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Abstract. The cosmic microwave background (CMB), which permeates the
entire Universe, is the radiation left over from just 380,000 years after the Big
Bang. On very large scales, the CMB radiation field is smooth and isotropic,
but the existence of structure in the Universe—stars, galaxies, clusters of
galaxies,... —suggests that the field should fluctuate on smaller scales.
Recent observations, from tl@smic Microwave Background Explorer to

the Wilkinson Microwave Anisotropy Probe, have strikingly confirmed this
prediction.

CMB fluctuations provide clues to the Universe’s structure and composi-
tion shortly after the Big Bang that are critical for testing cosmological mod-
els. For example, CMB data can be used to determine what portion of the
Universe is composed of ordinary matter versus the mysterious dark matter
and dark energy. To this end, cosmologists usually summarize the fluctua-
tions by the power spectrum, which gives the variance as a function of angu-
lar frequency. The spectrum’s shape, and in particular the location and height
of its peaks, relates directly to the parameters in the cosmological models.
Thus, a critical statistical question is how accurately can these peaks be esti-
mated.

We use recently developed techniques to construct a nonparametric
confidence set for the unknown CMB spectrum. Our estimated spectrum,
based on minimal assumptions, closely matches the model-based estimates
used by cosmologists, but we can make a wide range of additional inferences.
We apply these techniques to test various models and to extract confidence
intervals on cosmological parameters of interest. Our analysis shows that,
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even without parametric assumptions, the first peak is resolved accurately
with current data but that the second and third peaks are not.

Key words and phrases. Confidence sets, nonparametric regression, cos-
mology.

1. INTRODUCTION in a mathematically perfect fluid, while exotic kinds

of matter began to clump under the influence of
gravity. The interaction between this photon—baryon
fluid and such gravitational overdensities is of critical
importance and will be described below.

When the temperature reached about 3,000 K,
ughly 380,000 years after the Big Bang, electrons
and protons could combine to form atoms. This decou-
pled the photon—baryon fluid, and the photons flew free
through space. This period is nanmredombinationand

o . - happened, in cosmic terms, very quickly. After another
Within the_ first seco_nd, roughly 13.7 billion years 200 million years, hydrogen formed after recombina-
ago, the Universe achieved temperatures on the Ordefion had clumped enough for the first stars to form,

of one trillion degrees kelvin (K, degrees above ab- \ynich hegan the synthesis of heavy elements and the
solute zero; Schwarz, 2003). The density during that ;5 mation of galaxies that we see today.

second was high enough to stop neutrinos, which in- past of the photons released at recombination have
teract so weakly with matter that they can pass unmo-yayelied through space for billions of years without

lested through @uadrillion kilomeers of lead. What  jyteracting with matter. The temperature of these pri-
ties this hot, dense beginning to the Universe we see to-,odial photons has now cooled to about 2.7 K, barely
day is expansion. A useful metaphor for the expanding gpove absolute zero, which puts them in the microwave

Universe is the surface of an inflating balloon. As the part of the electromagnetic spectrum. This primordial
balloon inflates, space—time itself is stretched; every ragiation field, which still pervades the Universe, is
point moves away from every other point. Density falls -5jjed the cosmic microwave background (CMB). The
as the universe expands. If you picture a wave oscillat- c\MB thus provides a snapshot of the moment of re-
ing over the surface of the balloon, the wavelength in- compination, and fluctuations in the temperature across

creases. Increasing the wavelength of light correspondshe sky contain information about the physics of the
to reducing its temperature. The Universe thus cools asearly Universe.

it expands. o o
Within the first three minutes, the Universe’s tem- 1-1 The Cosmic Microwave Background Radiation

perature was over one billion degrees kelvin. The en-  As we will explain in the remainder of this section,
ergy density in space was so high that atoms could notthe temperature fluctuations in the CMB give a shap-
form. Space was filled with a stew of photons, baryons shot of the physics in the early Universe and provide
(e.g., protons and neutrons), electrons, neutrinos anctritical tests of cosmological models. In 1992, ts-
other matter. As the temperature cooled below one bil- mic Microwave Background Explorer (COBE) satellite
lion degrees kelvin, light-element nuclei (deuterium, discovered fluctuations in the blackbody temperature
helium, some lithium) formed as well, in proportions of the CMB (Smoot et al., 1992). These fluctuations are
that fit well with observations. During this period, pho- small: approximately one thousandth of the mean tem-
tons (radiation) were the dominant form of energy in perature over the sky. Indeed, almost 30 years of ex-
the Universe. Any fluctuations in density caused by periments since the CMB's discovery could not detect
gravity (which affects light and matter) were quickly any deviation from uniformity. During the 10 years fol-
smoothed out and so could not grow. lowing COBE, many more refined measurements were
When the temperature of the primordial photons taken; notable experiments include MAXIMA, DASI
had fallen below approximately 12,000 K, photons and BOOMERANG (Lee et al., 2001; Halverson et al.,
were no longer dominating the interactions among 2002; Netterfield et al., 2002). In 2003, tki¢lkinson
all particles. Photons and baryons became coupledMicrowave Anisotropy Probe (WMAP) considerably

The “Big Bang” model is misnamed, as one might
expect when a term is coined as an insult. Cosmologist
Fred Hoyle first used the name in a BBC radio
interview to denigrate the theory, which opposed the
then-dominant Steady State model. The name Bigro
Bang stuck, as did its evocation of a mighty explosion
in space. But the image of aexplosion is highly
misleading. What the model actually posits is that the
Universe began hot, dense and expanding.



310 C.R. GENOVESE ET AL.

Fic.1. (Top)TheCMB asseen by the COBE satellite. Theangular resolution of the satelliteisabout 10° and the various shades correspond
to hot and cool spots with respect to the CMB blackbody temperature. (Bottom) The CMB from the Wilkinson Microwave Anisotropy Probe.
Notice the high angular resolution. Also notice that the large-scale structures are apparent in both the COBE and the WMAP data. Image
courtesy of the WMAP Science Team and available at the WMAP Mission Web site, http://map.gsfc.nasa.gov.

refined the picture, increasing spatial resolution by a spectrum in Section 1.2, but here we want to explain
factor of 33 and sensitivity by a factor of 45 over COBE how the spectrum’s shape relates to the physics in the
(Bennett et al., 2003). In Figure 1, we compare the time up to recombination.
COBE and WMAP temperature sky maps after remov- A key to understanding the physics before recom-
ing the mean temperatue = 2.726 K and adjusting  bination is, as mentioned earlier, that photons and
for the motion of our Galaxy through the Universe. The baryons became coupled into a (perfect) fluid. Math-
fluctuations’ magnitudes are just right to explain the ematical techniques for studying fluid dynamics ap-
large-scale structure in the Universe we see today. Fomply well in this scenario and have been investigated by
example, if they had been much smaller, there would many authors (see, e.g., Hu and Sugiyama, 1995; Hu,
not be enough local concentration of mass to seed thel999, 2000, 2003; Hu and Dodelson, 2002). The prop-
formation of galaxies, galaxy clusters, etc. erties of the fluid are determined by the relative density
Perhaps the most important summary of the tem- of photons and baryons in the fluid. Photons provide
perature measurements used by cosmologists is th@ressure, and the baryons provide inertia. As the fluid
power spectrum, which gives the temperature vari- falls into a gravitational potential well around a clump
ance as a function of spatial frequency. The spectrum’sof higher density, the pressure from the photons resists
shape, and in particular the location and height of its compression and the inertia of the baryons increases
peaks, relates directly to the parameters in cosmologi-it. (Large, isolated potential wells were likely rare in
cal models. (See Appendix 2 for a description of these the early Universe; instead, there were random density
parameters.) Thus, a critical statistical question is how fluctuations at many scales.) The result is an oscillation
accurately can these peaks be estimated. Of particulathat produces pressure waves—sound—in the photon—
interest are the height and location of the first peak andbaryon fluid. Thesecoustic oscillations account for
the relative heights of the successive peaks. much of the interesting structure in the spectrum, par-
Figure 2 displays an estimated spectrum commonly ticularly the size and arrangement of peaks. The im-
used by cosmologists and highlights the peaks of print of those waves remains in the CMB as a pattern
interest. We will give a more precise definition of the of hot and cold spots.
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RS '] I LR modes end on a rarefication. Thus as the baryon frac-
0] = | tion increases we should (over some range) see a dif-
- ferential effect on the odd- and even-numbered peaks.
The third peak in the spectrum provides the clearest
support for the existence of “dark matter’—a substance
of unknown composition that interacts at most weakly
with baryons (e.g., neutrons, protons) or with photons
(that is why it is dark). To see why, it is illuminat-
ing to compare the oscillations in two example cases.
In the “radiation-dominated era,” when photons were
the dominant form of interaction in the universe, den-
sity fluctuations were short-lived and unstable. A com-
pressed region of photon—baryon fluid would rarefy
as described earlier, but as it did so, the overdensity
that caused the original gravitational well would disap-
pear. Thus, in this case, at most one cycle of oscillation
would occur between the Big Bang and recombination.
We would see only one small peak in the temperature
power spectrum corresponding to the mode (compo-
FiG. 2. Estimated CMB spectrum showing the three peaks of nent of oscillation) that reaches maximum compression
interest. The underlaid boxes give the data ranges and uncertainties at the time of recombination. When the matter fraction
from a variety of older CMB experiments, not including WMAP. 5 |ow, the peak would be small, increasing with the
From Hu (2000). baryon fraction (inertia).
In the “matter-dominated era,” however, most of the
To understand the peaks in the power spectrum, itenergy density was in the form of dark matter. The
is helpful to decompose the acoustic oscillations into rarefication phase of the oscillation would not elim-
their basic components, or modes. The first peak of thejnate the local overdensity, allowing multiple cycles
spectrum represents the fundamental tone of the oscil-of oscillation. The result is a spectrum with multi-
lations, and the other peaks in the spectrum represenple harmonics and thus multiple peaks. The existence
harmonics of this tone. The fundamental correspondsand contribution of dark matter is only distinguishable
to the mode for which one compression occurs be- from that of baryons alone with three or more peaks.
tween the Big Bang and recombination. Each succes-Moreover, the magnitude of the third peak constrains
sive harmonic corresponds to an additional half-cycle, the time of transition between a radiation- and matter-
compression followed by rarefication (decompression). dominated universe. In particular, a finding that the
Thus, the second peak represents modes that had timgecond and third peaks were comparable in magnitude
to compress and then rarefy before the photons werewould suggest that dark matter dominated before re-
released from the photon—baryon fluid. The third peak combination, which is a fundamental prediction of Big
represents compression—rarefication—compression an@ang cosmology. The magnitude of the third peak is
so on. also of interest for estimating the fraction of dark mat-
The height of the first peak is determined by the total ter in the Universe. Astronomers have several methods
energy density. Roughly, with more matter, the grav- for inferring the dark matter fraction (e.g., studying the
itational attraction requires more force to counteract, rotation of galactic disks in the recent Universe), and it
deepening the compression and thus increasing the amis vital to determine if these estimates are comparable
plitude of oscillation. to those produced by the physics of the early Universe.
Now suppose we increase the density of baryons Finally, the pattern of CMB hot and cold spots we
in the photon-baryon fluid. This increases the inertia see on the sky corresponds to those photons just reach-
of the fluid, deepening each compression phase with-ing us from the moment of recombination. (Recombi-
out changing the rarefication. The oscillations become nation was relatively quick but not instantaneous, so
asymmetric. What this means is the odd-numberedthere is some blurring of high spatial frequencies from
peaks, whose modes end on a compression, are enthe scatter of photons during that finite period.) The
hanced relative to the even-numbered peaks, whosecontribution to this pattern from each acoustic mode
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maps to a spherical mode of fluctuations on the sky.and they are uncorrelated. Thmwer spectrum is
The analysis then proceeds by decomposing the ob-defined to be&C, as a function of.

served fluctuations into spherical modes and using the Usually, it is assumed thaf is a Gaussian field
contributions of these modes to understand the acoustiqbut see Marinucci, 2004), which implies that te,,
oscillations. We discuss this in the next section. have a Gaussian distribution. If we were to obsetve
without measurement error, we could estimaieby,
say,

1.2 The CMB Temperature Power Spectrum

Our focus in this paper is inference about the CMB
temperature power spectrum and in particular the peaks ~ 1 5
in the spectrum. In this section, we describe the ®3) Cp= 20+1 Z ag,m>
spectrum and some of the issues that arise in estimating m==t
it. Marinucci (2004) gives a more complete derivation gnq thus for largel we haveC, ~ C, because we
upon which ours is based. , are averaging a large number of . We call Cy
_LetT(6, ) denote the temperature field as a func- {he realized spectrum. Another important implication
tion of colatitude (zero at the zenith)06 <z and ot (3) is that, even with perfect observations, we
longitude O< & < 27. LetT denote the average of the 414 not know the true power spectrum. Because our
temperature field over the sphere_, _ Universe is viewed as one realization of a stochastic

Define the temperature fluctuation field by processC; will in general differ fromC;, especially
T®O,9)—T for small £. This is known as the problem @bsmic
T variance. We return to this point in Section 5.

Note thatZ is a random field with mean zero and is In practice, the data are ;ubject to various sources
assumed to have finite second moment. We can expan@ measurement error, blurring and unobserved parts
Z in terms of an orthonormal basis on the sphere. The ©f the sky. For example, the Milky Way, which is rela-

usual choice of basis is the set of spherical harmonicstVely bright, obscures the deep sky along a wide band.
{Yem(8, )}, for positive integerst = 1,2,... and  1he spherical harmonics are no longer orthogonal over

integers—¢ < m < ¢. (Here¢ is called the multipole ~ What is left of the sphere, which induces correlation
index1 or |0_03e|;/’ “mu'tipole moment"’) These are and bias into the eStima'[Edg’S. There are in addition

4

Z20,0)=

defined as follows: a host of other complications in measuridg
T D Our model, in vector form, is
—mp: 5im| im®

Y 0,%) = P, cosd s A

where. thepP ,,, £=1,2,... gndm =0,....¢, are the  whereC is theobserved spectrum and the noise vec-
associated Legendre functions defined by tor ¢, with covariance matrixCRC”, incorporates the

. . omy2 d" known sources of error, including measurement error.
Py (x) = (D)7 (A = x5 Po(x) If there were no sky cut for the galaxy, would be

diagonal, but in practice, it incorporates the various

with Legendre polynomials .
g PO’y known sources of error. In practice, the unkno@n

d@

Pi(x) = %W(xz— 1. in the covariance matrix is replaced by a pilot esti-
S mate, C°. The choice ofC? turns out to have sur-
We can now write prisingly little effect on the results. We thus take the
oo ¢ covariance matrix of in (4) to be known and equal to
(1) ZO.N=> Y amYem®,9), T =COR(CYT.
{=1m=—t Another issue is that the observations are actually de-
where rived from a convolution of th€,’s with ¢-dependent
o pm _ window functions; that is, the model is actualfy=
(2) aem =/0 /0 Z(0,9)Yem(0,9)SIN0 db d7. KC + & for some matrixk. However, as Figure 3

SinceZ is a mean zero random field, the coefficients shows, the rows ok’ are very nearly delta functions.

: : (See Knox, 1999.) In fact, incorporating these window
ae.;, are random variables. They have mean 0, variance . - .
: functions has negligible effect on our results, so we dis-

Cy =Elagml? regard them in what follows.
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FiG. 3. Bandpower windows fromthe matrix K centered on (left to right) £ = 100, 200, 300 and 400.

2. UNIFORM CONFIDENCE SETS FOR ball 8, for f. More precisely, we wanB,,,
NONPARAMETRIC REGRESSION (6) liminf inf P(feB,)>1—a.
n—>o0 fefF

Taking Y, = C; and x; = £/Lmax let f(x¢) = Cy
denote the true power spectrum at multipole index for some large function clas$ such as a Sobolev
See Figure 4 for th&, from the WMAP data (Hinshaw  Space.

et al., 2003). We can then rewrite (3) in the form ofa  Once we have computed the confidence ball, we can
nonparametric regression problem: construct a confidence interval for any functiofidlf)

of interest, such as the location of the first peald lis
(5) Yi=f(xe)+e, €=Lnmin,--., Lmax a set of such functionals and

wheree = (er,,,,. - - - » €Lmay) 1S @Ssumed Gaussian with 1,(T) = ( min T(f), max T(f)),
known covariance matriX as described earlier. This is feBn feBn
only an approximation to the model actually used, but then we have that
we will not discuss the various practical complications
here.

Let o? denote the diagonal elements Bfandn = (7)
Lmax — Lmin + 1 be the total number of observed

multipoles. Henceforth, we will use=¢ — Lmin+1  Alternatively, we can construct the set of cosmological
as an index. parameters that produces spectra within the confidence

Our approach is to nonparametrically estimate the pall, which gives a joint confidence set on these
regressiory and find a nonparametric-da confidence  parameters.

We use orthogonal series regression to estinfate
and then construct a confidence ball via the Beran—
Dumbgen pivot method (Beran, 2000; Beran and
Dumbgen, 1998), which was inspired by an idea in
Stein (1981). Specifically, we expandin the cosine
basisf = Z(}O:o wnid;, wherego(x) =1 ande;(x) =
V2¢(rjx) for j > 1. If f is fairly smooth, for exam-
ple, if f lies in a Sobolev space, then;., u? iS neg-
ligible and we can writef (x) ~ 3% _qn¢;(x). Let

|Ian_1)I(I>’]Of le;P(T(f) el,(T)forall T €T)

>1—a.
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for 0 < j < n. Note that vectorZ is approximately
FiG. 4. Y, asafunction of £ for the WMAP data. Normal with mean and variance matrik/ UT/ﬁ’
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whereU is the cosine basis transformation matrix. We is an asymptotic - « confidence set for the coeffi-

define the monotone shrinkage estimator by cients, where, denotes the upperquantile of a stan-
dard Normal and wherg; = [1; (A,). Thus

9) fj=niZ;,

n
where 1> 1, > --- > A, > 0 are shrinkage coefficents. (A1) Bu=f)= Z j®j(x) i€ Dy
The estimate off is =1
is an asymptotic  « confidence set fof.
The approach to confidence sets that we use here
is quite different from the more familiar confidence
band approach in which one constructs bands of the

In this paper, we will use a special case of monotone form f(x) 4 c,/\ﬁr(f(x)) for somec. The advantage
shrinkage, called nested subset selection (NSS), inof bands is that, by plotting them, we get a simple
which ;= 1for j <J andi; =0for j > J.Inthis  visual impression of the uncertainty. However, there
case, are some drawbacks to bands. In their most naive
J form, the constant = z,/2, which does not account
foo)= sz(ﬁj(x). for thg multiplicity over thex’s. This can be flxed'
by using a larger constant, although the computation
of the constant is, in some cases, nontrivial. See Sun
The squared error loss as a functionjof= (A1, and Loader (1994). Second, the available results about
) is coverage appear to be pointwise rather than uniform
over f € ¥, although we suspect that the results
Ln(i):/(f(x) —f(x))zdx%Z(Mj _,ij)Z. can be strengthened to be asymptotically uniform.
F The third, and most serious, problem is that the
o function estimatef is biased so the confidence interval
The risk is is not centered properly, resulting in uncercoverage.
A2 Specifically, lettings(x) denote the standard error of
R(*) _E/(f(x) f () dx f andm(x) = E f(x), we have that

fe) =30,

j=1

j=1

A A

A Xn:xfg—’z + i(l—/\‘,)zuﬁ, fO) = fx) _ fE)—mlx)  m&) = f&x)
=1 " =

s(x) N 5(x) * s (x)
The first term typically satisfies a central limit theorem.

where ojz = V(¢;). The shrinkage parameter is The second term does not tend to zero since optimal
chosen to minimize the Stein’s unbiased risk estimate smoothing causes the biasx) — f(x) to be of the

n 52 52 same order as(x). There have been some attempts
(10) R() = Z ;3_! + Z(l—)‘i)2<zjz'— _J> . to control this smoothing bias; see Ruppert, Wand and
=" 4 ‘ n/+ Carroll (2003) for a discussion.

The confidence ball approach automatically deals

Beran and Diimbgen showed th&fx) is asymptoti-  with the smoothing bias, at least approximately. This
cally uniformally close taR (1) in either the monotone  is because the ball takes the objg¢ix) — f(x)||? as
or NSS case. its starting point, rather thap (x) — m(x), which is

The Beran-Dimbgen method is based on the weakimplicit in the band approach. The ball approach does
convergence of the “pivot process’B,(A) = have some bias, sincﬁ actually estimates, (x) =

\/Zﬁ(Ln(?\) ~ R()) to a 2l\!orrr)a{o,_rz) for some  Yi_ypuj¢;(x) rather than f(x) = Y52, ¢, (x),
®> 0. (The estimator for® is given in Appendix 3.)  resulting in a tail bias 0%, , ; 42. However, this tail
It follows that bias is small relative to the smoothing bias.

LaG) = SuCGn) _
S t/ym T
. As Figure 5 shows, the data for the CMB power

i Ao N2 o nZa L RO spectrum are highly heteroskedastic. The confidence
{M ;wl i) = NI () set based ont? loss is a ball and thus gives equal

3. DEALING WITH HETEROSKEDASTIC ERRORS

i)n:{ﬂ
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The construction ofB,, requires a new central limit
theorem and a modified estimate of the asymptotic
variance. We also replace the risk estimator in (10) by
the following, which can be shown to be unbiased for
the new loss function:

R=7ZTDWDZ +trac DWDB)
(12) o
—trac& DWDB),

whereD and D = I — D are diagonal matrices with
1’s in the firstJ and lastn — J entries;B =UXUT
is the covariance of; and W, = >, we A jre With wy
being thefth expansion coefficient of the functian?

and

8 1, if#{j,k ¢=0}=3,
34 0, if#{j,k,£=0=2,
. | 1 djkb0e + 8180k + Srido;

I Ajk/z=/o G jdrpe = if#{j, k,t=0)=1,
. 1

T -I: s _.Iu. 0 ) E(ag,]'f‘k +8€,‘j—k|)’

if j,k,¢> 0.

FiG. 5. Noise standard deviation as error bars on data (above)

and as a function of ¢ (below). The setB, is defined as in (11) but with the new

estimate of risk. The estimated variance of the pivot,

AD - . . . . .
weight to deviations in all directions. Because the ©%, is also different and is given in the Appendix.

CMB variances are tiny for somé&s and huge for

others, this symmetry is inappropriate. In parametric 4. RESULTS

inference, confidence sets under heteroskedasticity are o applied our method to the WMAP data to
typically ellipses rather than balls, and we need 10 gqin 5 confidence set for the unknown spectrum

make a similar adjustment. We do this by constructing £(¢/Lmay = C;. Figure 6 compares the center of our

the' conﬂdenge setunder a loss funct|qn that gives MOr€:onfidence ball with the so-called Concordance model
weight to points where the spectrum is measured pre-

cisely. In this section, we extend the Beran—DUmbgen(Spergel et al,, 2003). The Concordance model is the

method to such weighted loss functions.

We now replace theL? loss function with the :
following weighted loss: ~
Lt fr= [ = o5 ff : 5

ki . ! J

where we takan?(x) = 1/0%(x). We expand both the = * 7 H'H il £

unknown function and the weight functian? in the 1 J e ~ .______J'r

orthonormal basis. Hence, we write B LA

f =) B, 5 , ; ; :
/ d an 2 wr *1

FiGc. 6. Center of our confidence ball (curve with sharp rise
at right) and the power spectrum for the Concordance model
wherego, ¢1, ... is the cosine basis on [0, 1] defined (curve with three peaks). Note the striking agreement between the
above. nonparametric fit and the parametric fit.

w?(x) =Y wj¢;(x),
J
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maximum likelihood estimator for a likelihood of the
form

Lcond?; Ywmap, Yiss, Yiyman, YcBi, Yacbar)

13 = Lwmar(0; Ywmapr) - L1ss(0; Y ss) a |
&) * Lryman(@; Yryman) - LcBi(0; Ycal) : 2 |
- Lacbar(t; Yacbar)s i
where theY’s are independent data sets from differ- _ .
ent experiments (WMAP, Bennett et al., 2003; LSS, ; ~-

Percival et al., 2001; Lyman, Croft et al., 2002; Gnedin nee

and Hamilton, 2002; CBI, Mason et al., 2003; Sievers gig. 7. Center of our 95% confidence ball with superimposed
et al., 2003; Pearson et al., 2003; Acbar, Kuo et al., 95%intervals for the heights and widths of the first two peaks.
2004). In particular¥ywmap is the data set we are us-
ing. The parametric fit from the WMAP data alone (see

Figure 10, top right) is obtained by maximizing only is to be expected given the large variances near the

second peak. In other words, the data alone give little

the first componentymap (9; Ywmap)- information about the second peak. (The third peak
Note how well the nonparametric curve compares to . : ) ,
is even more uncertain.) The published results in the

the Concordance spectrum. The notable exceptionsare, ~ . . .
. : . . physics literature present the second peak with much
in the very high¢ region around the third peak and the . o : :

; . lower uncertainty. We return to this issue in Section 5.
low-¢ region where the physical models curve upward

. . Figure 8 shows an example of a model-directed
sharply. We will argue that both the third peak and . .
the rise in the spectrum at lofis are by-products of probe. Using the CMBAST software package (Seljak

the model and not the data. All of the cosmological and Zaldarriaga, 1996), we generated spectra in a

. ne-dimensional family centered on the Concordance
models share both features. We are not suggesting tha : : )
. , D model parameters. The figure, which we call a ribbon
these features are incorrect, but we believe it is useful

to separate effects driven by the data from those drivenﬁfé;isgi\;\lsigo\g;gg ;pheilcetr;l cir;an?hees tifa}hgnté?ryon
by the model (see Section 5). b ping gy

Once we construct the confidence ball, the next Steernsny QT‘_’“"' fixed at 1. The light gray curves are
. : : - in the ball; the black curves are not. The resulting
is to use it to draw inferences. Because the ball is

) . o . , interval for Qph? is [0.0169,0.0287]. To generate a
900-dimensional in this case, it can seem daunting to_ . , )
) . . valid confidence interval with such a probe we would
display results. Fortunately, our construction provides . ; .
. . need to search the entire 11-dimensional parameter
simultaneous coverage over all functionals of the
) space.
unknown function, pre or post hoc. We thus explore
the uncertainty by creating targetpibbes of the ball.
First, we explore the uncertainty in the location and
height of the peaks. To do so, we searched through the =
confidence ball using local quadratic probe. Specifi-
cally, at each locatioidg, we defined a quadratig, (¢)
with support on the intervdbg — A, £g + A] fqr fixed E \
A =51, centered atg, and with height:. If f is the .
center of our confidence ellipse, we considered pertur- &1 M
bations of the fornmy = f + g;. We variedh to find the

largest and smallest values such that the resulfing

]

within the confidence ball and maintains three peaks ; i
over thet range[2, 900]. This results in confidence o
limits on the peaks as shown in Figure 7. FiG. 8. “Ribbon” probe of the confidence ball within the para-

One striking result is the different precisions with metric model keeping Qo1 fixed at 1 and varying the baryon frac-
which the first and second peaks are resolved. Thistion 242 from0.01225t0 0.03675.
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The data are much noisier for higs, and we want
to quantify how this propogates into local uncertainty 5 = - e, {
about the function becauseighaffects our ability to = e 110 !
resolve the second and third peaks. A simple probe of{ = /
the confidence set is useful for this purpose: finding |
how far a particular function in the confidence ballcan § /
be perturbed by localized deviations. For example, at;
each¢, we examined the one-dimensional family of L i /
spectraf, = f + h - b, whereb is a boxcar of fixed | S — e
width and unit height centered &t Figure 9 shows . i - - "
the maximum absolute heiglit that remains in the [Tp.

95% ball relative to the height of the Concordance : o

. . FIG. 9. Height of local “boxcar probe” that is just in the 95%
spectrum, for two different boxcar widths. & where . confidence ball, divided by the height of the Concordance spectrum,
this curve is greater than 1, the data arguably containgg wo different boxcar widths. The horizontal lineis at height 1.
little information about the hght of the curve near that
location.

The confidence ball is also useful for model check- weak rEjeCtion of the best flttlng model from the data.
ing_ Figure 10 shows four different Spectra a|0ng with We also considered two extremal models that are in the

the minimum value of - « for which each spec- 95% ball. These show that the data alone are consistent
trum is in the 1— « confidence ball. The Concordance With eliminating the second and third peaks. While the
spectrum is very close to the center, but the best fit- cosmological models all predict these peaks—through
ting parametric model using only the WMAP data is the acoustic oscillations caused by dark matter—this
at best in the 73% confidence ball. Cosmologists of- suggests the benefits of more precise data, as from the
ten use 68% confidence levels, so this can be seen as Rlanck mission (Balbi et al., 2003).

Concardance | - ce=0.16 = ) Just WRIAP | - =073
= | B |
s . ] -
I."'\-\,\I\l - .
2 g
— I I =
E 1 ,." '.'.. : : | .-'I 2
5 | 3 E . 3 o "
; # o B —_ = r = _
3 |
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FIG. 10. CMB spectra: (top left) Concordance model fit; (top right) WMAP-only model fit; (bottom)two extremal fits.
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5. DISCUSSION by extending this analysis to a constrained nonpara-
metric model (such as a three-peak model) that con-
tains the cosmological model, we can make the same

Our most striking finding is that the center of our inferences without being tied to the analytic form of
nonparametric confidence ball using the WMAP data the model. Our approach can then be used to check the
alone lies very close to the Concordance model fit model, make inferences under the model and compare
over the range where the data are not noise dominatedparametric to nonparametric inferences.

Recall from (13) that the Concordance model incor- \We should point out that cosmologists obtain con-

porates four independent data sets, each with distincffidence intervals for parameters in their (11-dimensio-

likelihood forms. In contrast, the parametric model fit nal) model by integrating over the nuisance parameters
using only the WMAP data (with likelihoodwmap) and producing a marginal posterior. However, the like-

lies barely in the 73% confidence ball. Given that cos- lihood is ill-behaved, underidentified and degenerate.
mologists often use 68% confidence intervals as theirMOreover, in the physics literature, there does not seem

standard of evidence, this is tantamount to a rejection!© b€ @ clear appreciation of the fact that interval esti-
of the cosmological model that underlies that paramet- Mates obtained this way need not have correct frequen-
ric fit. tist coverage.

This raises two points. First, it is remarkable that There are several other advantages to our approach.

with a fully nonparametric method we have come very Ifa pa_wa:lneter IS gdr1der|d]?3tlf|ed .th's W'III ?r*r‘]‘)VY up aul—
close to the Concordance model based on the WMAP'[Om"’Y['C"jl y as awide confidence interval. The intervals

data alone. Second, that we obtained basically the sam ave correct asymptotic coverage and simultaneous va-
! idity over all parameters of interest. There is no need

spectrum as the Concordance model calls into questiont . : - . .
the accuracy of the WMAP-only likelinoodtwmap 0 integrate or profile the Ilkel_lhqod fqutlon. Finally,

' the asymptotic theory for (6) is insensitive to the fact
5.2 Methods that the standard asymptotics for the likelihood ap-

: roach fail.
We have presented a nonparametric method for ana—p

lyzing the CMB spectrum. Our techniques have wide 5.3 Inferential Foundations

applicability to regressin problems beyond cosmol- | terestingly, there seems to be some confusion
ogy. By starting with a confidence ball, then probing a4t the validity of frequentist inference in cosmol-
the ball using functionals, one can address a variety Ofogy. Since we have access to only one Universe—and
questions about the unknown function while maintain- ;s cannot replicate it—some feel that it makes no
ing correct coverage, despite multiplicity and post-hoc sense to make frequentist inferences. This represents
selection. a common misunderstanding about frequentist infer-

The method in this paper modifies the original ence in general and confidence intervals in particular.
Beran-Dumbgen construction to account for hetero- The frequency statements for confidence intervals refer
skedasticity. This modification yields a substantial re- to the procedure, not the target of the inference. Our
duction in the size of the confidence set. The resulting method for constructing confidence balls traps the true
confidence set is also more useful in that it leads to function 95% of the time, even over a sequence of dif-
tighter (looser) bounds in regions where the function is ferent, unrelated problems. There is no need to repli-
more (less) accurately measured. cate the given experiment, or Universe.

One advantage of our approach is that it allows one  Complicating matters is the fact that the coefficients
to separate the information in the data from the infor- 4, ,, of the temperature field are random and unknown.
mation in a model. Although we did not pursue the full To see the importance of this point, it is useful to make
calculation here, we could intersect our confidence ball a finer distinction by defining the realized spectrum
with the manifold of spectra from the parametric model C; = (1/(2¢ + 1)) Y, lac..|%, the “true spectrum”
as a way to combine data and model. Specifically, we ¢, = E(C;) and the measured spectrudp. Note that
could use the cosmological model to generate spectraall our inferences have actually been directed at the
but then test which spectra are consistent with the datarealized spectrum. Some physicists find it disturbing to
by reference to our confidence ball. This does not rely be making frequentist inferences abdutsince it is a
on likelihood asymptotics which, as we discuss below, realization of arandom variable rather than a parameter
are suspect in this problem. Another advantage is thatin the usual sense. But this is no different than making

5.1 Findings
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inferences about a random effect in a standard random Normalized Hubble constant #. The Hubble con-
effects model. stant is the rate of the Universe’s expansion. Specifi-
These confusions have led to an interesting move-cally, H = ;—’ wherea is the size of the Universe and
ment toward Bayesian methods in cosmology. Of a is the rate of change in. “Constant” is a misnomer
course, when used properly, Bayesian methods can b&ince this is a dynamic quantity. The “Hubble constant”
very effective. Currently, however, the Bayesian inter- refers to the value off as measured todaydf); this
val estimates in the physics literature seem question-is often normalized and reported/as: Hp/100.0 with
able, being based on unfettered use of marginalizingunits of kilometers per second per megaparsec (kin s
over high-dimensional, degenerate likelihoods using Mpc—1).
flat priors chosen mainly for convenience. Indeed, an ) )
active area of research is finding corrections for such 10l enérgy density Qtotal. Qotal IS the energy
intervals to make them have correct coverage. More- d€nsity of the Universe dl\gdezd by, the critical density
over, the potentially poor coverage of the Bayesian in- Of the Universe,pciit = 3c“Hg /8 G, at which the
terval seems not to have been widely recognized in theUniverse would be geometrically flaforal can be

physics liteature. broken down into the sum of different components,
such as2paryons Qdark matteraNd Qneutrinos
APPENDIX 1: CMB DATA Cosmological constant A. A is a constant that was

The CMB is composed of photons. The tempera- added by Einstein into his general relativistic field
ture of these photons (226 K) means that the radi- equations to produce a static Universe. The constant
ation will be at the microwave wavelengths. The light was later dismissed as unnecessary after the discovery
is collected via a dish (or reflector) and fed into either a by Edwin Hubble that the Universe is not static,
(1) bolometer, which senses small temperature changeéut expanding. However, recent studies show strong
as the photon hits the detector, or (2) a high perfor- evidence for a cosmological constant term. Constant
mance transistor. In some cases (such as the aforemerfcts as a negative pressure and thus might accelerate
tioned COBE experiment), the telescope is placed inthe expansion of the Universe. We often speak of the
orbit above the Earth. In other cases, the telescope isenergy density componeft, , which is then included
placed on a balloon and launched into the atmospherein the sum 0fQota.

With careful attention paid to ground reflectlong, CM.B Baryon density Qp. This is the density component
telescopes can also be placed on the ground in regions

. . . . of baryonic matter in the Universe (e.g., protons,
where the atmosphere will contribute little contamina- . . .
. . : . __neutrons, etc.). The fraction of matter density that is
tion (like the South Pole). In all cases, there is a series

. . : baryonic (over the total matter density of the Universe,
of steps leading from the raw data collection to the final which includes baryons and nonbaryonic dark matter)
power spectrum estimation. Y Y

The raw data are collected in a time stream. For each' often measured to be in the range 15%-20%.
moment in time, the telescope records a temperature Dark matter density Q4. The majority of matter in
difference on the sky between two widely separated the Universe is detected indirectly through its gravita-
points. For example, one of these locations could betional effects. Since it cannot be seen or measured in
a fixed source of known temperature, thus allowing the laboratory, it has been dubbed “dark matter.” The
the temperature at the other point to be calculated.densityQq is the energy density component strictly due
However, the comparison location need not be fixed to dark matter.

(or known) and the absolute temperatures can still be
solved for iteratively, using previous measurements.
Throughout this process, thmwinting of the telescope

needs to be accurately known (as a function of time), §2,/(82p + S2).

as well as thealibration of the temperatures, and also  Optical depth z. We know today that most of the

Neutrino fraction f,. This is the fraction of the
neutrino density over the total matter density: =

the instrument noise. hydrogen in the Universe is ionized. So at some time
after recombination, the Universe was reionizeds
APPENDIX 2: COSMOLOGICAL PARAMETERS the optical depth due to Thomson scattering up to

The physics of the Universe on large scales is well a redshift ofz < Zionizaﬁon:[é(z“’“‘zaf“"” orn.dt, where
described by a small set of cosmological parameters.o7 is the Thomson scattering cross-section apds
We describe some of the most important parameters. the electron density.
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Spectral index ng. The primordial matter density whereW;, =3, weA jge.
fluctuation spectrum is proportional to the scale size Leti =1-— 1 and letD(x) denote the diagonal ma-
raised to the powen, the primordial spectral index. trix with x along the diagonal. Writ = D(A)Z. As-
On large enough scales, the CMB temperature powersumeZ has a Normaj8, B) distribution. ThenEB =
spectrum’s spectral index) is then close (or equal)  p()g and, since Co@g}j’ Bi) = A Bk, var(f) =

to the primordial spectral index. D(W)BD(.). Then
The spectrum may be approximated numerically as a R R
function of these parameters using the CRMBT soft- EL=EB—-B"W(EB-B)
ware package (Seljak and Zaldarriaga, 1996). Figure 8 — trac{ D)W D () B) + BT DYWD(@)B.

shows spectra corresponding to a range of cosmolog-

ical parameter settings. For example, the location andThe latter quadratic form can be written as
amplitude of the first peak is related to the total energy - ﬁ‘,ﬁki‘,ik W ;. We obtain an unbiased estimdte
density Qotal. The baryon fractiorf2, and the spec- by replacing; B with Z; Z; — B jx.

tral indexn drive the ratio of the amplitude of the first For convenience, leb denoteD()) and D denote
and second peaks. The ratio of the amplitudes of the p(). The result is

second to third peaks depends on the density of matter , Foa - o
(Q+ Q2+ ), h andn,. L=Z"DWDZ +trac§ DWDB) — trac§ DWDB).

APPENDIX 3: ESTIMATING 7 It follows that

Recall from Section 3 that the cosine basis is defined L-L= 5TW5 - ZZTDWIB +Z"DWDZ
on [0, 1] by - zZ'a-DWU -D)Z
go(x) =1, ¢;(x)=+2cognjx), j=>0. — tracg(W — DW — WD)B)
Then, if j andk are distinct and positive,
¢ =2c0gmjx)cogmwkx)
= coSn(j + k)x) + cospi(j — k)x)
1

=pTwp—-2z"DWg
+ZT(DW +WD - W)Z
+ trac(DW + WD — W)B).

/2 ik Pl Let A= DW + WD — W andC = 2DW§. Then
If j >0, Var(L — L) =Var(z" Az — 2T C)
1
¢‘,2- =2coé(njx) =cogm2jx)+ 1= ﬁq)zj + ¢o. =Var(z" AZ) + Var(z' C)
T T
Hence, —2CoZ AZ,Z°C)
1, if#{j,k £=0)=3, —2tracé ABAB) + BT 08,
0, if#{jk =01=2, where
Sik00r + 8180k + 811007
1 Jjko0¢ j1O0k k100 .
Aij:/O ¢ Prde = if #(j, k, £ =0} = 1, Q/4=ABA+ WDBDW —2ABDW
1 =(DW+WD—-W)BWD+ DW — W)
—= (8¢, j4k + 80, j—k),
V2 +WDBDW —2(DW + WD — W)BDW.
if j,k,¢>0.
We thus have that Hence, _plugging'in unpiased estimates of_ the linear and
. ro o quadratic forms involvings, we get an estimate of the
L(f, f)=/(f—f) w variance:
5 5 14) t2=2tracdABAB) + ZT QZ — trac€ O B).
= Y B = BB = Bowe [ ¢j0ude (a4 @ABAB)+ 270 €05)
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