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Abstract. The Chandra X-Ray Observatory, launched by the space shut-
tle Columbia in July 1999, has taken its place with theHubble Space
Telescope, the Compton Gamma Ray Observatory and theSpitzer Infrared
Space Telescope in NASA’s fleet of state of the art space-basedGreat
Observatories. As the world’s premier X-ray observatory,Chandra gives
astronomers a powerful tool to investigate black holes, exploding stars and
colliding galaxies in the hot turbulent regions of the universe.Chandra uses
four pairs of ultra-smooth high-resolution mirrors and efficient X-ray photon
counters to produce images at least 30 times sharper than any previous X-ray
telescope. Unlocking the information in these images, however, requires sub-
tle statistical analysis; currently popular statistical methods typically involve
Gaussian approximations (e.g., minimumχ2 fitting), which are not justifi-
able for the high-resolution low-count data. In this article, we employ modern
Bayesian computational techniques (e.g., expectation–maximization-type al-
gorithms, the Gibbs sampler and Metropolis–Hastings) to fit new highly
structured models that account for the Poisson nature of photon counts, back-
ground contamination, image blurring due to instrumental constraints, pho-
ton absorption, photon pileup and source features such as spectral emission
lines and absorption features. This application demonstrates the flexibility
and power of modern Bayesian methodology and algorithms to handle highly
structured models that are convolved with complex data collection mecha-
nisms involving nonignorable missing data.

Key words and phrases: Astrostatistics, Bayesian methods, theChandra
X-Ray Observatory, data augmentation, EM algorithm, Markov chain Monte
Carlo, missing data, Poisson model, posterior predictive checks, nonignor-
able missing data, spectral analysis, pileup.

1. SCIENTIFIC BACKGROUND

In his seminal 1979 paper that introduced the likeli-
hood ratio to astrophysicists, Cash (1979) began with
the following remark:

As high energy astronomy matures, exper-
iments are producing data of higher quality
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in order to solve problems of greater sophis-
tication. With the advent of theHEAO satel-
lites, the quality of X-ray astronomy data
is being increased again, and it is impor-
tant that the procedures used to analyze the
data be sufficiently sophisticated to make
the best possible use of the results.

Twenty-five years later we are in the same situa-
tion: Recent advances in astronomical instrumenta-
tion allow the collection of high-resolution low-count
Poisson data for which standard analysis techniques
with their Gaussian approximations are suspect. In-
deed, it has become apparent over the past several
years that the use of statistical methodology that may
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have been quite appropriate 20 years ago is not jus-
tifiable for the quality of data that are currently avail-
able (Siemiginowska et al., 1997); new statistical meth-
ods are needed to take advantage of the precision that
technological advances have afforded us. In this arti-
cle, we describe a highly structured model and corre-
sponding statistical methods that are appropriate for
the high-resolution spectral data available with new
instrumentation. Before describing the model and its
merits, however, we motivate its need.

1.1 High-Energy Image Analysis

X-rays are high-energy electromagnetic waves, that
is, photons. Roughly speaking, the production of high-
energy electromagnetic waves requires temperatures of
millions of degrees and signals the release of deep
wells of stored energy such as those in very strong
magnetic fields, extreme gravity, explosive nuclear
forces and shock waves in hot plasmas. Thus, X-ray
telescopes can map nearby stars (like our Sun) that
have active magnetic fields, the remnants of explod-
ing stars, areas of star formation, regions near the event
horizon of a black hole, very distant but very turbulent
galaxies or even the glowing gas that embeds a cos-
mic cluster of galaxies. The distribution of the energy
of the electromagnetic emissions gives insight into
the composition, temperatures and relative velocity of
an astronomical source. The spatial distribution of the
emission reflects physical structures in an extended
source, for example, emission jets or the shape of the
debris of a stellar explosion. Some sources exhibit tem-
poral variability or periodicity that might result from
surface or internal pulsations, eclipses, star spots or
magnetic activity cycles. Thus, instrumentation that
can precisely measure the energy, sky coordinates and
arrival time of X-ray band photons enables astrophysi-
cists to extract subtle clues as to the underlying physics
of X-ray sources. Such instrumentation is necessarily
space-based, since high-energy photons are absorbed
by the Earth’s atmosphere. TheChandra X-Ray Ob-
servatory is an example of the new class of instru-
ments that provides high-precision data. Launched in
July of 1999,Chandra has already given astronomers
a wealth of important new data. The instrumentation
aboardChandra includes four pairs of ultra-smooth
high-resolution mirrors and efficient X-ray detectors
to provide images at least 30 times sharper than any
previous X-ray telescope. Data are collected on each
X-ray photon that arrives at the detector; the time of ar-
rival, the two-dimensional sky coordinates and the en-
ergy are all recorded. Due to instrumental constraints,

each of these four variables is discrete. Thus, a data
set can be represented by a four-way table of counts
with margins corresponding to time, two sky coordi-
nates and energy. In this paper we focus on spectral
analysis which models the one-way energy margin;
the energy bins are referred to as energy channels.
More on the scientific objectives of high-energy as-
trophysics, the instrumental specifications ofChandra
and Bayesian methods designed to investigate spectral
and spatial structure of the emission appear in van Dyk
et al. (2004).

1.2 Statistical Challenges

Throughout this article, we describe a number of sta-
tistical challenges that arise when analyzing data from
Chandra and other high-resolution count-based detec-
tors. It is to address these challenges that we develop
new statistical models and methods. To motivate the
need for new methodology, we briefly outline some of
these challenges.

Chandra’s capacity for high-resolution imaging
means that it has a much finer discretization of en-
ergy than previous instruments. This results in an
overall increase in the number of energy channels
and leads to lower observed counts in each channel.
Thus, Gaussian assumptions that might have been ap-
propriate for data from older instruments are often
inappropriate forChandra data. For example, in so-
called minimum χ2 fitting (Lampton, Margon and
Bowyer, 1976) one estimates the model parameterθ

by computing

θ̂ = arg min
θ

∑
l∈L

{nl − ml(θ)}2

σ 2
l (θ)

,(1)

where L is the set of energy channels,nl is the
observed count in energy channell, ml(θ) is the
expected count in channell as a function of the model
parameterθ andσ 2

l (θ) is proportional to the sampling
variance ofnl . Because of the Poisson nature of the
data,σ 2

l (θ) is often taken to be eithernl or ml(θ). It
is obvious from its functional form that the right-hand
side of (1) is an implicit Gaussian assumption. When
one observes a relatively large count in each energy
channel, this assumption is reasonable andχ2 fitting
may be appropriate. However, the intrinsically low-
count data from high-resolution instruments such as
those aboardChandra are not approximately Gaussian.
Thus, parameter estimates and error bars computed
with χ2 fitting may not be trustworthy. To avoid this
problem, one can group the energy channels until
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there is a large enough count in each group to justify
Gaussian assumptions. Doing so, however, reduces the
information in the data and produces a less precise
energy spectrum. To take advantage of the information
that the new class of instruments provides, a method
of analysis is needed that does not rely on large-count
Gaussian assumptions.

X-ray count data are generally contaminated with
background counts, a number of photons originating
somewhere other than the source of interest. To quan-
tify the background contamination, a second data set
is collected that is assumed to consist only of back-
ground. For example, background count data might
be collected around but some distance away from
the source. In standard practice, these counts aredi-
rectly subtracted from the source counts. This proce-
dure accounts neither for error in the estimation of the
background intensity nor for the fact that the ac-
tual background count in the source data varies from
the background intensity. Ignoring both of these
sources of variability has obvious ramifications in the
resulting source minus background count (it may be
negative), and uncertain consequences on the parame-
ter estimates and error bars. New methods that properly
account for these sources of variability are required.

Pileup occurs in X-ray CCDs (charged coupled
devices such as those aboardChandra) when two or
more photons arrive at the same area of the detector
during the same time frame (i.e., time bin). Such
coincident events are counted as a single event with
energy equal to the sum of the coincident event
energies. The event is lost altogether if the total
energy goes above the on-board discriminators. Thus,
for bright sources, pileup can seriously distort both
the count rate and the energy spectrum. Accounting
for pileup in a principled manner requires careful
modeling and sophisticated statistical computation.

Finally, the likelihood ratio test, or a Gaussian
approximation thereof, is routinely used to test for
the presence of additive spectral features. Since the
intensity of these features generally is constrained to
be positive, the null hypothesis of no feature is on the
boundary of the parameter space. Thus, the standard
asymptotic reference distribution of the likelihood ratio
test is inapplicable and more sophisticated methods are
needed for testing such hypotheses.

1.3 Model-Based Solutions

We use model-based Bayesian methods to handle the
complexity ofChandra data. Multilevel models can be
designed with components for both the data collection

process (e.g., background contamination and pileup)
and the complex spectral structures of the sources
themselves. Sophisticated computational methods are
required for fitting the resulting highly structured
models. We believe a Bayesian perspective is ideally
suited to such models in terms of both inference and
computation. The models can be parameterized on
high-dimensional spaces with numerous nuisance pa-
rameters that describe, for example, the data collection
process. Bayesian methods offer a straightforward way
to handle such parameter spaces. We base inference on
marginal posterior distributions of scientifically inter-
esting parameters or groups of parameters.

Computational tools such as the expectation–
maximization (EM) algorithm (Dempster, Laird and
Rubin, 1977), the data augmentation (DA) algorithm
(Tanner and Wong, 1987), the Gibbs sampler (e.g.,
Gelfand and Smith, 1990; Smith and Roberts, 1993)
and other Markov chain Monte Carlo (MCMC) meth-
ods are ideally suited to highly structured models of
this sort; see van Dyk (2003). The modular structure of
these algorithms fits hand-in-glove with the hierarchi-
cal structure of our models. The Gibbs sampler, for ex-
ample, samples one set of model parameters from their
conditional posterior distribution given all other model
parameters. This allows us to sequentially fit one com-
ponent of the overall model at a time while condition-
ing on the other components. In this way, a complex
model fitting task is divided into a sequence of much
easier tasks. Many of these easier tasks involve well-
understood procedures. Using an EM algorithm to han-
dle a blurring matrix and background contamination of
Poisson data is a good example (Richards, 1972; Lucy,
1974; Shepp and Vardi, 1982; Lange and Carson, 1984;
Fessler and Hero, 1994; Meng and van Dyk, 1997). Al-
though this well-known (and often rediscovered) tech-
nique is unable to handle the richness of our highly
structured model, we utilize it and its stochastic coun-
terpart as a step in our mode finding and posterior sam-
pling algorithms.

The remainder of this article is organized into six
sections. We do not attempt to detail how we (or
how we expect to) handle all of the modeling, com-
putational and inferential aspects of the analysis of
Chandra data. Such a task is well beyond the scope
of this article. Instead, we outline some of our mod-
els and methods to give the reader a flavor of our
Bayesian analysis and highly structured models. In
some cases, more details can be found in one of sev-
eral references that are cited in the text; in other cases,
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methods are still being developed. We refer inter-
ested readers to van Dyk, Connors, Kashyap and
Siemiginowska (2001), Protassov et al. (2002), van
Dyk and Hans (2002) and van Dyk et al. (2004), as
well as several short papers in the conference proceed-
ings Statistical Challenges in Modern Astronomy III
(Feigelson and Babu, 2003). This article begins in
Section 2 with an outline of modelling strategies for
both the source spectra and the data collection process.
Computation methods that are designed around multi-
ple levels of nonignorable missing data are described
in Section 3; an example that illustrates our basic in-
ference techniques appears in Section 4. Section 5 dis-
cusses model checking and model diagnostic methods.
Statistical methods that account for the important prob-
lem of photon pileup appear in Section 6 and conclud-
ing remarks appear in Section 7.

2. SPECTRAL MODELS

2.1 The Source Model

The basic goal of high-energy spectral modeling
from a statistical perspective is to model the distrib-
ution of the energy of high-energy photons (X-ray or
γ -ray) from a particular astronomical source. Such a
spectral model typically contains several additive com-
ponents which can be formulated as a finite mixture
model. Roughly speaking, the components can be split
into two groups:continuum terms, which describe the
distribution over the entire energy range of interest,
andemission lines, which are local positive aberrations
from the continuum. The finite mixture is then mul-
tiplied by anabsorption factor, which represents sto-
chastic censoring of photons. A proportion of photons
is absorbed by matter at the surface of the source or
between the source and detector; the probability of ab-
sorption varies with energy. In addition to the source
model, the data collection mechanism of the detec-
tor has several stochastic components that must be ac-
counted for by the data model. Such data distortion is
described in Section 2.2. In this section we describe

the three components of the spectral model: the contin-
uum, emission lines and absorption features. We both
outline the importance of these features in astronomi-
cal terms and detail the statistical models that we use
to describe them.

Continuum. To understand the astrophysical process
we are modelling, consider a source such as a star.
The center of the star is composed of very hot gas,
which produces copious photons that random walk
their way to the surface of the star. This process creates
a continuous spectrum, or continuum, of radiated
energy and is known as blackbody emission. As
another example, consider a high-temperature low-
density plasma where photons are not thermalized
by repeated collisions with ions in the plasma; the
transitions between levels in free electrons, induced by
electrostatic interactions with ionized nuclei, result in a
so-called thermal Bremsstrahlung continuum. Among
other things, the shape of the continuum indicates the
temperature of the source. Astrophysicists generally
use one of several models or a weighted sum of a
number of these models to describe the continuum
in some bounded energy range. Table 1 gives the
functional form of several common continuum models.
These models describe the relative frequencies of
the photon energyE. In this sense, the continuum
models are akin to probability densities functions,
but the continuum models are not normalized to 1.
Rather, the integral of the continuum model over the
energy range of interest is the expected number of
photons due to the particular continuum component.
(The normalization parameterα is often rescaled so
the integral of a particular continuum model represents
counts per unit time per unit area of the detector.) The
overall continuum model can be written as a finite
mixture,

f (θC,E) = ∑
k∈KC

fk(θ
C
k ,E),(2)

whereKC is the index set for the continuum compo-
nents,fk is the functional form of continuum termk

TABLE 1
Continuum models

Model Functional form Parameter constraints

Power law αE−β α,β > 0
Broken power law αE−β(E/E�)

γ I (E>E�) α,β,E� > 0, γ > −β

Bremsstrahlung emission αe−βE α,β > 0
Blackbody emission αE2/(eβE − 1) α,β > 0
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andθC = {θC
k , k ∈ KC} represents the parameters for

the set of continuum terms. In our notation, super-
scripts are generally used to indicate the relevant model
component. Thus,C, L, A andB refer to the contin-
uum, (emission) lines, absorption features and back-
ground contamination, respectively.

Because of the digital nature of the detector (see
Section 2.2), energy is treated as a discrete variable.
That is, we consider the photon counts in a number
of prespecified energy bins (e.g., as many as 4096 on
Chandra). To model the counts, we use independent
Poisson distributions with intensities determined by the
continuum model. In particular, the counts in binj due
to continuum termk are modelled as

Y k
j ∼ Poisson{δjfk(θ

C
k ,Ej )}

for j ∈ J andk ∈ KC,
(3)

whereδj and Ej are the width and mean energy of
bin j andJ is the index set of the energy bins. (Here
we assume that the binning is fine enough so that the
integral of the continuum model over the bin is nearly
equal to the model evaluated at the bin mean times the
bin width.)

Except for the blackbody emission, we can identify
each of the continuum models in Table 1 with general-
ized linear models with log links. For example, the log
of the power law model is a linear function of log(E)

and the log of the broken power law is a linear func-
tion of log(E) and log(E/E�)I (E > E�), whereI is
the indicator function. (Here we assume the location of
the break in the power law,E�, is known. If this lo-
cation is not known, we model the broken power law
given the break point as described here and model the
marginal distribution of the location of the break, per-
haps with a fully specified proper prior distribution.)
The combined counts from all of the continuum terms,∑

k∈KC Y k
j , follow a finite mixture of these generalized

linear models.

Emission lines. Emission lines are local features
added to the continuum and they represent extra
emission of photons in a narrow band of energy. Such
extra emission is due to photons that are emitted when
an electron falls to a lower energy shell of a particular
ion; the abundance of the extra emission indicates the
abundance of the ion in the source. Thus, analysis
of emission lines is informative as to the chemical
composition of the surface of the astronomical source.
The Doppler shift of the location of a known spectral
line (such as a particular hydrogen line) indicates the
relative speed of the source. Statistically the emission

lines are represented by adding Gaussian, Lorentzian
(i.e., a t density with 1 degree of freedom) or delta
functions to the continuum. An example of a simple
spectral model with a power law continuum and two
narrow emission lines appears in the first plot in
Figure 1.

We parameterize the intensity in binj ∈ J as a
mixture of the continuum term and the emission lines,

λj (θ
C, θL)

= δjf (θC,Ej) + ∑
k∈KL

θL
k,λPj (θ

L
k,µ, θL

k,σ )

for j ∈ J,

(4)

where KL is the index set for the emission lines,
θL
k,λ is the expected photon count of emission linek

andPj(θ
L
k,µ, θL

k,σ ) is the probability that a photon from

an emission line with centerθL
k,µ and spreadθL

k,σ falls
in bin j . These probabilities are obtained from the
Gaussian, Lorentzian or delta functions that are used
to parameterize the emission lines, all of which can be
parameterized in terms of their center and spread. (For
a delta function, the spread parameter is fixed at zero.)
The collection of parameters,θL

k = (θL
k,λ, θ

L
k,µ, θL

k,σ )

for k ∈ KL, is represented byθL.

Absorption features. Absorption lines correspond to
narrow intervals in the energy dimension where fewer
photons appear than would be expected from (4). These
lines are formed because photons have been absorbed
by material in the source or between the source
and the observer. Because the specific energies at
which photons are absorbed correspond to specific line
transitions of ions, absorption lines can, for example,
give clues as to the composition of a source. The
absorption process begins as photons leave the hot
center of the source and move toward the colder region
near the surface of the source. Because the continuum
photons are in a higher energy state than their colder
surroundings, they are readily absorbed by material at
the surface of the source to balance the energy of the
system. A similar process can occur in the interstellar
media (ISM) or in the intergalactic media (IGM).

There are various functional forms for absorption
features, which can be formulated in terms of the
probability that a photon is not absorbed as a function
of the photon energy. Multiple absorption features are
assumed to be independent and thus these probabilities
are multiplied. In particular,

π(θA,Ej) = ∏
k∈KA

πk(θ
A
k ,Ej ),(5)
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FIG. 1. The degradation of counts. The various physical processes that significantly degrade the source model and result in the observed
channel counts are illustrated. In particular, an artificial data set is used to illustrate (1) the absorption of (mostly low-energy) counts, (2) the
blurring of spectral features due to instrument response, (3) the masking of features due to background contamination and (4) the shadows
caused by pileup. The solid lines represent the assumed model (in the first four plots) and the + sign represents the simulated data. The first
plot illustrates the counts per maximum effective area per total exposure time per bin; the remaining plots illustrate degraded counts per
effective area per total exposure time per bin. Note that the effects of pileup are included here for the sake of completeness; we discuss pileup
in Section 6. The symbols in the upper right of each plot are defined in Table 2.

whereKA is the index set for the absorption features,
θA = {θA

k , k ∈ KA} with θA
k the parameters of absorp-

tion featurek, andπk represents the probability of not
being absorbed by featurek. The absorption process
can be modeled using binomial generalized linear
models; many of the standard forms ofπk(θ

A
k ,Ej ) can

be handled with log or complementary log-log links
(van Dyk and Hans, 2002; Hans and van Dyk, 2003).
For example, an important functional form for absorp-
tion lines (Freeman et al., 1999) can be expressed by
setting

πk(θ
A
k ,Ej )

= exp
[−θA

k,λ exp
{−(Ej − θA

k,µ)2/2θA
k,σ

}]
,

(6)

where the components ofθA
k = (θA

k,λ, θ
A
k,µ, θA

k,σ ) rep-
resent the intensity, location and spread of the ab-
sorption line, respectively. Alternatively, absorption

features can be modeled as “edges,” which begin
sharply at some fixed energyE� and die off slowly with
increasing energy. Specifically, we model

πk(θ
A
k ,Ej )

=
{

1, if Ej < E�,
exp

{−θA
k,λ(Ej/E�)

−3}, if Ej ≥ E�,

(7)

whereθA
k,λ is the intensity of the edge. The comple-

mentary log-log link linearizes both model (6) and
model (7).

In addition to localized absorption features, we must
account for so-calledcontinuum absorption, which
can affect a wide range of energies in a high-energy
spectrum. This absorption occurs when the absorbed
photon frees an electron from an ion and is thus not as-
sociated with a specific line transition of the ion. Con-
tinuum absorption can sometimes be approximated by
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so-calledexponential absorption with πk(θ
A
k ,Ej ) =

exp(−θA
k /Ej). A better model setsπk(θ

A
k ,Ej ) =

exp{−θA
k X(Ej )}, whereX(Ej ) is a tabulated value;

see Morrison and McCammon (1983) for details.

2.2 Data Distortion Model

Unfortunately, due to instrumental constraints, the
photon counts are degraded in a number of ways. For
example, the effective area of the detector varies with
the energy of the photon. Heuristically the instrument
works like a prism, which bends an X-ray by an angle
that depends on its energy. Some of the photons are
bent so far that they miss the detector altogether. Thus,
the probabilitydj that an X-ray is not refracted off
the detector depends on its energy. A second form of
data degradation is due to instrument response, which
is a characteristic of the detector that results in blurring
of the photon energies. A photon that arrives with
energy that corresponds to binj has probabilityMlj of
being recorded in detector channell ∈ L, whereL is
the index set of the channels. (Here we use the term
“bin” to refer to the ranges of energy that correspond
to photon counts in an ideal instrument that is not
subject to blurring of the photon energies. The term
“channel” refers to the energy ranges that correspond
to the observed data. The energy ranges for the bins
and the channels need not coincide.) Like the effective
area vectord = (d1, . . . , dJ ), the matrixM = {Mlj },
which may not be square, is evaluated by calibration of
the detector and is presumed known.

As discussed in Section 1.2, the source spectrum is
generally also contaminated by background counts that
originate somewhere other than the source of interest.
The plots in Figure 1 illustrate the effects of the
effective area, instrument response and background.
The final plot illustrates the effect of photon pileup,
a topic we ignore until Section 6.

Because of these degradations, we model the ob-
served counts as independent Poisson variables with
intensity

ξl(θ) = ∑
j∈J

Mljλj (θ)djπ(θA,Ej ) + θB
l ,

(8)
l ∈ L,

whereθB
l is the Poisson intensity of the background in

channell andθ = (θC, θL, θA, θB). In Section 3.1, we
describe how the method of data augmentation can be
used to construct simple, stable and fast algorithms for
fitting this model.

2.3 Specification of Prior Distributions

Whenever possible, we use semiconjugate prior dis-
tributions (e.g., on the means, variances and Poisson
intensities of Gaussian emission lines). Gaussian prior
distributions are used on the coefficients in general-
ized linear models. These prior distributions are easily
incorporated into iteratively reweighted least squares
algorithms for computing posterior modes. We use a
similar strategy to compute the Studentt jumping dis-
tribution for a Metropolis–Hastings step when sam-
pling from the posterior distribution; see van Dyk et al.
(2001) for details.

Often it is possible to use relatively noninformative
prior distributions. The parameters of the continuum,
for example, are often well constrained by the data.
In some cases, however, informative prior distributions
are either necessary or desirable. Prior information on
the location and width of weak emission or absorption
lines, for example, can greatly improve the quality of
the inference. Luckily such information is often scien-
tifically forthcoming, since certain lines are expected
or typical in particular classes of astronomical objects.
In fact it may be desirable to include information from
previous observations or other sources in an analysis
of new data, and prior distributions offer an avenue
for a unified analysis. In practice, quantifying infor-
mative prior information regarding (highly) multivari-
ate parameters can be challenging. We tend to use the
seemingly conservative strategy of independently com-
bining univariate prior distributions using semicon-
jugate forms with appropriate moments or quantiles
whenever necessary and noninformative prior distrib-
utions whenever possible.

3. NONIGNORABLE MISSING DATA AND
STATISTICAL COMPUTATION

3.1 Data Augmentation Strategies

As described in Section 2, data collected with
Chandra are complex in terms of both the underlying
source models and the data collection process; this
complexity is reflected not only in statistical models,
but also in the computational tools required for model
fitting. Ideally, data would be available that fulfill the
following criteria:

1. Data are not subject to absorption or the varying
effective area of the detector.

2. Data quantify the exact energy of each arriving
photon without blurring or binning.
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TABLE 2
Data augmentation in the spectral model; for all variables, j ∈ J, l ∈ L and s ∈ S

Level Variable Notation Range

1 The ideal data: no blurring, binning, background
···
Y s Positive, keV

contamination, absorptiona or mixing of sources
2 The binned ideal data Ÿ s

j Counts

3 The mixed and binned ideal data Ÿ+
j Counts

4 The mixed and binned ideal data after absorption Ẏ+
j Counts

5 The mixed, binned and blurred ideal data Y+
l Counts

after absorption
6 The mixed, binned and blurred ideal data Yobs

l Counts
after absorption and background contamination,
that is, the observed data

aIn the statistical model the effective area of the instrument is handled in exactly the
same way as absorption. Thus, in this table absorption includes the effective area of the
instrument.

3. Data record the source of the photon, that is,
whether the photon is due to a particular contin-
uum component, a particular emission line or back-
ground contamination.

For the purpose of statistical computation, we treat
this ideal data set as missing data. The ideal data
are in fact nonignorable missing data. For example,
since the absorption rate varies with energy, ignoring
absorption clearly biases inference for the continuum
components and emission lines. With the ideal data,
on the other hand, model fitting is greatly simplified.
For example, we could gather the photons from each
emission line, whether or not they were absorbed or
otherwise lost, and use standard statistical methods to
learn about the location, width and intensity of the
emission line. By adding additional levels of missing
data, we can model the data distortion processes.
Thus, we might also hope that the photons that were
absorbed or lost to the submaximal effective area of
the instrument would be recorded along with their
energies, their source component and a variable that
indicates why they were lost (e.g., to which component
of the absorption model). Absorption features could
be studied by examining the energy distribution before
and after absorption, and modeling the probability of
absorption as a function of energy.

The method of data augmentation takes advantage
of how simple model fitting would be, were such
extensive data available. Both the EM algorithm and
the DA algorithm are well-known examples that we
use along with their generalizations to fit the spectral
model described in Section 2. To formalize this, we
introduce a hierarchy of augmented data structures that

are outlined in Figure 1 and Table 2. As noted above,
the first plot in Figure 1 represents a data set that is free
of blurring, absorption and background contamination,
and has constant effective area. The source model
consists of a power law continuum with two strong
emission lines. The energies are binned in this plot and
we have mixed the photons from the three sources (i.e.,
the two emission lines and one continuum term). Thus,
this data set represents less data augmentation than the
ideal data set; the ideal data are represented by level 1
in Table 2, while the first plot in Figure 1 is represented
by level 3 of the table. In the notation of Table 2, we use
more dots in the accent above a variable to represent a
greater degree of augmentation; variables with fewer
dots in the accent are (sometimes stochastic) functions
of those with more dots. The setS is the collection
of continuum and emission line photon sources; a
superscript+ indicates a mixture of all the sources
in S. Levels 4, 5 and 6 in Table 2 correspond to the
second, third and fourth plots in Figure 1.

Reading top to bottom in Table 2, the relationships
among the variables are mostly self-explanatory from
the description of the model in Section 2. For example,
going from level 3 to level 4 accounts for absorption,
which works independently on photons and with con-
stant probability within each energy bin; thus,

Ẏ+
j |Ÿ+

j , θ ∼ Binomial
(
Ÿ+

j , djπ(θA,Ej)
)
, j ∈ J.

The effect of the blurring of energy is modeled as
multinomial for each energy bin. Summing over the
bins, the distribution of energy channel counts (i.e.,
level 5) is

Y+|Ẏ+, θ ∼ ∑
j∈J

Multinomial(Ẏ+
j ,Mj),
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whereY+ = {Y+
l , l ∈ L}, Ẏ+ = {Ẏ+

j , j ∈ J} andMj is
thej th column ofM , j ∈ J. Finally, the observed data
are the background contaminated version of level 5.
That is, the distribution of level 6 given level 5 is

Y obs
l |Y+

l , θ ∼ Y+
l + Poisson(θB

l ), l ∈ L.

As described above, given the several augmented
data sets described in Table 2, statistical inference
for the unknown model parameters is straightforward.
Given the model parameters and the observed data, the
augmented data sets in Table 2 also follow simple stan-
dard distributions. For example, stochastically separat-
ing background from source counts corresponds to a
binomial distribution,

Y+
l |Y obs

l , θ

∼ Binomial
(
Y obs

l ,
ξl(θ) − θB

l

ξl(θ)

)
, l ∈ L,

as is typical when stochastically dividing observations
among components of a finite mixture model. Account-
ing for absorption and the varying effective area of the
detector corresponds to an added Poisson variable,

Ÿ+
j |Ẏ+

j , θ

∼ Ẏ+
j + Poisson

[
λj (θ

C, θL){1− djπ(θA,Ej )}],
j ∈ J.

In this way, we can sample each level of the augmented
data described in Table 2 given the data in the rows
below it in Table 2 and the model parameters. Because,
given the parameters, the missing data follow a series
of standard distributions, and given the missing data,
model fitting is straightforward, we can construct
iterative sampling and mode finding algorithms such
as the DA and EM algorithms to fit the spectral
model. Incorporating proper prior information, which
is typically important, for example, for the emission
line parameters, is described in detail by van Dyk
(2000a) and van Dyk et al. (2001) for EM and DA,
respectively.

3.2 Efficient Computation

By far the most time-consuming aspect of an itera-
tion of the EM or DA algorithms for fitting the spectral
model is removal of background counts and deblurring
of source counts (i.e., sampling or computing the ex-
pectation ofY+

l for eachl ∈ L andẎ+
j for eachj ∈ J).

These computations involve looking up many values
in the typically large matrixM ; this process gener-
ally consumes a significant proportion of the comput-
ing time, even when using sophisticated sparse matrix

techniques. Thus, if the data were available without
background contamination or blurring, namelyẎ+ =
{Ẏ+

j , j ∈ J}, model fitting would be computation-
ally much less demanding. The nested EM algorithm
(van Dyk, 2000b) takes advantage of this by running
several iterations of an EM algorithm that treatsẎ+
as observed data and then updatesẎ+ in a standard
E step. This strategy effectively nests an EM algorithm
within an EM algorithm. In particular, after running
one complete EM iteration, we might run several it-
erations fixingẎ+ and update only the quantities in
the first three rows of Table 2 in the (inner) E step and
θ in the M step. If this inner EM iteration converges
slowly, as might be the case when there are many line
profiles, a relatively large number of partial updates
(e.g., 10) may substantially improve the overall speed
of the algorithm as compared to the standard EM al-
gorithm. An analogous strategy involves samplingY+

l

for l ∈ L and Ẏ+ only every so many iterations of a
DA sampler and may result in a larger effective sample
size per unit time.

The computational advantage of the nested EM
algorithm is illustrated using a spectrum of the high
redshift quasar PG1637+706 collected withChandra.
The data were modeled using a power law continuum,
Morrison and McCammon’s (1983) absorption model,
a power law model for the background, and a single
Gaussian line with fitted center and intensity, for a total
of seven free parameters. The solid line in Figure 2
shows the CPU time required for convergence as a
function of the number of inner EM iterations; an
algorithm with one inner iteration corresponds to the
standard EM algorithm. Convergence was determined
when the log-likelihood increased by less than 10−8 in
one complete iteration. With about 10 inner iterations,
the nested EM algorithm converges in about a quarter
of the time required by the standard EM algorithm. The
dotted line in Figure 2 will be described shortly; we
return to this example in Section 4.

To further improve the algorithms, we reduce the
augmented information forθ using conditional aug-
mentation (Meng and van Dyk, 1997; van Dyk and
Meng, 2001) by reducing the counts attributed to the
absorbed photons in each emission line,Ÿ k

j − Ẏ k
j ,

k ∈ KL, whereẎ k
j is the proportion ofẎ+

j attributed
to emission linek; see Table 2. Recall that absorption
does not occur uniformly across the energy of an emis-
sion line and that the energies of the observed photons
are biased toward areas of low absorption, complicat-
ing parameter estimation. It is important to note, how-
ever, that we need not account for (i.e., augment) all
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FIG. 2. Various EM-type algorithms for fitting the spectral
model. The figure illustrates the effect of the number of inner it-
erations in a nested EM algorithm on the required CPU time for
convergence with both the standard and fast (i.e., conditional aug-
mentation) algorithms. The optimal algorithm is the fast algorithm
with about 10 inner iterations and it requires only about a quarter
of the CPU time of the standard EM algorithm, which has one inner
iteration.

the absorbed photons, but rather we need absorption
only to be uniform across the support energies of the
emission line. In particular, supposeamin is the lowest
absorption rate,amin = minj {1− djg(θA,Ej)}, where
j varies over the support of emission linek. When
we computeŸ k

j , we act as if the absorption rate were
1 − djg(θA,Ej ) − amin. Thus, we add fewer counts
to each bin. In particular, if linek is a delta function,
we need not account for absorption at all when updat-
ing θL

k . This is the strategy used in the fast EM and fast
nested EM algorithms illustrated in Figure 2. The fast
EM algorithm offers additional computational savings
over nesting; see van Dyk and Meng (2000) for another
example involving the spectral model.

4. EXAMPLE

In this section we use our spectral model to study the
quasar mentioned in Section 3.2; see also Sourlas et al.
(2003) and van Dyk et al. (2001) for other examples of
the application of this model.

Quasars are the most distant distinct detectable ob-
jects in the universe. They are believed to be super-
massive black holes, whose masses exceed that of the
Sun by a million times. They are powered by the grav-
itational potential energy of gas and stars falling into
the central black hole, which results in emission across

the electromagnetic spectrum. Because they are so dis-
tant, they give us a glimpse into the very distant past;
the light that is now reaching the Earth left the quasar
when the universe was as little as 10% of its current
age, measured from the Big Bang. The study of quasars
therefore has important consequences for cosmological
theory.

In this example we focus on an emission line
in this energy spectrum of the high redshift quasar
PG1637+706. By measuring the location of the emis-
sion line in the spectrum and accounting for the expan-
sion of the universe, we can estimate the distance of
the quasar from the Earth. The wavelengths of electro-
magnetic waves originating from objects moving away
from us appear to be elongated and hence lowered in
energy when they reach us. By measuring the change
in energy, we can recover this recession velocity. In a
uniformly expanding universe, the recession velocity is
a direct measure of distance.

We fit a spectral model consisting of a power law

continuum,f (θC,Ej) = αCE
−βC

j , with the absorp-
tion model of Morrison and McCammon (1983) to
account for absorption due to the ISM and IGM,
and a power law continuum for background counts,

f (θB,Ej) = αBE
−βB

j . We consider three models for
the emission line.

MODEL 0. There is no emission line.

MODEL 1. There in an emission line with fixed
location in the spectrum, but unknown intensity.

MODEL 2. There is an emission line with un-
known location and intensity.

We use a Gaussian line profile for the emission line
with standard deviation fixed at 0.125 keV throughout.

Initially, there was only a suspicion that there might
be an emission line in the spectrum and we had no
prior information as to the likely location for the
line. To find candidate locations, we fit the model
via maximum likelihood using the EM algorithm with
51 different starting values evenly spaced between 1.0
and 6.0 keV. We begin with the EM algorithm, because
fitting the line location via the Gibbs sampler can
be dangerous. The posterior distribution has several
modes, corresponding to potential line locations, and
the Gibbs sampler is generally unable to jump between
these modes. Moreover, if the sampler is started far
from any of the modes and a flat prior distribution
is used for the line location, there may be no counts
attributed to the line when the missing data are drawn,
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TABLE 3
Multiple modes for the emission line location fitted

using the EM algorithm

Mode (keV) Domain of convergence (keV) Log-likelihood

1.059 1.0–1.3 2589.31
1.776 1.4–2.0 2590.37
2.369 2.1–2.3 2590.19
2.807* 2.4–3.7 2594.94
4.216 3.8–4.7 2589.57
5.031 4.8–5.2 2589.31
5.715 5.3–5.9 2589.74

NOTE: The log-likelihood values imply that the largest mode
corresponds to an emission line at 2.807 keV. (The asterisk
indicates the principal mode.) The maximum log-likelihood for the
model when no emission line is included is 2589.31.

leading to numerical difficulties when the line location
is updated. The results of the 51 runs of the EM
algorithm appear in Table 3. Judging from Table 3, the
line is most likely to be located at about 2.81 keV. After
consulting with experts, we found that the EM result
agrees completely with expert knowledge: the line is
most likely to be between 2.74 and 2.87 keV.

To further investigate the posterior distribution near
the principal mode, we ran three Gibbs sampler chains,
each starting near the mode, for 4000 iterations with
3 inner iterations per iteration. Gelman and Rubin’s
(1992) R̂ statistic indicated adequate convergence of
the chains for this mode. (As expected the chains
never jumped between modes.) The marginal posterior
distributions for the seven parameters all appear to be
symmetric and unimodal; marginal summary statistics
are given in Table 4. The 95% posterior interval for
the line location is (2.66 keV, 2.94 keV), which in
principle can be used to compute an interval for the
relative velocity and the distance of the quasar. In the
following section, we discuss the fit of the model and

the strength of the evidence for including the emission
line in the model.

5. MODEL CHECKING AND SELECTION

The family of models described in Section 2 repre-
sents a highly structured abstraction of the observed
data with multiple levels of latent variables. Although
the models are motivated by physical principles and in-
strumental specifications, checking the fit and verifying
the latent structure of such complex models is a chal-
lenging task. In this section we discuss two strategies
for checking the self-consistency of the model, that is,
the ability of the fitted model to predict the data to
which the model was fitted. First we discuss graphical
methods based on residuals and then we discuss more
formal tests based on the posterior predictive distribu-
tion.

5.1 Model Checking and Diagnostics

Graphical model diagnostics can be used to investi-
gate whether the fitted models are consistent with the
observed data. The first row of Figure 3 illustrates the
fitted model for the source observations associated with
quasar PG1637+706 as described in Section 4. The
two columns in Figure 3 correspond to the model with-
out an emission line and with an emission line fixed at
2.81 keV, respectively. The fitted models are obtained
using θ̂ , the posterior mean of the model parameter.
In general, we transform each component ofθ sep-
arately to symmeterize its marginal posterior distrib-
ution and to compute the posterior mean via Monte
Carlo on this scale. The expected counts per chan-
nel, ξl(θ̂) [see (8)], along with the approximate error
bars±2

√
ξl(θ̂), are plotted against energy channel and

compared with the observed counts. Some of the struc-
ture in ξl(θ̂) as a function of energy is due to the ef-
fects of the response matrix and the effective area of

TABLE 4
Summary statistics for the marginal posterior distributions for the analysis in Section 4

Parameter 2.5% 25% Median 75% 97.5% Mean Std. dev.

αC 3.499e−04 3.751e−04 3.890e−04 4.034e−04 4.317e−04 3.895e−04 2.084e−05
βC 1.15683 1.28163 1.34854 1.41392 1.53951 1.34819 0.09822
θA −1.13618 −0.8639 −0.72117 −0.57765 −0.30594 −0.7213 0.21244
αB −0.72395 −0.4071 −0.25793 −0.11736 0.14292 −0.26616 0.22158
βB −1.32096 −1.06123 −0.92721 −0.7889 −0.52515 −0.92561 0.20302
θL
1,λ 33.9036 77.659 104.127 133.295 205.525 107.83115 43.46528

θL
1,µ 2.65657 2.75375 2.7948 2.83581 2.9422 2.79551 0.07121
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FIG. 3. Model diagnostic plots. The first two rows of the figure show the data and residuals with predictive errors based on a Gaussian
approximation. The third row shows the residuals with errors based on the posterior predictive distribution. The two columns correspond to
Model 0 and Model 1, respectively. The advantage of the posterior predictive errors is evident for the low counts in the high-energy tail of the
spectra. The excess counts near 2.81 keV are apparent in the first column and are corrected for in the second column, indicating evidence
for including the emission line in the model. (The location of the emission line is represented by a vertical line in the upper right-hand plot.)

the instrument. The second row of Figure 3 compares
the residuals [i.e.,Y obs

l − ξl(θ̂)] with an approximation

of their error,±2
√

ξl(θ̂ ). Although these error bars are
easy to compute, they are based on a Gaussian approx-

imation and do not account for the posterior variability
of θ . A better strategy is to compute intervals based
on the posterior predictive distribution. For example,
using Monte Carlo, we can easily compute the high-
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est 95% posterior predictive interval independently for
each channel count. These intervals (based on 20,000
Monte Carlo draws) are compared with the observed
counts in the third row of Figure 3. Comparing the sec-
ond and third rows, we observe that the posterior pre-
dictive intervals cover the low intensity counts much
better than the Gaussian approximations. Figure 3 also
illustrates the evidence for the inclusion of the emis-
sion line. There are three points above the upper limit
of the predictive intervals in channels near 2.81 keV in
the first column of the figure. When we add the emis-
sion line to the model, the error bars widen to include
these three points. In the next section we quantify the
strength of this evidence.

5.2 Model Selection

Deciding whether to include a specific model com-
ponent in a spectral model is often of direct scientific
interest. Here we discuss the use of tests based on the
posterior predictive distribution that aim to check the
adequacy of a seemingly parsimonious model with an
eye on the possibility of adding model components
to better describe the data. Formal tests in this con-
text are an especially challenging statistical task due
to the form of the models in question. For example,
a standard question of scientific interest is whether the
data support the presence of a particular emission line.
Suppose the hypothesized line has a known center and
spread. Then formally we test the null hypothesis that
θL
k,λ = 0 against the alternativeθL

k,λ > 0 for somek.
Given the form of the model in (4), this test is equiva-
lent to the notoriously difficult task of determining the
number of components in a finite mixture model or,
more generally, of testing whether a parameter is on
the boundary of its parameter space. It has been well
known for decades that the standard asymptotic null
distribution of the likelihood ratio test is inappropriate
for this task (see the discussion in Titterington, Smith
and Makov, 1985). Unfortunately, this fact seems little
known among astrophysicists, who routinely use the
likelihood ratio test or a relatedF test to check for
emission lines or other model components with simi-
lar statistical difficulties.

The misapplication of the likelihood ratio andF tests
is endemic in the astrophysical literature. A recent
survey found over 125 papers published inThe Astro-
physical Journal, Astrophysical Letters or The Astro-
physical Supplement that used the likelihood ratio test
or the relatedF test in a questionable manner. The sur-
vey reviewed 183 papers published between 1995 and
mid-2001 that were found using an electronic search

TABLE 5
Results of a survey of papers in The Astrophysical Journal, its

Letters and Supplement, published between 1995 and mid-2001
and returned by a search for F statistic, F test or

LRT at The Astrophysical Journal website

Type of test Number of papers

Null space on boundary 106
Comparing nonnested models 17
Other questionable cases 4
Seemingly appropriate use of test 56

for the keywordsF statistic,F test or LRT. The results
of the survey are summarized in Table 5.

We suggest using posterior predictivep values
(Rubin, 1984; Meng, 1994; Gelman, Meng and Stern,
1996) to test null hypotheses which lie on the bound-
ary of the parameter space. An appeal of the posterior
predictivep value in astrophysics is its strong analogy
with the frequentistp value, which is relatively well
understood by astrophysicists. In particular, anarbi-
trary statisticT (y) (e.g., the likelihood ratio statistic)
is calibrated via its posterior predictive distribution

p{T (yrep)|y} =
∫

p{T (yrep), θ |y}dθ

=
∫

p{T (yrep)|θ}p(θ |y) dθ,

(9)

whereyrep is a replicated data set and the second equal-
ity follows becausey andyrep are independent givenθ .
Thus, we average thesampling distribution p{T (y)|θ}
over the uncertainty quantified by the posterior distrib-
ution of θ . The difficulty with the standard likelihood
ratio test is that its sampling distribution is not easily
calibrated. If not for the dependence of the sampling
distribution on the unknown parameterθ , calibration
could be accomplished via Monte Carlo methods. Pos-
terior predictivep values overcome this final difficulty
by accounting for the uncertainty inθ via its posterior
distribution.

The result can sometimes be conservative, especially
when the test statistic is poorly suited for detecting
the model feature in question (Meng, 1994; Bayarri
and Berger, 1999). Thus, Bayarri and Berger (1999)
suggested conditioning on sufficient statistics for nui-
sance parameters to elicit more power. In practice,
this suggestion can be mathematically and computa-
tionally demanding. The principle advantage of pos-
terior predictivep values is that, although analytical
results are typically not available, calibration is easily
accomplished via Monte Carlo methods. Specifically,
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FIG. 4. The posterior predictive check. The two histograms compare the observed likelihood ratio test statistics (vertical lines) with
1000 simulations from the posterior predictive distribution. The left plot is the comparison between Model 0 and Model 1, and the right
plot is the comparison between Model 0 and Model 2. Both model checks indicate strong evidence for including the emission line.

we need only sampleθ from its posterior distribution,
sample a replicated data setyrep from the sampling dis-
tribution given the sampled value ofθ and compute the
(likelihood ratio) test statistic using the replicated data.
The frequency under repeated sampling that this pro-
cedure results in a more extreme test statistic than is
actually observed is the posterior predictivep value.
If this is a very small number, we conclude that the
data would be unlikely to have been generated under
the posterior predictive distribution, and in terms of
the characteristics measured by the test statistic, the
model is not adequate for the data. [There are of course
numerous other techniques for model checking, e.g.,
Bayes factors and the Bayesian information criterion;
see Protassov et al. (2002) for a more detailed discus-
sion of our preference for posterior predictivep values
in this setting.]

To illustrate the use of posterior predictivep values,
we return to the example of Section 4 to quantify the
evidence for the emission line. We use the likelihood
ratio test as the test statistic,

T (yrep) = log
{ supθ∈�i

L(θ |yrep)

supθ∈�0
L(θ |yrep)

}
, i = 1,2,

where�0,�1 and�2 represent the parameter spaces
for Model 0, Model 1 and Model 2, respectively;
see Section 4. We use the EM algorithm to com-
pute T (yrep). In particular, after generation of
1000 data sets from the posterior predictive distribu-
tion under Model 0, we fit each of the three models
to each of the 1000 data sets via maximum likelihood.
When we fit Model 2, we used six evenly spaced start-
ing values for the line location over the range (1.0 keV,

4.0 keV); the maximum of the resulting six local
maximum likelihood values is taken to be the global
maximum likelihood. Although this procedure is not
guaranteed to return the global maximum, it is a
legitimate statistical procedure that results in a test
statistic, whose posterior predictive distribution we
investigate. Figure 4 shows the posterior predictive dis-
tribution of T (yrep) and posterior predictivep value
with both Model 1 and Model 2 as the numerator
model. Together the two posterior predictivep values
indicate that there is strong evidence for the presence
of the emission line in the spectrum. Given the prior be-
lief that the line is near 2.81 keV, it is legitimate to use
the first posterior predictivep value, which is essen-
tially zero. Without such prior information, one should
use the second value, which is about 0.01. It is evident
that the prior information increases the power of the
comparison.

6. PILEUP

6.1 The Nature of Pileup

We turn now to photon pileup, a form of data
degradation that is much more challenging than the
forms discussed in Section 2.2. Pileup occurs in X-ray
CCD’s when two or more photons arrive at the same
location on the detector during the same time frame.
Such coincident events are counted as a single higher
energy event or lost altogether if the total energy goes
above the on-board discriminators. Thus, for bright
sources pileup can seriously distort both the count rate
and the energy spectrum.
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Chandra collects data using an on-boardevent de-
tection algorithm, which at the end of each time frame
scans spatial pixels for local maxima in the energy
charge. Because the charge from a single photon is of-
ten recorded across several adjacent pixels, the charge
in neighboring pixels is investigated, for example, in
a 3× 3 or 5× 5 event detection island. The events
are classified into anevent grade, which depends on
the spread of the charge in the event detection island.
Because the event grade distribution depends on the
number of photons that are piled (so-called grade mi-
gration due to pileup), the grade carries important in-
formation for accounting for pileup. A typical strategy
is to discard events that are likely to be piled based
on their grade. Since the likelihood of being piled may
vary with energy, such strategies have the potential to
bias results. The exact nature of the classification of
the events into grades is quite complex and beyond the
scope of this paper; more details can be found in Ballet
(1999).

Accounting for pileup is perhaps the most important
outstanding data-analytic challenge involvingChandra
data. Within a model-based framework, however, there
is no conceptual problem in dealing with complicated
data generation processes such as those involved in
pileup. Specifically, we treat the number of photons
that correspond to each event as well as their energies
as missing data. The sum of the individual missing
energies is the observed event energy. In a Bayesian
framework using MCMC, we need to stochastically
separate a subset of the observed counts into multiple
counts of lower energy using the current iteration of the
spectral–spatial model being fitted. [Other statistical
methods have been explored to address pileup; see
Davis (2001) for an approach based on minimum
χ2 fitting.]

Because of the nature of pileup it is impossible to ap-
propriately model a piled spectrum without accounting
for the spatial characteristics of the image. That is, we
cannot concentrate solely on the spectral margin of the
data. Consider two sources with the same spectrum, but
with different spatial characteristics; in particular, sup-
pose one is a point source, which is highly concentrated
on the detector, and the other is an extended source,
which is highly dispersed spatially. Since more photons
land near each other on the detector, the first source is
apt to be much more piled than the second. Any reason-
able analysis must take this into account. Nonetheless,
many sources of interest are essentially point sources
and such sources are subject to the most severe pileup.
Thus, to avoid the complication of jointly modeling

spatial and spectral data, we tackle the important prob-
lem of point sources. This is the first of three simplify-
ing assumptions that we use in our solution.

ASSUMPTION 1. We assume that the source is
a point source, blurred uniformly across a region of
the detector. [Due to instrument response, there is
always some (nonuniform) spatial blurring, which is
quantified via the so-calledpoint spread function.]

ASSUMPTION 2. We suppose that each event is
composed of either one or two actual photon arrivals.

ASSUMPTION 3. We assume the event detection
islands are at fixed locations on the detector.

In Assumption 2, we specify that each event corre-
sponds to exactly one or exactly two photons arriving
in the event detection island during a single time frame.
This assumption is clearly a simplification; there is a
(generally smaller) probability that three or more pho-
tons pile. Even if there are only two photons involved
in the pileup process, their energies may not add up
strictly to the observed event energy because of the na-
ture of the on-board event detection algorithm. In As-
sumption 3, we neglect the fact that the locations of the
event detection islands are determined by local max-
ima in the charge on the detector at each time frame.
Although none of the simplifying assumptions is re-
alistic, they serve as an approximation and a starting
point for more sophisticated methods. Moreover, as is
demonstrated in Section 6.3, real data analyses can be
robust to these assumptions.

6.2 Statistical Modelling of Pileup

To account for pileup using an MCMC sampler in
the Bayesian framework, we need only stochastically
separate a subset of the events into a number of
lower energy photons. (Under Assumption 2, we divide
events into at most two photons.) This illustrates the
power of fitting highly structured hierarchical models
via MCMC: a complex model can be fit via a sequence
of relatively simple steps. In particular, we have an
MCMC sampler composed of two steps:

STEP 1. Given the spectrum, we “unpile” the
counts.

STEP 2. Given the unpiled counts, we update the
spectrum.

Only Step 1 is new in this procedure; Step 2
contains many substeps and is described in Section 3
in the absence of pileup. Thus, here we focus only on
deriving Step 1.
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As in Section 2.2, we suppose that in the absence
of pileup, the observed counts are Poisson with in-
tensity ξl(θ) for some set of energy channelsl ∈ L.
The first panel in Figure 5 illustrates a power law con-
tinuum with simple exponential absorption and three
spectral lines. For simplicity, in Figure 5 we assume
there is no background contamination or instrument re-
sponse and that the effective area is constant. Account-
ing for these effects causes no difficulty because of the
hierarchical structure of the model, but obscures the
ideas involved with pileup.

Under this Poisson model, we can compute the
probabilities of thepossible one-photon and two-
photon events in any particular event detection island.
Suppose we observe an event with energyE�, that
is, an event counted in energy channell(E�), the
channel that corresponds toE�. Let Y = {Yl, l ∈ L}
be the photon counts in each energy channel during the
relevant time frame and in the relevant event detection
island; the sum of the energies of these counts is the
observed energy of the event,E�. We wish to sample
the component countsY from p{Y |E�, ξ(θ)}, where
ξ(θ) represents the set of Poisson intensities in a single
time frame and in a single event detection island.
(Under Assumptions 1 and 3 the intensities per time
frame per event detection island are a scalar multiple
of the overall intensities.)

By Bayes theorem,

p{Y |E�, ξ(θ)} ∝ p{E�|Y, ξ(θ)}p{Y |ξ(θ)}.(10)

The first term on the right-hand side of (10) ensures
that the energies of the photons that make up the event
sum toE�. Thus, if the event corresponds to a single
photon, we must have

Yl(E�) = 1 and Yl = 0 for l �= l(E�).(11)

The situation is somewhat more complicated when
an event arises from multiple photons. Because the
energies are binned into energy channels, determining
what values ofY are possible can be somewhat
complicated, especially if the channels are of unequal
size, that is, correspond to energy ranges of differing
width. In actual data analysis, we use channels that are
equal in size and when adding channel energies, we
assume that photon energies are equal to the midpoint
of the channel energy range. Because ofChandra’s
high resolution, we expect this approximation to be of
little consequence. For a two-photon event, we have

Yl =
{

1, for l = l(E1) andl = l(E2),
0, otherwise,

(12)

FIG. 5. Accounting for pileup. The first panel illustrates a power
law with exponential absorption and three emission lines. The
probability density of the energy of one of two photons with
energies that sum to 10 keV with this source spectrum is illustrated
in the second panel. The final panel shows the joint probability
density of the energy of two of three photons with energies that
sum to 10 keV.
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where E1 and E2 are two energies such thatE1 +
E2 = E�. Alternatively, we may haveYl(E�/2) = 2 and
Yl = 0 for all other channels.

Once the set of possible photon energies is deter-
mined, their relative probabilities are computed using
the second factor on the right-hand side of (10),

∏
l∈L

ξl(θ)Yl exp(−ξl(θ))

Yl ! ,(13)

with Y given, for example, in (11) or (12). The second
panel of Figure 5 shows the probability density of the
energy of one of two component photons in an event
of energy 10 keV based on the spectrum in the first
panel of Figure 5. In particular, we plot Pr{E1,E2 =
10− E1|E� = 10, ξ(θ)} versusE1; the probability is
also conditional on there being exactly two component
photons.

Although in our solution we assume there are at most
two piled photons in each event, there is no conceptual
problem with handling three or more photons. The
difficulty lies in computation. For example, if we want
to split an event into three photons, we have to evaluate
all possible combinations of three lower energies that
sum to the observed event energy. As an example, we
again consider the spectrum in Figure 5. Suppose that
a 10-keV event actually consists of three photons; the
third panel in Figure 5 illustrates the distribution of
the energies of two of the photons. (The third energy
is determined because the three energies must sum to
10 keV.) Efficient sampling from this highly structured
distribution would require sophisticated Monte Carlo
methods.

6.3 Unpiling 3c273 ACIS-S Spectrum

In this section, we illustrate and validate our pileup
procedures using a pair ofChandra observations
of 3c273, a strong X-ray point source. The first ob-
servation (denoted ACIS-S) is a standardChandra ob-
servation and is highly piled because of the intensity
of the source. The second observation (denoted ACIS-
S/HETG) was obtained using a grating onChandra;
the grating spreads the source across the detector ac-
cording to the energy of the photons. Because more
of the detector surface is used, the grating spectrum
should exhibit significantly less pileup. (The higher
spectral resolution of grating data comes at the cost of
the spatial resolution.) Because the grating data are es-
sentially unpiled, they offer an ideal test of our proce-
dures for handling pileup. If our procedures work well,
they should return essentially the same fit for both data
sets (Kang et al., 2003).

TABLE 6
Summaries of fitted models for the analysis in Section 6.3

Pileup in
model?

Fitted model parametersa

Data �b < 2 keV � > 2 keV % piled

ACIS-S/HETG No 1.70± 0.06 1.05± 0.05 n/a
ACIS-S/HETG Yes 1.70± 0.05 1.07± 0.05 00.6%
ACIS-S No 1.53± 0.03 1.12± 0.04 n/a
ACIS-S Yes 1.69± 0.03 1.29± 0.05 14.3%

aError bars are one posterior standard deviation.
bThe power law parameter is represented by
.

We fit a spectral model that consists of a broken
power law continuum with a break at 2 keV. The
energy channels from 0.5 to 8.0 keV were used to
fit the model to both data sets in each of two ways:
ignoring and accounting for pileup. The fitted models
are summarized in Table 6. Since we expect little
pileup in the ACIS-S/HETG data, it is not a surprise
that accounting for pileup did not change the fit
significantly. For the ACIS-S data, however, the fit
does change significantly. When we account for pileup
in the ACIS-S data, the fit matches the fits for the
ACIS-S/HETG data, but only for the low energies.
The problem for higher energies is that when higher
energy photons are piled, they are often recorded
as events of energy greater than 8 keV. When we
analyze only the data up to 8 keV, we miss these
events and underestimate the expected counts in the
energy channels from 2 to 8 keV; thus, the power law
parameter is overestimated above 2 keV. In principle,
this bias can be accounted for by adding another level
of missing data in the formulation of the model: If
photons are piled to energies greater than 8 keV, they
are not recorded. Extending the model in this direction
is an area of current research.

7. FUTURE WORK

In this article we have outlined an important com-
ponent of the collaborative work of the California-
Harvard Astro-Statistics Collaboration (CHASC),
URL: www.ics.uci.edu/˜dvd/astrostat.html. There are
many related projects. For example, we are develop-
ing multiscale methods for image analysis of spatial
data (van Dyk and Hans, 2002; Esch, 2003; van Dyk
et al., 2004; Esch, Connors, Karovska and van Dyk,
2004). Ultimately, we hope to construct models for
joint spatial–spectral analysis that can both describe
how the spectrum changes over an extended source
and correctly account for pileup. Some sources have
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a multitude of important emission lines, and carefully
designed hierarchical structure can be used both to de-
scribe the population of emission lines and to reduce
dramatically the dimension of the parameter space on
the bottom level of the model (van Dyk et al., 2004).
A similar strategy is being developed to describe the
distribution of the intensity or flux of X-ray sources
across the sky. In addition to the data distortion mech-
anisms described in Section 2.2, this model must ac-
count for the propensity of detection as a function of
source intensity.

As is evidenced by the other articles in this issue
and in the recent conference,Statistical Challenges in
Modern Astronomy III and its proceedings (Feigelson
and Babu, 2003), there is a multitude of fruitful areas
for astronomers and statisticians to work together. It
is our hope that we have whetted the appetites of
some readers who will join us in this exciting area of
scientific collaboration.
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