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Computational Advances for and from
Bayesian Analysis
C. Andrieu, A. Doucet and C. P. Robert

Abstract. The emergence in the past years of Bayesian analysis in many
methodological and applied fields as the solution to the modeling of complex
problems cannot be dissociated from major changes in its computational
implementation. We show in this review how the advances in Bayesian
analysis and statistical computation are intermingled.
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1. INTRODUCTION

Reading through the other papers in this special is-
sue ofStatistical Sciencereveals another common de-
nominator in addition to Bayesian analysis, namely the
complexity of the models envisioned and processed.
This complexity may be at the parameter level, as in
nonparametric models, at the observation level, as in
the large and convoluted data sets found in genomics
and machine learning, or at the inferential level, as
in model choice and model determination. This level
of complexity was unheard of in Bayesian statistics
at the end of the 1980s, where (retrospectively) crude
approximations were used in simpler models like mix-
tures, even though simulation methods like impor-
tance sampling were available at that time (see, e.g.,
Hammersley and Handscomb, 1964; Ripley, 1987; Oh
and Berger, 1993). The prodigious advances made by
Bayesian analysis in methodological and applied direc-
tions during the previous decade have been made pos-
sible only by advances of the same scale in computing
abilities with, at the forefront, Markov chain Monte
Carlo (MCMC) methods, and also considerable im-
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provements in existing techniques like the expectation-
maximization (EM) algorithm (Meng and Rubin, 1993;
Meng and van Dyk, 1997), both as a precursor to the
Gibbs sampler in missing data models (Section 3.3)
and as a statistically tuned optimization method. Other
earlier methods like quadrature representations and
Laplace approximations (Robert and Casella, 1999,
Chapter 3) did not lead to the same breakthroughs, be-
cause they both required more analytical inputanddid
not provide intuitive evaluations of the degree of ap-
proximation involved.

Most obviously, there have been many books and
reviews on MCMC methods (see, e.g., Smith and
Roberts, 1993; Gilks, Richardson and Spiegelhalter,
1996; Robert and Casella, 1999, 2004; Cappé and
Robert, 2000; Liu, 2001). In addition, the majority
of papers in this volume make use of such methods.
Therefore, we abstain both from engaging in a review
of the numerous applications of MCMC methods in
Bayesian statistics and from providing illustrations
of the potential force of such methods, since the
contents of most of this volume are enough of a
testimony to this force. We rather aim to give a very
quick sketch of the principles of MCMC methods (for
those readers outside statistics and those few fellow
statisticians just back from a 10-year sabbatical leave
in the Outer Hebrides. . . ) and then indicate the most
recent advances in this field as well as point out some
of the numerous interactions between computational
and Bayesian statistics. We conclude this review with
a more prospective section on the renewed interest in
importance sampling methods.
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2. THE BASICS OF MCMC

2.1 Genesis

Since this is the main theme of our review, let
us stress that, from the start, simulation methods
have been boosted by applications and their need
for high computational power. It is indeed because
nuclear scientists at Los Alamos could not compute the
behavior of the atomic bomb that, within a few months,
Feynman, Metropolis, Teller, Ulam, von Neumann and
others built one of the first computers and designed
algorithms to run on this machine and reproduce the
dynamic of particles during an atomic bomb explosion.
Building a nuclear bomb is certainly far from the
best way to start a field, but, fortunately, Monte
Carlo methods have since found much less destructive
applications, and this genesis illustrates our point,
namely:

• Major advances in simulation have always been the
result of demands from other (applied) disciplines.

• These advances have been highly dependent
on/subsidiaries of the current state of computers.

For instance, the paper by Hastings (1970) appeared
too early to have an impact on the field, because com-
puters were not powerful enough to allow for the im-
plementation of simulations of this nature: just imagine
using a stack of computer cards to program the ran-
dom walk Metropolis–Hastings algorithm (defined be-
low) for a generalized linear model. On the other hand,
Geman and Geman (1984) came ten years later and had
a much deeper influence, even though the focus of their
paper was a very specialized topic (optimization in
Markov random fields), mostly because, by that time,
personal computers and higher computational powers
were available. When MCMC methods came to full-
fledged status with Gelfand and Smith’s (1990) article,
computing limitations were much less of a hindrance;
being able to allow for hundreds of thousands of sim-
ulations of high-dimensional models, while handling
much larger data sets and much more complex models
in genomics, data mining or signal processing was then
beyond state-of-the-art computing abilities.

Earlier simulation techniques also had a more lim-
ited goal: examples of these are thestochastic search
algorithms like the Robbins–Monro stochastic gradi-
ent algorithm (Robbins and Monro, 1951; Kiefer and
Wolfowitz, 1952). Indeed, these techniques were only
used as numerical devices to approximate likelihood
and other maximization estimators, that is, as point-
wise tools rather than distributional tools. This remark

is not intended to be demeaning, because the mathe-
matics behind the convergence of these algorithms is
far from easy and, in addition, the pioneering work
that led to these techniques is quite fundamental in the
study of adaptive MCMC algorithms, where the transi-
tion kernel changes with time. In this spirit, we can also
note that the seminal paper by Metropolis et al. (1953)
was the basis for both general MCMC algorithmsand
simulated annealing (see also Kirkpatrick, Gelatt and
Vecchi, 1983), but only the latter found immediate suc-
cess, because of its more focused applicability.

The evolution of programming languages also gave
impetus to simulation methods and simulation soft-
ware: more user-friendly interfaces like R make teach-
ing Monte Carlo methods in undergraduate classes
possible, even though they cannot be considered for
large scale simulations because of the “curse of the
loop” which is the bane of interpreted languages like
R and Matlab.

2.2 Toward Maturity

Since the introduction of the Gibbs sampler (Gelfand
and Smith, 1990) to the statistical community, the
picture of MCMC methods has been “de-blurred” of
some unnecessary early features: the core principle
is that any iterative construction of a homogeneous
Markov chain that is irreducible and associated with
an invariant probability distributionπ is acceptable
for simulation purposes, from the approximation of
integrals underπ to the exploration of the support
of π . (Theoretical details and more complete results
are provided in Roberts and Tweedie, 2004.)

While this generic principle remains fairly formal,
there exist, most astoundingly, several classes of uni-
versal implementations of this principle.

First, theslice sampleris based on the fundamental
theorem of simulation (Robert and Casella, 2004,
Chapter 3): given a density functionπ , known up to
a normalizing constant,

π(θ) ∝ π̃(θ),

simulation fromπ is equivalent to uniform simulation
on the subgraph of̃π :

S π = {(θ,ω); 0 ≤ ω ≤ π̃(θ)}.
This is the principle behind accept–reject methods, but
when those are not available, a general MCMC/Gibbs
algorithm is to generate a random walk onS π , since
random walks are associated with uniform distribu-
tions as invariant distributions. [Byrandom walk, we
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mean a Markov chain(Xt ) such that the probability of
going fromXt = x to Xt+1 = y is the same as the prob-
ability of going fromXt = y to Xt+1 = x.] The random
walk of the slice sampler was inspired by the geometry
of S π : starting from(θ(t),ω(t)), ω(t+1) is generated as
a uniformU ([0, π̃(θ(t))]) and thenθ(t+1) is generated
uniformly on the slice:

S π
θ = {

θ; π̃(θ) ≥ ω(t+1)
}
.

The most important fact about this method is not
whether it is a good simulation method, but rather that
it directly relates to the original basis of simulation
methods and applies, in principle, to all settings.

In practice, however, slice sampling can be difficult
to implement, because of the inversion of the inequality
π̃(θ) ≥ ω(t+1) as a set ofθ ’s. Although this is not of
the utmost importance in the perspective of this review,
we may still note that the slice sampler enjoys very
good convergence properties for large classes ofπ ’s:
for instance, Roberts and Rosenthal (1999) showed
that, under some conditions onπ , the slice sampler
converges to within 1% of the limiting distribution (in
total variation norm) in less than 525 iterations!

Second, the random walk Metropolis–Hastings algo-
rithm starts from an (almost) arbitrary transition ker-
nel/conditional distribution satisfying

q(θ − θ ′) = q(θ ′ − θ)

to build the actual transition as follows: starting
from θ(t), a valueξ (t+1) simulated as

ξ (t+1) ∼ q
(
ξ − θ(t)

)
is accepted, that is,θ(t+1) = ξ (t+1) with probability

min
(

1,
π̃(ξ (t+1))

π̃(θ(t))

)
,

and rejected otherwise, that is,θ(t+1) = θ(t). Unless the
support ofπ is disconnected, this algorithm enjoys ba-
sic convergence properties, although it is not geomet-
rically ergodic outside special situations (see Roberts
and Tweedie, 2004, Chapter 10).

In practice, the random walk Metropolis–Hastings
algorithm is the most successful universal MCMC
algorithm, but it requires tuning for the scale of the
proposalq: too small a scale causes the chain to stick
in the vicinity of the starting point and too large a scale
results in a chain that changes values very rarely (see
Robert and Casella, 1999, Chapter 6). Neal (2003) also
criticized random walk type algorithms in that they

take an unnecessarily long time to go from one point to
another: typically, the time required is the square of the
distance. More elaborate sampling schemes, including
variations on the slice sampler, were advocated by Neal
(2003) as ways to avoid the random walk behavior, but
these schemes required some more or less elaborate
tuning that disqualifies them as universal schemes.

When we said earlier that the picture is now clearer
than in Gelfand and Smith’s (1990) article, we meant
that the theoretical basis of MCMC algorithms has
been simplified: at any stage, a Markov transition
kernel with the correct stationary distribution can be
used in place of the said distribution. This principle
being stated, let us note that there still is a large
range of uncertainty or arbitrariness linked to MCMC
algorithms in that the unlimited number of possible
transition kernels is very rarely controlled by clearly
defined convergence properties.

Note also that, within the theory of MCMC algo-
rithms, the use of adaptive transition kernelsKt that
depend on the past behavior of the chain is not usu-
ally allowed because it may jeopardize the convergence
properties of the chain and the applicability of the er-
godic theorem. For instance, using a Gaussian proposal
centered at the average of the past values and scaled
from the scale of the past values is unlikely to capture
the true scale of the problem unless the first trials are
particularly lucky! This is not to say that adaptivity is
impossible, but simply that it is better processed out-
side than within the MCMC framework, as discussed
in Section 4.

2.3 Later Days

There have been many recent improvements and
extensions within the past years and it is impossible
to include them all within this review. Some are
mentioned in other sections (sequential Monte Carlo
methods, Section 4) or in other papers in this volume
(like variational methods, Jordan, 2004; Titterington,
2004).

One particularly exciting development took place
in the mid 1990s when Propp and Wilson (1996)
discovered perfect sampling and the ability to simulate
exactly fromπ using solely a Markov transition kernel
with stationary distributionπ (for an introduction, see
Casella, Lavine and Robert, 2001). These methods
are all based on a coupling principle that erases the
influence of the starting value and, for most statistical
applications, on some device (trick?!) that allows for
the reduction of the continuum of starting values to
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a few points. For instance, Mira, Møller and Roberts
(2001) exhibited a natural link between slice sampling
and perfect sampling.

Implementing perfect sampling has a cost, though,
and it seems, eight years after Propp and Wilson
(1996), that this cost may be too high, since perfect
sampling has all but become a standard of the MCMC
toolbox. The genuine difficulty in implementing per-
fect sampling is that there is a strong degree of tun-
ing and calibration involved for every new model, as
discussed by Robert and Casella (2004, Chapter 11).
Moreover, the settings where coupling is guaranteed
to work are quite restricted, since they roughly corre-
spond to uniformly ergodic kernels (Foss and Tweedie,
1998).

Another development in the mid 1990s that has
a much broader basis is reversible jump MCMC
and variable dimension models, following the path-
breaking formalization by Green (1995). Since this
major advance strongly relates to the corresponding
development of Bayesian model choice, we dwell on
its justification in Section 3 rather than here. Let us
simply recall that Green (1995) built a formalism
that allows for Markov chains on variable dimension
spaces. While this can be seen as a sequence of
local fixed-dimension moves (see, e.g., Robert and
Casella, 2004, Section 9.2.2), it nonetheless gained
immediate popularity by setting up the right framework
for the MCMC analysis of this kind of problem. It also
subsumes earlier and later attempts, like the birth-and-
death jump process of Preston (1976), Ripley (1977)
and Stephens (2000), and the saturation schemes of
Carlin and Chib (1995) and Godsill (2001). Recent
developments by Brooks, Giudici and Roberts (2003)
aim at higher efficiency levels in the selection of jump
proposals.

As mentioned above, adaptive MCMC algorithms
have also been introduced recently, although the de-
velopment of adaptive algorithms is much easier out-
side the MCMC framework (Section 4): in fact, the
difficulty with adaptivity is that the dependence on
past performance must be controlled to preserve the
Markovian structure, as for instance in renewal schemes
(Mykland, Tierney and Yu, 1995; Gilks, Roberts and
Sahu, 1998; Guihenneuc-Jouyaux and Robert, 1998)
unless ergodicity is directly established (Haario,
Saksman and Tamminen, 1999, 2001; Andrieu and
Robert, 2001).

3. MUTUAL ATTRACTIONS

Many things happened in Bayesian analysis because
of MCMC and, conversely, many features of MCMC

are only there because of Bayesian analysis! We think
the current state of Bayesian analysis would not have
been reached without MCMC techniques and also that
the upward surge in the level of complexity of the
models analyzed by Bayesian methods contributed to
the very fast improvement in MCMC methods.

Some of the domains where the interaction between
Bayesian analysis and MCMC methods has been very
intense are represented within this special issue: ge-
nomics, nonparametric Bayes, epidemiological stud-
ies, clinical trials, machine learning, Bayesian and
neural networks, and graphical models (and others) all
are showcases where Bayesian expertise came to the
forefront only because of the corresponding computa-
tion abilities.

3.1 Bayes Factors

While the overall usefulness of Bayes factors in
Bayesian testing may be argued (Kass and Raftery,
1995; Bayarri and Berger, 2004; Walker, 2004), they
are nonetheless part of the standard Bayesian toolbox,
if only as a reference value, for the comparison of
modelsM1 andM2. Being ratios of integrals,

B12 = P (M1)

P (M2)
=

∫
�1

f1(x|θ1)π1(θ1) dθ1∫
�2

f2(x|θ2)π2(θ2) dθ2
,

those most often unavailable in closed form, they re-
quire special simulation techniques that were devel-
oped in the mid 1990s by Chen and Shao (1997),
Gelman and Meng (1998) and Meng and Wong (1996)
under the namesbridge samplingandumbrella sam-
pling. These are special versions of importance sam-
pling connected to some earlier methods used in the
physics literature.

Indeed, the presence of several competing models is
advantageous for importance sampling methods, since
the same simulated sampleθ1, . . . , θT can be recycled
for several models if they all share parameters of
the same nature. While earlier attempts treated the
numerator and the denominator ofB12 separately (see,
e.g., Newton and Raftery, 1994), the more advanced
bridge sampling estimator of Meng and Wong (1996)
links both terms. For instance,

BS
12 = (1/n2)

∑n2
i=1 π1(θ2i )f1(x|θ2i )h(θ2i)

(1/n1)
∑n1

i=1 π2(θ1i )f2(x|θ1i )h(θ1i)
,(1)

where theθji ’s are simulated fromπj (θ |x) (j =
1,2, i = 1, . . . , nj ), are convergent estimators ofB12
for any functionh(θ) (these functions are calledbridge
functions). Further improvements, always pertaining
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to importance sampling, can be found in Gelman and
Meng (1998) and Chen, Shao and Ibrahim (2000).

This enhanced ability to compute Bayes factors also
brought new life to the theoretical debate about the
use of improper priors in point null hypothesis testing,
which is prohibited from a purely Bayesian point of
view, but can be implemented via cross-validation
techniques into pseudo-Bayes factors like theintrinsic
Bayes factorsdescribed by Berger and Pericchi (1996,
2001).

3.2 Model Selection

The MCMC method certainly changed the way
model selection and model comparison are imple-
mented within Bayesian statistics. The call for al-
gorithms that can handle this model selection issue
equally contributed to the development of an adequate
simulation methodology, namely the class of reversible
jump algorithms already discussed in Section 2.3.

The impact of this evolution on Bayesian statistics
is clearly major: notions like model averaging are now
standard in Bayesian data analysis and model building,
while they were almost always impossible to compute
earlier on. The range of uses of model selection has
also considerably expanded as discussed by Robert
(2001, Chapter 7). Model averaging (Madigan and
Raftery, 1994) is the simple realization that, for some
purposes, model choice and testing are not necessary
and that the whole collection of models can be used
simultaneously through the predictive distribution

f (y|x) =
∫
�

f (y|θ)π(θ |x) dθ

= ∑
k

∫
�k

fk(y|θk)π(k, θk|x) dθk

= ∑
k

p(Mk|x)

∫
fk(y|θk)πk(θk|x) dθk,

where� denotes the union of all parameter spaces.
Model averaging does not answer all the difficulties

related to the multiple facets of model selection,
since some perspectives require the elimination of all
models but one, but the associated algorithms like
reversible jumps offer a wide variety of interpretation
of their output. For instance, in the special case of
variable selection in a generalized linear model, these
algorithms bypass the need for elaborate schemes
like “upward” or “downward” strategies, since the
most important models are visited by the associated
Markov chain and the others are ignored (modulo a
proper implementation of the corresponding reversible

jump algorithm, i.e., such that the probability that
the Markov chain visits all models with high enough
posterior probability is high). This perspective also
created new avenues for research on prior distributions
on families of models, as illustrated by Clyde and
George (2004).

3.3 Latent Variable Models

Latent variable models are models such that the
representation

π(θ) ∝
∫

π̃(θ, ξ) dξ

of the posterior distribution onθ is naturally associated
with the (observed) model; they are partially presented
in Jordan (2004). We can first note that such models
were at the origin of the EM algorithm (Dempster,
Laird and Rubin, 1977) and that the two-stage structure
of this algorithm is very similar to the Gibbs sampling
data augmentation of Tanner and Wong (1987), where
θ is simulated fromπ(θ |ξ) and thenξ from π(ξ |θ).

The use of new computational tools has allowed
for the Bayesian processing of much more complex
models of this type, including hidden Markov mod-
els (Cappé, Moulines and Rydén, 2004; see also Sec-
tion 4.2), hidden semi-Markov models like the ion
channel model (Hodgson, 1999), where the observed
likelihood cannot be computed, and the increasingly
complex models found in econometrics such as sto-
chastic volatility models (Kim, Shephard and Chib,
1998), where(1 ≤ t ≤ T )

yt ∼ N (0, σ 2
t )

and

logσ 2
t |σ 2

t−1 ∼ N (µ + ρ logσ 2
t−1, τ

2),

but only (yt ) is observed. The most recent devel-
opments have allowed for the processing of more
challenging continuous time models, where radically
new computational techniques are necessary (Roberts,
Papaspiliopoulos and Dellaportas, 2001).

3.4 Design of Experiments

While this can be seen in part in the article by Berry
(2004), let us stress that new levels of computational
power have brought a lot to the design of experiments,
a field somehow neglected by Bayesian statistics in the
past. As described in Müller (1999), the optimal design
problem can be described as an optimization setting
whered	 is the maximum of

U(d) =
∫

u(d, θ, x)π(θ)f (x|θ, d) dx dθ,
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that is, the objective function is the expected utility
of the designd . This setup thus encompasses both
an integration and a maximization problem. As in
other integration problems, Monte Carlo and MCMC
approximations can be used in place of the expected
utility, but some economy of scale must be found if the
distribution of the data also depends on the designd .
The most interesting perspective is to included in the
variables to be simulated, for instance, by considering
the distribution

π̃(d, θ, x) ∝ u(d, θ, x)π(θ)f (x|θ, d).

The optimal designd	 is thus the marginal mode
(in d) of π̃(d, θ, x). While regular simulation may
be too slow to converge to the solutiond	, various
modifications of the simulation distribution and of the
simulation steps may be implemented. For instance,
since the maxima ofU(d) andU(d)T are the same,
simulated annealing results can be invoked through the
artificial duplication ofθ andx, given thatU(d)T is
the marginal of

T∏
i=1

u(d, θi, xi)π(θi)f (xi|θi, d).

If T increases slowly enough along the iterations of
this heterogeneous Markov chain, the corresponding
sequence ofd(t) converges to the optimal design.
Doucet, Godsill and Robert (2002) exploited the same
feature to derive marginal modes in missing data
problems, introducing the SAME algorithm.

4. IMPORTANCE SAMPLING REVISITED

4.1 Generalized Importance Sampling

While the previous paragraphs may give the oppo-
site impression, MCMC is not a goal per se from the
point of view of Bayesian statistics! Other techniques
that work just as well, or even better, are obviously ac-
ceptable. In particular, when reconsidering importance
sampling in the light of MCMC advances, it appears
that much more general importance functions can be
considered than in earlier days. Importance functions
can, in particular, be tuned to the problem at hand
in light of previous simulations, without the associ-
ated drawbacks of adaptive MCMC schemes. Indeed,
at time or iterationt , given earlier samples and their
associated importance weights, a new proposal func-
tion gt can be designed in any way from this weighted
sample and still retain the original unbiasedness prop-
erty of an importance function.

While details are provided in Cappé, Guillin, Marin
and Robert (2004), let us stress here the fundamental
difference with MCMC. Given a weighted sample
(θ

(t)
i ,ω

(t)
i ) (i = 1, . . . , n) at iteration t , the proposal

distribution gt+1 can be based on the whole sample
in any possible way and still retain the unbiasedness
property of an importance function, namely that

E

[
π(θ)

gt+1(θ)
h(θ)

]
= E

π [h(θ)](2)

when the left-hand side expectation is associated with
the joint distribution ofθ ∼ gt+1(θ) and ofgt+1 (in the
sense that this density depends on the random sample
of the θ

(t)
i ’s). The reason for this general result is

that the distribution of the sample(θ(t)
i ,ω

(t)
i ) does not

intervene in (2). Although the potential applications
of this principle are not so far fully exploited, related
algorithms are found under various denominations like
quantum Monte Carlo, particle filters or population
Monte Carlo (Iba, 2000). As discussed below, they can
mostly be envisioned within a sequential setting.

4.2 Sequential Problems

In many scenarios it might be of interest to sample
sequentially from a series of probability distributions
{πt; t ∈ N} defined on a sequence of spaces, say{�t }.
By sequential,we mean here that samples fromπt are
required before samples fromπt+1 can be produced.
There are many situations where this is the case. Before
describing a generic algorithm attuned to this goal, we
detail two, apparently unrelated problems for which
sequential sampling is either required or of interest.

For the first case, we assume that the number
of observations available for inference onθ is not
constant, but rather increases over time. It might be of
interest to update our knowledge aboutθ each time a
new observation is produced, rather than waiting for a
complete set of data (which might be infinite). This is
the case for statistical filtering and, to a lesser extent,
for static parameter inference, as for instance in the
stochastic volatility model in Section 3.3.

PROBLEM 1 (Statistical filtering). Consider a hid-
den Markov model, that is, an unobserved real Markov
process(θt ), such that

θt+1|θt ∼ f (θt+1|θt )

with initial distribution θ1 ∼ µ(θ1), and for which the
only available information consists of the “indirect ob-
servations”yt ∼ g(yt |θt ). The distributions of inter-
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est are then the posterior distributionsπt (θ1, . . . , θt ) =
π(θ1, . . . , θt |y1, . . . , yt ) with �t = �t . In addition,
the data arrive sequentially in time and information
aboutθt is requested at each timet . Of particular inter-
est in practice is the estimation of the marginal poste-
rior distributionπt (θt ), called thefiltering distribution.
[See Doucet, de Freitas and Gordon (2001) for com-
plete motivation.]

PROBLEM 2 (Population Monte Carlo and sequen-
tial Monte Carlo samplers). Consider again the sim-
ulation of a series of probability distributionsπt .
However, whereas standard sequential Monte Carlo
methods apply to the case where�t = �t as in Prob-
lem 1, we are here interested in the case where�t = �.
Rather than directly sampling from a givenπt , an alter-
native is to construct a sequence of joint distributions
{π̃t} defined on�t that satisfy the constraint∫

�t−1
π̃t (θ1 : t ) dθ1 : t−1 = πt(θt ),

that is, such thatπt is the marginal distribution of
the π̃t ’s with respect to the last component. This
scheme has been proposed in various papers, including
Cappé et al. (2004) and del Moral and Doucet (2002),
and it allows for a straightforward construction of
adaptive importance functions, that is, importance
functions that take advantage of earlier simulations.

As stressed above, there are many potential applica-
tions of these algorithms.

EXAMPLE 1 (Static parameter inference). The fil-
tering problem, which is characterized by the dynamic
nature of the statistical model involved, as in Prob-
lem 1, has been the main motivation for the develop-
ment of efficient sequential Monte Carlo techniques in
recent years. However, these methods can also be very
useful to make inference about a fixed or static para-
meterθ with posterior distribution(s), say{p(θ |y1 : t );
t ∈ T }, whereT can be any subset ofN, including
singletons. For the multiple reasons mentioned ear-
lier, samples fromp(θ |y1 : t ) might be needed to esti-
mate quantities of interest. For instance, in some cases
sampling fromp(θ |y1 : T ) might be difficult even with
advanced MCMC techniques, whereas sampling pro-
gressively fromπt(θ) = p(θ |y1 : t ) whent goes from 1
to T might be easier and more efficient. This is the ap-
proach advocated by Chopin (2002).

EXAMPLE 2 (Simulation and optimization of a
fixed posterior distribution). To sample from a fixed
posterior distribution, sayp(θ |y), it is possible to
use sequential Monte Carlo methods withπt(θ) =

p(θ |y). It may even be more efficient to build an
artificial series ofM distributions that moves slowly
from an initial distribution, sayµ(θ), to the target
distribution,p(θ |y). A possible choice, as advocated
by Neal (2001), is to consider

πt (θ) ∝ µγt (θ)p1−γt (θ |y)

with γ1 = 1, γt ≤ γt−1 andγP = 0. For the derivation
of the modes ofp(θ |y), a sequence inspired by
simulated annealing is (del Moral and Doucet, 2002)

πt (θ) ∝ pγt (θ |y), where lim
t→∞γt = +∞.

4.3 Sequential Importance Sampling

We now present a generic algorithm that allows
sequential sampling from theπt ’s defined on�t = �t .
It is made up of two steps: sampling/mutation and
resampling/selection. If at timet −1 we have generated
samples{θ(i)

1 : t−1} that approximateπt−1, then the next
generation of samples is produced as follows:

MUTATION STEP.

• For i = 1, . . . ,N , set θ̃ (i)
1 : t−1 = θ

(i)
1 : t−1 and sample

θ̃
(i)
t ∼ qt(·|θ̃ (i)

1 : t−1).• For i = 1, . . . ,N , evaluate the importance weights

w
(i)
t ∝ πt(θ̃

(i)
1 : t )

qt (θ̃
(i)
t |θ̃ (i)

1 : t−1)πt−1(θ̃
(i)
1 : t−1)

and normalize them to 1.

RESAMPLING STEP. Multiply/discard particles
{θ̃ (i)

1 : t} with respect to the high/low weights{w(i)
t } to

obtain samples{θ(i)
1 : t}.

The choice ofqt(·|θ̃ (i)
1 : t−1) is application depen-

dent and various selection schemes are possible (see
Doucet, de Freitas and Gordon, 2001 and del Moral
and Doucet, 2002 for discussions). In fact, and not sur-
prisingly, approximating{πt} sequentially with a non-
exploding Monte Carlo error is impossible in many
scenarios of interest, especially when the size of
the �t ’s increases. However, in the framework of sta-
tistical filtering and population Monte Carlo, it can
be proved under fairly general conditions that the
“end marginal” (i.e., the filtering distribution orπ )
can be approximated with a constant error over time
(del Moral and Gionnet, 2001; del Moral and Doucet,
2002).
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4.4 An Illustration

Consider the harmonic regression model proposed
by Andrieu and Doucet (1999),

Y ∼ Nm

(
D(ω),β2Im

)
,

whereY ∈ R
m, β ∈ R

2k , ω ∈ (0, π)k andD(ω) is an
m × 2k matrix such that

[D(ω)]i+1,2j−1 = cos(ωj i),

[D(ω)]i+1,2j = sin(ωj i).

The associated prior isp(ω)p(β|σ 2)p(σ 2) with

σ 2 ∼ IG(1/2,1/2),

β|σ 2 ∼ N (0, σ 2�0),

where�−1
0 = δ−2DT (ω)D(ω); p(ω) is uniform on

� = {ω ∈ (0, π)k; 0 < ω1 < · · · < ωk < π}.
The marginal posterior density onω satisfies

p(ω|Y ) ∝ (1+ YT PY )−p+1/2

with

M−1 = (1+ δ−2)DT (ω)D(ω),

P = Im − D(ω)MDT (ω).

For a simulated data set ofm = 100 observations, with
k = 6, σ 2 = 5, ω = (0.08,0.13,0.21,0.29,0.35,0.42)
and β = (1.24,0,1.23,0.43,0.67,1,1.11,0.39,1.31,
0.16,1.28,0.13), the posterior density is multimodal
with well-separated modes.

To sample fromπ(ω) = p(ω|Y ), we use a homo-
geneous sequential Monte Carlo (SMC) sampler with
N = 1,000 particles, where thek components ofω are
updated one by one, using a simple Gaussian random
walk proposalq with varianceσ 2

RW. We compare our
algorithm with an MCMC algorithm based on exactly
the same proposalq. In both cases the initial distribu-
tion is the uniform distribution on� andσRW = 0.1.

This example emphasizes the fact that the SMC
approach is more robust to a poor scaling of the
proposal, as already noted in Cappé, Moulines and
Rydén (2004). Figure 1 provides the marginal posterior
distributions ofω1 andω2 obtained after 100 iterations
of the SMC sampler. For fair comparison, we ran
12,000 iterations of the MCMC algorithm to keep
the computational expense similar. The result of this
comparison is that the MCMC algorithm is more
sensitive to the initialization than the SMC sampler:
out of 50 realizations, the SMC always explores the
main mode, whereas the MCMC algorithm converges

FIG. 1. Histograms of the simulated values of(ω1,ω2) using
SMC: approximation of(top) p(ω1|Y) and(bottom)p(ω2|Y).

toward it only 36 times. A similar phenomenon was
observed by Celeux, Marin and Robert (2003) for the
stochastic volatility model in Section 3.3.

We can also use an inhomogeneous version of the
SMC sampler to optimizep(ω|Y ). In this case the
target density at iterationn is

πt(ω) ∝ pγt (ω|Y ) with γt = t

and we useP = 50 iterations. We compare this
algorithm to a simulated annealing version of the
Metropolis–Hastings algorithm with 60,000 iterations
and the scheduleγt = t/1200. Table 1 displays the
results of this comparison. Contrary to the simu-
lated annealing algorithm, the SMC algorithm con-
verges consistently toward the same mode (where
the posterior mode estimate is chosen as the sample
generated during the simulation that maximized the
posterior density), while the simulated annealing algo-
rithm shows much more variability.

4.5 Beyond MCMC?

When we look back at the past 10 years, the loos-
ening of computational constraints on Bayesian sta-
tistics brought about by the MCMC methodology is

TABLE 1
Performances of SMC and simulated annealing(SA) optimization

algorithms obtained over50 iterations

Algorithm SMC SA

Mean of the log-post. values −326.12 −328.87
Stan. dev. of the log-post. values 0.12 1.48
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enormous. A much wider range of models and assump-
tions has been processed by Bayesian means, thanks
to these computational advances, as the contributions
to this special issue ofStatistical Sciencereadily as-
sess. Despite noteworthy and sustained efforts to bring
these new tools closer to everyday practice (such as the
extensive BUGS software), there still is some reluc-
tance to use MCMC algorithms for both programming
and reliability/convergence reasons. It may thus be that
the recourse to the advanced form of importance sam-
pling, which is built on the expertise acquired during
the development of MCMC algorithms and preserves
the unbiasedness perspective that appeals to many sta-
tisticians, will overcome this reluctance and allow for
further advances in the (Bayesian) exploration of com-
plexity.
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