate meta-regression may exacerbate the effects of publication bias, lead-
analogue of this approach could be developed for thejng to spuriously high estimates of overall relative risk.
ETS case study (as suggested by a referee). AlternaControversy surrounds the potential influence of this
tively, the problem could be cast in the form of a mea- source of bias for the issue examined in this paper. Lee
surement error model (Cheng and Van Ness, 1999), in(1992, page 166) stated that “overall, it appears that
which each study’s results are treated as measurementsome publication bias has occurred, and that it can ex-
(with error) of model parameters. A related approach plain a part, but by no means all, of the observed asso-
is adopted by Aitchison (1977, 1979), who used inter- ciation.” Givens, Smith and Tweedie (1997) proposed
clinic calibration data to combine studies from multiple a data-augmentation method to simulate the results of
clinics that differ in their methods of measurement of unobserved studies within a hierarchical model and
diagnostic features. concluded that the overall association between ETS

5. DISCUSSION



ADJUSTED LIKELIHOODS FOR SYNTHESIZING EVIDENCE 467

and lung cancer in nonsmoking women may be over- how to calculate the needed quantities from those usu-
stated by around 30%, in both U.S. and global studies.ally available.

A trim-and-fill funnel plot approach taken by Duval A third advantage is that we are able to make
and Tweedie (2000a, b) led to a similar conclusion probabilistic statements impossible under the earlier
of overstatement. Copas and Shi (2000) similarly ar- approach (Lee, 1992; EPA Review, 1992). We can
gued that the overall excess risk of 24% reported by find posterior distributions of any quantities of in-
Hackshaw, Law and Wald (1997) could be reduced 10 terest (not just model parameters, but arbitrary func-
15% after taking into account this form of bias. The en- tions of them) at any hierarchy level of the model or
suing debate over these papers (see the correspondinge ¢an find various point estimates (means, medians,
discussions) has refuted these claims strongly, arguingetc y and statements of associated uncertainty (cred-
that they overestimate the number of missing studies;p, o "ineryals, posterior standard deviations, etc.). In

and their impact. . . -
Other quality issues not considered in the presentthe ETS ar_1§1Iy3|s, for_ example, the prior probability
. . I of any positive association between lung cancer and
analysis include confounding with dietary factors (sug- ETS is R 0] = 1/2. Upon shrinking study evi-
gested by Boffetta et al., 1998, but later disputed by dence tovfarzl cou_ntn// girour;)s (but not ygt a djuiting for
Brennan et al., 2000), genetic ceptibility (Bennett . . )
). @ ic susceptibility ( quality), this rises to B > 0] = 0.851; upon adjust-

et al., 1999) and variable length of exposure (Nyberg S o L : .
et al., 1998), leading to bias through right censoring. N9 for eligibility violations, it rises imperceptibly to

Our approach offers a number of advantages overPle > 01 =0.856; and with all quality adjustments, it
earlier ones. First, it requires very strict and explicit "$€s to e > 0] = 0.907. Cancer odds are unlikely to
identification of the factors for which adjustment is to increase by as much as a factor of 2. However; there is
be made. This necessitates a strong audit trail of theover a 90% chance that the relative risk of cancer asso-
rationale behind the proposed adjustment, the sourceciated with never-smoking women married to smokers
and degree of detail of the evidence at a study-specificis less than twice that of never-smoking women mar-
level and an acknowledgment of the uncertainty of the ried to nonsmokers. Thus on the basis of this analysis
proposed adjustment. These in turn guide the expresthe case for an association between ETS and lung can-
sion of the adjustment in the model and the level of the cer is strong, but evidence ofsizeable effect is not
hierarchy to which it will be applied. compelling.

A second advantage afforded by the proposed ap- A fourth advantage is that we can use collateral in-
proach is an introspection about the impact of the formation at whatever is the most appropriate level—
claimed evidence, at both study-specific and global lev- individual study, country group or overall—and that
els. This was illustrated in the ETS analysis through the gyr MCMC-based implementation makes it easy to
sensitivity assessments of Section 4.3. The model natyake detailed probabilistic statements about features
urally afforded a formal assessment of the surprising of inferential importance at any of these levels. Mul-
sensitivity to differential case and exposure misclas- tiple comparisons that are largely inaccessible under

Is'f'C?t'?n’ and th;l. |rr1]a%pllc?b|h';y at ;[he StUdy'Sp?C'r'C other paradigms are achieved here in a straightforward
evel of some publisned estimales of EXpoSureé MISCas-, g nar For example, in the ETS model without ad-

sification. Importantly, a consequence of these require-. . L
) . ment for misclassification =m =
ments for detailed evidence from trusted sources andJUSt ent for misclassification s AeGleg)]

an understanding of the implications of the choice of 0.11, whereas Bor = maxcgiee}] = 040 and
evidence is a healthy respect for meta-analysis in gen—P[gGR > us] = 0.69. . e
eral and a careful regard for interpretations made on, | € fifth advantage is the approach’s simplicity and
the basis of it. flexibility. The number and nature of levels of hierar-
Care must be taken in interpreting published esti- chy can be tailored_ to the needs ofaparticular prop!em,
mates of error rates. Usually investigators report esti- @nd adjustment (like those we applied for classifica-
mates of the fraction of theample that is misclassified ~ tion errors) may be imposed at any level(s) of that
(e.g., report B|s']), whereas likelihood-based adjust- hierarchy. The top leveb of the hierarchy can be
ment methods like ours require the fraction of fjop- ~ any hyperparameter conditional on which the study-
ulation that is liable to misclassification (e.g.[Ps]). specific paramete®' } are independent; in some cases
These differ whenever[P] # P[s'], as in our exam-  this may be the parametéP that governs an “ideal”
ple (smokers deny smoking far more often than never-trial for a particular investigator's purposes, as in Sec-
smokers claim to smoke). In Section 3.2.3 we illustrate tion 2.1, but in other cases it may be more abstract.
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Our estimates of misclassification rates (leading in AitcHison, J. (1979). A calibration problem in statistical di-

our linear parametric adjustment approach to the clas-

sification matrixx) are an easily interpreted and public
part of our analysis. Investigators who disagree with
our choices (e.g., those who disapprove of our simpli-

agnosis: The clinical amalgamation probleBiometrika 66
357-366.

AKIBA, S., KaTO, H. and B.oT, W. J. (1986). Passive smoking

and lung cancer among Japanese worflancer Research 46
4804-4807.

fying assumption of no multiple misclassifications) are BENNETT, W. P., ALAVANJA, M. C. R., BLOMEKE, B.,

free to substitute their own and explore the same evi-

dence in the light of their different assumptions.
Finally, the type of adjustment itself is also flexi-

ble, in that one is able to parameterize whatever vari-

ations exist among studies under study and expressB
uncertainty about those variations (perhaps in a nonex-

changeable fashion) in the form of joint prior distri-
butions. The computational feasibility of the MCMC
algorithm that implements the approach, which in the
ETS example translated into the ability to complete
million-step runs in under half an hour on a lap-

VAHAKANGAS, K. H., CASTREN, K., WELSH, J. A.,
BowwMmAN, E. D., KHAN, M. A., FLIEDER, D. B. and
HARRIS, C. C. (1999). Environmental tobacco smoke, ge-
netic susceptibility, and risk of lung cancer in never-smoking
women.J. National Cancer Institute 91 2009-2014.

ERGER J. O., Useo, B. and WoLPERT, R. L. (1999). Inte-
grated likelihood methods for eliminating nuisance parame-
ters.Satist. Sci. 14 1-28.

BERGER J. O. and VOLPERT, R. L. (1988).The Likelihood Prin-

ciple: A Review, Generalizations, and Statistical Implications,
2nd ed. IMS, Hayward, CA.

BERRY, D. A. (1990). A Bayesian approach to multicenter tri-

als and meta-analysi&\SA Proc. Biopharmaceutical Section
1-10. Amer. Statist. Assoc., Alexandria, VA.

top computer, allows the investigator to explore such BESAG, J., GREEN, P., HGDON, D. and MENGERSEN K. L.

modifications interactively, with appropriate assess-

(1995). Bayesian computation and stochastic systems (with
discussion)Satist. Sci. 10 3—66.

ment Of Convergence and SenSItIVI'[y ThIS InteraCtlve BOFFETTA, P. (2002) |nv0|untary smokmg and |ung can&ean-

exploratory model-building with complete representa-
tion of uncertainty is a powerful tool for interpreting
and synthesizing evidence from multiple sources.
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