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The Interplay of Bayesian and
Frequentist Analysis

M. J. Bayarri and J. O. Berger

Abstract. Statistics has struggled for nearly a century over the issue of
whether the Bayesian or frequentist paradigm is superior. This debate is
far from over and, indeed, should continue, since there are fundamental
philosophical and pedagogical issues at stake. At the methodological level,
however, the debate has become considerably muted, with the recognition
that each approach has a great deal to contribute to statistical practice and
each is actually essential for full development of the other approach. In
this article, we embark upon a rather idiosyncratic walk through some of
these issues.
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fundamental importance, the focus here is simply on EXAMPLE 2.1. SupposeXji,...,X, are ii.d.
methodology. In a related vein, we avoid the question Poisson random variables with meénand that it is
of what is “pedagogically correct.” If pressed, we desired to estimaté under the weighted squared er-
would probably argue that Bayesian statistics (with ror loss (6 — 0)?/+/6 and using the classical estima-
emphasis on objective Bayesian methodology) shouldtor § = X. This estimator has frequentist expected loss
be the type of statistics that is taught to the massesEy[(X — 60)2//0] = /0 /n.
with frequentist statistics being taught primarily to A typical design problem would be to choose the
advanced statisticians, but that is not an issue forsample sizen so that the expected loss is less than
this paper. some prespecified limif'. (An alternative formulation
Several caveats are in order. First, we primarily focus might be to minimizeC + nc, wherec is the cost of an
on the Bayesian and frequentist approaches here; thesgbservation, but this would not significantly alter the
are the most generally applicable and accepted statistidiscussion here.) This is clearly not possible, forall
cal philosophies, and both have features that are com-hence we must bring prior knowledge abéurto play.
pelling to most statistician®ther statistical schools, A primitive recommendation that one often sees, in
such as thdikelihood school (see, e.g., Reid, 2000), suych situations, is to make a “best guesg’for @,
have many attractive features and vocal proponents, bund then choose so that./dp/n < C; that is, choose
have not been as extensively developed or utilized as;, ~. , /gy/C. This is needlessly dogmatic, in that one
the frequentist and Bayesian approaches. rarely believes particularly strongly in a particular
A second caveat is that the selection of topics ygjyeq,.
here is rather idiosyncratic, being primarily based on A common primitive recommendation in the oppo-
situations and examples in which we are currently gjie girection is to choose an upper boung for 6
interested. Other Bayesian—frequentist synthesis works;nd then choose so that\/dy /n < C; that is, choose
(e.g., Pratt, 1965 Bamnett, 1982; Rubin, 1984; and , ~ /g /c. This is needlessly conservative, in that
even Berger, 1985a) focus on a quite different set of 1,4 resulting will typically be much larger than
situations. Furthermore, we almost completely ignore needed.
many of the most time-honored Bayesian—frequentist 1,4 Bayesian approach to the design question is

synthesis topics, such as empirical Bayes analysis., glicit a subjective prior distributionr (9) for 6,
Hence, rather than being viewed as a comprehensive d then to ch that [ Y2 (6)do < C: that
review, this paper should be thought of more as g nd then 1o choose so tha J5rm(©)do < C; tha

personal view of current interesting issues in the IS, choosen ~ [ ~6r(©)do/C. This is a reasonable

Bayesian—frequentist synthesis. cor_npromise bgtween the above two extremes and will
typically result in the most reasonable values of

2. INHERENTLY JOINT BAYESIAN- Classical design texts often focus on the very spe-

FREQUENTIST SITUATIONS cial situations in which the design criterion is constant

There are certain statistical scenarios in which a in the unknown model parameter and hence fail to
joint frequentist-Bayesian approach is arguably re- clarify the philosophical centrality of Bayesian issues
quired. As illustrations of this, we first discuss the in design. The basic fact is that, before experimenta-
issue of design—in which the notion should not be tion, one knows neither the data norand so expec-
controversial—and then discuss the basic meaning oftations over both (i.e., both frequentist and Bayesian
frequentism, which arguably should be (but is not expectations) are needed for design. See Chaloner and
typically perceived as) a joint frequentist-Bayesian Verdinelli (1995) and Dawid and Sebastiani (1999).
endeavor. A very common situation in which design evaluation
is not constant is classical testing, in which the sample
size is often chosen to achieve a given power at a

Frequentist design focuses on planning of experi- specified valu@’ of the parameter under the alternative
ments—for instance, the issue of choosing an appro-hypothesis. Again, specifying a specific is very
priate sample size. In Bayesian analysis this is oftencrude when viewed from a Bayesian perspective. Far
calledpreposterior analysis, because it is done before more reasonable for a classical tester would be to
the data is collected (and, hence, before the posteriorspecify a prior distribution foé under the alternative,
distribution is available). and consider the average power with respect to this

2.1 Design or Preposterior Analysis
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distribution. (More controversial would be to consider  The impact of this “real” frequentist principle thus

an average Type | error.) arises when the frequentist evaluation of a procedure
29 The Meaning of F : is not constant over the parameter space. Here is
: e Meaning of Frequentism an example.
There is a sense in which essentially everyone should gy \\ipie 2.2, Binomial confidence interval.
ascribe to frequentism: Brown, Cai and DasGupta (2001, 2002) considered the

FREQUENTIST PRINCIPLE In repeated practical ~Problem of observing( ~ Binomial(r, 6) and deter-
use of a statistical procedure, the long-run averageMining a 95% confidence interval for the unknown
actual accuracy should not be less than (and ideallySuccess mbability 6. We consider here the special

should equal) the long-run average reported accuracy. €ase ofn = 50, and two confidence procedures. The
first is C/(x), defined as the “Jeffreys equal-tailed
This version of the frequentist principle is actually 959 confidence interval,” given by

a joint frequentist—Bayesian principle. Suppose, for in- P
stance, that we decide it is relevant to statistical prac- (2.1) C” (%) = (90.025(x), 40.975(x)),

tice torepeatedly use a particular statistical model and whereg, (x) is the ath-quantile of the Beta + 0.5,
procedure—for instance, a 95% classical confidence50.5 — x) distribution. The second confidence proce-
interval for a normal mean. This procedure will, in  dure we consider is the “modified Jeffreys equal-tailed
practice, be used on a series of different problems95% confidence interval,” given by

involving a series of different normal means with a cor-

responding series of data. Hence, in evaluating the pro- (40025(x). q0975(x)).  if x #0

cedure, we should simultaneously be averaging overp oy ¢/*(y) = andx # n,
the differing means and data. (0, g0.975(x)), if x=0,
This is in contrast to textbook statements of the (g0.025(x), 1), if x =n.

frequentist principle which tend to focus on fixing
the value of, say, the normal mean, amdagining
repeatedly drawing data from the given model and
utilizing the confidence procedure repeatedly on this
data. The wordmagining is emphasized, because this

For the moment, simply consider these as formulae for
confidence intervals; we later discuss their motivation.
Brown, Cai and Dasgupta (2001) provide the graph
of the coverage probability of /* given in Figure 1.
Note that, while roughly close to the target 95%, the

IS StOIer atf;r(])ught ef>_<dper|ment. Wh;t is done in pr"’,‘cncefcoverage probability varies considerably as a function
is to use the confidence procedure on a series ofy; going from a high of 1 aB = 0 and 6 = 1

different problems—not use the confidence procedure,[O a low of 0884 at® — 0049 andd — 0.951.

for a series of repetitions of theame problem with A “textbook frequentist’ might then assert that this

different data (which would typically make no sense ;g only an 884% confidence procedure, since the

in practice). - , coverage cannot be guaranteed to be higher than
Neyman himself repeatedly pointed out (see, €.9..tjs jimit. But would the “practical frequentist” agree

Neyman, 1977) that the motivation for the frequentist \yith this?

principle is in its use on differing real problems, and  The practical frequentist evaluates haW* would

not imaginary repetitions for one problem with a fixed \work for a sequencdéy, @, ..., 6,,) of parameters

“true parameter.” Of course, the reason textbooks typi- (and corresponding data) encountered in a series of real

cally give the latter (philosophically misleading) ver- problems. Ifm is large, the law of large numbers guar-

sion is because of the convenient mathematical factantees that the coverage that is actually experienced

that if, say, a confidence procedure has 95% frequen-will be the average of the coverages obtained over the

tist coverage for each fixed parameter value, then it will sequence of problems. Thus we should be considering

necessarily also have 95% coverage when used repeataverages of the coverage in Figure 1 over sequences

edly on a series of differing problems. Thus (as with of ¢;.

design), whenever the frequentist evaluationis constant  One could, of course, choose the sequencg; db

over the parameter space, one does not need to alsall be Q049 and/or M51, but this is not very realistic.

do a Bayesian average over the parameter space; buQne might consider global averages with respect to

conceptually, it is the combined frequentist—Bayesian sequences generated from prior distributiarig), but

average that is practically relevant. a “practical frequentist” presumably does not want to
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FiG. 1. Frequentist coverage of the C/* intervals, as a function
of 0 when n =50.

spend much time thinking about prior distributions.
One plausible solution is to look dbcal average
coverage, defined via a local smoothing of the binomial
coverage function. A convenient computational kernel
for this problem, when smoothing at a poiétis
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FiG. 2. Local average coverage of the C’/* intervals, as a
function of & when n = 50 and ¢ = 0.05.

with Beta@|a(0), a(1 — 6)) denoting the beta density
with given parameters].

For the binomial example we are considering, this
is graphed in Figure 2, for = 0.05. (Such a value
of ¢ could be interpreted as implying that one is

desired and when a smoothing kernel having standarc®!"® that the sequence of practical problems, for

deviatione is desired (so tha? &+ 2¢ can roughly be
thought of as the range over which the smoothing is
performed), is the Beta(9),a(1 — 0)) distribution
ke.o(-) where

1-—2¢, if 0 <e,

[0(1—0)e~2 - 116,
(2.3) a(®) = ife<f<l—eg,
1

- — 3+ 2¢,
£

ifo>1—e¢.

Writing the standard frequentist coverage as d(6),
this leads to the-local average coverage

1
1-:(0) =/0 [1—a(0)]ke0(0)do

- Z (Z) [[(a®) +a(l-0))
x=0 -T'(a(®) +x)
‘T(@@—-6)+n—x)]
[P@®)I (a(1-6))
-T(a®)+a(l—06)+n)]"

./CJ* Beta(0|a(6), a(1— 6)) do),

1

the last equation following from the standard expres-
sion for the beta—binomial predictive distribution [and

which the binomial confidence interval will be used,
has6; varying by at least0.05.) Note that this local
average coverage is always close to 0.95, so that a
practical frequentist would be quite pleased with the
confidence interval.

One could imagine a textbook frequentist arguing
that, sometimes, a particular value, sucl® as 0.049,
could be of special interest in repeated investigations,
the value perhaps corresponding to some important
physical theory concerning that science will repeat-
edly investigate. In such a situation, however, it is ar-
guably not appropriate to utilize confidence intervals;
that there is a special value éf of interest should
be acknowledged via some type of testing procedure.
Even if there were a distinguished value tfand it
was erroneously handled by finding a confidence inter-
val, the practical frequentist has one more arrow in his
or her quiver: itis not likely that a series of experiments
investigating this particular physical theory would all
choose the same sample size, so one should consider
“practical averaging” over sample size. For instance,
suppose sample sizes would vary between 40 and 60
for the binomial problem we have been considering.
Then one could reasonably consider average coverage
over these sample sizes, the result of which is given in
Figure 3. While not always as close to 0.95 as was the
local average coverage, it would still strike most peo-
ple as reasonable to call’* a 95% confidence interval
when averaged over reasonable sample sizes.
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lower «/2-quantiles of the resulting posterior distribu-
tion for 6.) This is the prior that is customary for an
objective Bayesian to use for the binomial problem.
(See Section 3.4.3 for further discussion of the Jeffreys
prior.) Note that, because of the derivation of the cred-
ible set from the objective Bayesian perspective, there
is strong reason to believe that “conditionally on the
g1 given situation and data, the accuracy assignment of
95% is reasonable.” See Section 3.2.2 for discussion of
conditional performance.
The frequentist coverage of the intervald (x) is
. . . w . . given in Figure 4. A pure frequentist might well be con-
0.0 0.2 04 0.6 08 1.0 . . . .
0 cerned with the raw coverage of this credible interval
because it goes to zerotat= 0 andd = 1. A moment’s
Fic. 3. Average coverage over n between 40 and 60 of the C/* reflection reveals why this is the case: the equal-tailed
intervals, asafunction of . Bayesian credible intervals purposely exclude values
in the left and right tails of the posterior distribution
A similar idea concerning “local averages” of @and, hence, will always exclude=0 and6 =1. The

(1986), who called the concept “very weak expan- @nd DasGupta (2001) i€°*(x) in (2.2): for the ob-

sions.” Brown, Cai and DasGupta (2002), for the Seérvationsx =0 or x = n, one simply extends the

binomial problem, considered the average COVeralgeJeffreysequal-tailed credible intervals to include O or 1.
' Of course, from a conditional Bayesian perspective,

defined as the smooth part of their asymptotic expan-
P ymp P these intervals then have posterior probability 0.975,

sion of coverage, yielding a result similar to that in ) .
Figure 2. Rousgsea)L/J (200%) took a different approach,.so a Bayesian would no longer call them 95% credible

considering slight adjustment of the Bayesian intervals intervals.

through randomization to achieve the correct frequen- While the raw frequentist coverage of the Jeffreys
fist cogverage q equal-tailed credible intervals might seem unappeal-

. . _ ing, their Q05-local average coverage is excellent,
So far the discussion has been in terms of the ;. a1y the same as that in Figure 2 for the modified
practical frequentist acknowledging the importance of jyieryal; indeed, the difference is not visually apparent,
considering averages ovér We would also claim, g4 that we do not separately include a graph of this lo-
however, that Bayesians should ascribe to the aboveg| average coverage. Hence the practical frequentist
version of the frequentist principle. If (say) a Bayesian would be quite happy with use 6 (x), even if it has
were to repeatedly construct purported 90% credible |ow coverage right at the endpoints.

intervals in his or her practical work, yet they only con-
tained the unknowns about 70% of the time, something
would be seriously wrong. A Bayesian might feel that
the practical frequentist principle will automatically be
satisfied if he or she does a good Bayesian job of sep- h i HJ IS LT P—————" Lﬂ | 141 (‘
arately analyzing each individual problem, and hence VWWNHHHHWHH“UHHHHHM”HHHHWWV

n-smoothed coverage

1.00
1

0.95
1

that it is not necessary to specifically worry about the
principle, but that does not mean that the principle
is invalid.

Frequentist coverage

0.90
1

ExampPLE 2.3. In this regard, let us return to
the binomial example to discuss the origin of the
confidence intervalsC’ (x) and C’*(x). The inter-
vals C’(x) arise as the Bayesian equal-tailed credi- 00 02 04 06 08 10
ble sets obtained from use of the Jeffreys prior (see v

Jeffreys, 1961 (0) 9_1/2(1 — 9)_1/2 for 6. (In FIG. 4. Coverage of the C”/ intervals, as a function of
particular, the intervals are formed by the upper and when » = 50.

0.85
1




BAYESIAN AND FREQUENTIST ANALYSIS 63

The issue of Bayesians achieving good pure fre- For examples and references, see Berger (1985a) and
guentist coverage near a finite boundary of a para-Vidakovic (2000).
meter space is an interesting issue; our guess is that In therestricted risk Bayes approach, one has a sin-
this is often not possible. In the above example, for gle prior distribution, but can only consider statisti-
instance, whether a Bayesian includes, or excludescal procedures whose frequentist risk (expected loss)
=0 or6=1in a credible interval is rather arbi- is constrained in some fashion. The idea is that one
trary and will depend on, for example, a choice such ascan utilize the prior information, but in a way that
that between an equal-tailed or highest posterior den-Will be guaranteed to be acceptable to the frequentist
sity (HPD) interval. (The HPD intervals for = 0 and who wants to limit frequentist risk. (See Berger, 1985a,
x =n would included =0 andé = 1, respectively.) for discussion and earlier references.) This approach is
Furthermore, this choice will typically lead to either actually not “inherently Bayesian—frequentist,” but is
0 frequentist coverage or coverage of 1 at the end-More what could be termed a *hybrid” approach, in the

points, unless something unnatural to a Bayesian, suctPense that it seeks some type of formal compromise be-

as randomization, were incorporated. Hence the reCOg_tween Bayesian and frequentist positions. There have

nition of the centrality to frequentist practice of some been many other attempts at such compr_orr_]ises, but
type of average coverage, rather than pointwise cover-none has seemed to significantly affect statistical prac-
age, can be important in such problems to achieve si- Ice.

multaneously acceptable Bayesian and frequentist per- 'There are many oth.er 'mpo”af” areas in which
joint frequentist-Bayesian evaluation is used. Some

formance. . ! .
were even developed primarily from the Bayesian
2.3 Empirical Bayes, Gamma Minimax, perspective, such as theequential approach of Dawid
Restricted Risk Bayes (cf. Dawid and Vovk, 1999).

Several appl’oache.s to statistical .anaIySiS have been 3. ESTIMATION AND CONFIDENCE INTERVALS
proposed which are inherently a mixture of Bayesian o o ) )
and frequentist analysis. These approaches have leng- N Statistical estimation (including development of
thy histories and extensive literature and we so we confidence intervals), objective Bayesian and frequen-

can do little more here than simply give pointers to USt methods often give similar (or even identical)
the areas answers in standard parametric problems with contin-

Robbins (1955) introduced thempirical Bayes uous parameters. The standard normal linear model
approach, in which one specifies a class of prior is the prototypical example: frequentist estimates and

distributionsI", but assumes that the prior is other- confidence intervals coincide exactly with the stan-
. . dard objective Bayesian estimates and credible inter-
wise unknown. The data is then used to help de-

termine the prior and/or to directly find the optimal vals. Indeed, this occurs more generally in situations

. : . S that exhibit an “invariance structure,” provided objec-
Bayesian answer. Frequentist reasoning was |nt|matelytive Bayesians use the “right-Haar prior density”; see
involved in Robbins’ original formulation of empiri- ’

B 1 E 1 R 2001) f
cal Bayes, and in significant implementations of the erger (1985a), Eaton (1989) and Robert (2001) for

. . . _ discussion and earlier references.
paradigm, such as Morris (1983) for hierarchical mod- g gyl frequentist-Bayesian interpretation of ma-
els. More recently, the name empirical Bayes is often

_ " : _ _ ny textbook estimation procedures has a number of
used in association with approximate Bayesian analy-imnortant implications, not the least of which is that

ses which do not specifically involve frequentist mea- yyych of standard textbook statistical methodology
sures. (Simply using a maximum likelihood estimate of (and standard software) can alternatively be presented
a hyperparameter does not make a technique frequenang described from the objective Bayesian perspective.
tist.) For modern reviews of empirical Bayes analysis |n particular, one can teach much of elementary statis-
and previous references, see Carlin and Louis (2000}tics from this alternative perspective, without changing
and Robert (2001). the procedures that are taught.

In the gamma minimax approach, one again has a  In more complicated situations, it is still usually
classT" of possible prior distributions and considers possible to achieve near-agreement between frequen-
the frequentist Bayes risk (the expected loss overtist and Bayesian estimation procedures, although this
both the data and unknown parameters) of the Bayesmay require careful utilization of the tools of both.
procedure for priors in the class. One then choosesA number of situations requiring such cross-utilization
that prior which minimizes this frequentist Bayes risk. of tools are discussed in this section.
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3.1 Computation with Hierarchical, Multilevel or
Mixed Model Analysis

With the advent of Gibbs sampling and other Markov
chain Monte Carlo (MCMC) methods of analysis (cf.
Robert and Casella, 1999), it has become relatively
standard to deal with models that go under any of the
names listed in the above title as Bayesian methods.
This popularity of the Bayesian methods is not nec-
essarily because of their intrinsic virtues, but rather

because the Bayesian computation is now much easier Option 2
than computation via more classical routes. See Hobert

(2000) for an overview and other references.

On the other hand, any MCMC method relies fun-
damentally on frequentist reasoning to do the com-
putation. An MCMC method generates a sequence of
simulated value$1, 0, ..., 8,, of an unknown quan-
tity 6, and then relies upon a law of large num-
bers or ergodic theorem (both frequentist) to assert
that 8,, = = 37, 6; — 0. Furthermore, diagnostics
for MCMC convergence are almost universally based
on frequentist tools. There is a purely Bayesian way
of looking at such computation problems, which goes
under the heading “Bayesian numerical analysis”
Diaconis, 1988a; O’Hagan, 1992), but in practice
it is typically much simpler to utilize the frequen-
tist reasoning.

In conclusion for much of modern statistical analysis

J. 0. BERGER

priors, and note that a “reasonable” objective prior
may well depend on which parameter is the parame-
ter of interest.)

e By simulation, obtain a (large) sample from the
posterior distribution of the parameter of interest:
Option 1. If a predetermined confidence interval

C(X) is of interest, simply approximate the pos-
terior probability of the interval by the fraction
of the samples from the posterior distribution that
fall in the interval.

If the confidence interval is not predeter-

mined, find thex/2 upper and lower fractiles of

the posterior sample; the interval between these
fractiles approximates the 10D— )% equal-
tailed posterior credible interval for the parameter
of interest. (Alternative forms for the confidence
set can be considered, but the equal-tailed interval
is fine for most applications.)

e Assert that the obtained interval is the frequen-
tist confidence interval, having frequentist coverage
given by the posterior probability of the interval.

There is a large body of theory, discussed in Sec-
(cf. tion 3.4, as well as considerable practical experience,

supporting the validity of constructing frequentist con-
fidence intervals in this way. Here is one example from
the “practical experience” side.

ExamMPLE 3.1. Medical diagnosis (Mossman and

in hierarchical models, we already see an inseparableBerger, 2001). Within a population for whickpg =

joining of Bayesian and frequentist methodology.
3.2 Assessment of Accuracy of Estimation

Frequentist methodology for point estimation of un-
known model parameters is relatively straightforward

and successful. However, assessing the accuracy of the

estimates is considerably more challenging and is a
problem for which frequentists should draw heavily on
Bayesian methodology.

3.2.1 Finding good confidence intervals in the pres-
ence of nuisance parameters. Confidence intervals for
a model parameter are a common way of indicating
the accuracy of an estimate of the parameter. Find-

i

Pr(DiseaseD), a diagnostic test results in either a
Positive (+) or Negative ) reading. Letp; = Pr(+|
patient ha®) andp, = Pr(+|patient does not hav).
By Bayes’ theorem,

pop1
pop1+ (1= po)p2’
In practice, thep; are typically unknown, but for
=0,1,2 there are available (independent) data
having Binomialn;, p;) densities. It is desired to find

6 =Pr(D|+) =

a 1001 — o)% confidence set fop that has good
conditional and frequentist properties.

A simple objective Bayesian approach to this prob-
lem is to utilize the Jeffreys priors (p;) « p_l/z-

i

ing good confidence intervals when there are nuisance(l — p;)~1/2 for each of thep;, and compute the

parameters is very challenging within the frequen-

100(1 — @)% equal-tailed posterior credible interval

tist paradigm, unless one utilizes objective Bayesian for 9. A suitable implementation of the algorithm pre-
methodology, in which case the frequentist problem sented above is as follows:

becomes relatively straightforward. Indeed, here is a
rather general prescription for finding confidence in-
tervals using objective Bayesian methods:

e Begin with a “reasonable” objective prior distrib-
ution. (See Section 3.4 for discussion of objective

o Draw randonp; from the Beta; + 3, n; — x; + 3)
posterior distributions, =0, 1, 2.
e Compute the associated
Po P1

" pop1+ (1 —po)p2
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for each random triplet. confidence intervals were the simplest to derive and

e Repeat this process 10,000 times. will automatically be conditionally appropriate (see

e The a/2 and 1— «/2 fractiles of these 10,000 Section 3.2.2), because of their Bayesian derivation.
generated form the desired confidence interval.
[In other words, simply order the 10,000 values
of 6, and let the confidence interval be the interval
between thg10,000 x )th and(10,000x 5%)th
values.]

The finding in the above example, that objective
Bayesian analysis very easily provides small confi-
dence sets with excellent frequentist coverage, has
been repeatedly shown to happen. See Section 3.4 for
additional discussion.

The proposed objective Bayesian procedure is clear-

ly simple to use, but is the resulting confidence in-

) o .. racy. Developing frequentist confidence intervals us-
terval a _satlsfactpry freqpentlst interval? To provide ing the Bayesian approach automatically provides an
perspective on this q“‘*?“"r." note that the_ab(_)ve IorOb'additional significant benefit: the confidence statement
lem has also been studied in the frequentist literature

) 'will be conditionally appropriate. Here is a simple arti-
using standard log-odds and delta-method procedureg;;g) example. Y approp P

to develop confidence intervals, as well as more sophis-

ticated approaches such as the Gart—Nam (Gart and EXAMPLE 3.2. Two observationsy; andX>, are
Nam, 1988) procedure. For a description of these clas-t0 be taken, where

sical methods, as applied to this problem of medical 6 +1, with probability 1/2,
diagnosis, see Mossman and Berger (2001). = {9 —1, with probability 1/2.

Table 1 gives an indication of the frequentist perfor- : , .
mance of the confidence intervals developed by theseConSIderthe confidence set for the unknaiva 3,

3.2.2 Obtaining good conditional measures of accu-

four methods. It is based on a simulation that repeat- C(X1, X7)

edly generates data from binomial distributions with L1 .

sample sizes; = 20 and the indicated values of the = [the po!nt{z(Xl +X2)}, !f X17# Xz,
parameters po, p1, p2). For each generated triplet of the point{X; — 1}, if X1=Xa.

data in the simulation, the 95% confidence interval is The frequentist coverage of this confidence set can eas-
computed using the objective Bayesian algorithm or jly be shown to beP; (C (X1, X») containg) = 0.75.
one of the three classical methods. It is then notedThis is not at all a sensible report, once the data is at
whether the computed interval contains the tfyer hand. To see this, observe that,xif # x,, then we
misses to the left or right. The entries in the table are know for sure that their average is equaltoso that
the long run proportion of misses to the left or right. the confidence set is then actually 100% accurate. On
Ideally, these proportions should be 0.025 and, at thethe other hand, if; = x2, we do not know ifd is the
least, their sum should be 0.05. data’s common value plus 1 or their common value mi-
Clearly the objective Bayes interval has quite good nus 1, and each of these pdskiies is equally likely
frequentist performance, better than any of the classi-to have occurred.
cally derived confidence intervals. Furthermore, it can To obtain sensible frequentist answers here, one
be seen that the objective Bayes intervals are, on av-must define the conditioning statistic= | X1 — X»|,
erage, smaller than the classically derived intervals. which can be thought of as measuring the “strength of
(See Mossman and Berger, 2001, for these and moreevidence” in the dataS(= 2 reflecting data with maxi-
extensive computations.) Finally, the objective Bayes mal evidential content ansi= 0 being data of minimal

TABLE 1
The probability that the nominal 95% interval missesthe true 6 on the left and on the right, for the
indicated parameter values and when ng =n1 =np =20

(po, P15 P2) O-Bayes Log odds Gart—-Nam Delta

(% R % , %) 0.0286 0.0271 00153 0.0155 00277, 0.0257 00268 0.0245
(1—10 , 1—90 , 1—10) 0.0223 0.0247 00017 0.0003 00158 0.0214 00083 0.0041
(% R 1—90 , 1—10) 0.0281, 0.0240 00004 0.0440 0024Q 0.0212 00125 0.0191
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evidential content). Then one defines frequentist cover-the inferences that arise from the Bayesian approach
age conditional on the strength of eviderite~or the to be considerably more realistic than those from
example, an easy computation shows that this condi-competitors, such as various versions of maximum
tional confidence equals likelihood estimation (or empirical Bayes estimation)

. or (often worse) unbiased estimation.

Po(C (X1, X2) containg)|§ =2) = 1, One of the potentially severe problems with the
Py(C(X1, X2) contain®|S = 0) = % maximum likelihood or empirical Bayes approach is
that maximum likelihood estimates of variances in
hierarchical models (or variance component models)
can easily be zero, especially when there are numer-

It is important to realize that conditional frequentist Ous variances in the model that are being estimated.
measures are fully frequentist and (to most people) (Unbiased estimation will be even worse in such sit-
clearly better than unconditional frequentist measures.uations; if the mle is zero, the unbiased estimate will
They have the same unconditional property (e.g., in the b€ negative.)
aboye example one Wi||. report 100% cqnfidence half EXAMPLE 3.3. Suppose, foi = 1,..., p, that
the time, and 50% confidence half the time, resulting X; ~ Normal;, 1) and u; ~ Normalo, Tz), all ran-

in an “average” of 75% confidence, as must be the yom variables being independent. Then, marginally,
case for a frequentist measure), yet give much betterXi ~ Normak0, 1 + 72), so that the likelihood func-
indications of the accuracy for the type of data that one ion of £2 can be written

has actually encountered. 2
In the above example, finding the appropriate con- (3.1) L3 x 1 exp{— S }
ditioning statistic was easy but, in more involved sit- (1+12)r/? 2(1+12?)
_uations, it can be a qhallenging gndertaking. Lu;kily, wheres2 = 3" X2. The mle forz? is easily calculated
intervals developed via the Bayesian approach will au- 2 L .
tomatically condition appropriately. For instance, in o be % = max{0,7 — 1}. Thus, if §% < p, the
the above example, the objective Bayesian approachmle would be#2 = 0 (and the unbiased estimate
assigns the standard objective prior (for a location would be negative). While a value of? < p is
parameter)7 (9) = 1, from which is easy to com- somewhatunusual here [if, e.g.=4andr?=1, then
pute that the posterior probability assigned to the setPr(S? < p) =0.264], it is quite common in problems
C(X1, X2) is 1 or 0.5 as the observations differ or are With numerous variance components to have at least
the same. (This is essentially Option 1 of the algo- one mle variance estimate equal to 0.
rithm described at the beginning of the Section 3.2.1, For p = 4 and 52 = 4, the likelihood function
although here the posterior probabilities can be com-in (3.1) is graphed in Figure 5. Whilg(z?) is de-
puted analytically.) creasing away from 0, it does not decrease particularly
General theory about conditional confidence can be
found in Kiefer (1977); see also Robinson (1979),
Berger (1985hb), Berger and Wolpert (1988), Casella
(1988) and Lehmann and Casella (1998). In Sec-
tion 4.1, we will return to this dual theme that (i) it is
crucial for frequentists to condition appropriately;
(ii) this is technically most easily accomplished by us-
ing Bayesian tools.

for the two distinct cases, which are the intuitively
correct answers.

0.12

0.08 0.10
i 1

likelihood

0.06
1

3.2.3 Accuracy assessment in hierarchical models.

As mentioned earlier, the utilization of hierarchical
or random effects or mixed or multilevel models has
increasingly taken a Bayesian flavor in practice, in
part driven by the computational advantages of Gibbs 0 1 2 3 4 5
sampling and MCMC analysis. Another reason for this T
greatly increasing utilization of the Bayesian approach fig. 5. Likelihood function of 72 when p = 4 and $2 = 4
to such problems is that practitioners are finding isobserved.
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quickly, clearly indicating that there is considerable analysis is a nice mathematical coincidence that can be
uncertainty as to the true value of even though the  used to eliminate inferior frequentist procedures, but
mle is 0. that Bayesian ideas should not form the basis for choice
among acceptable frequentiprocedures. Still, the
complete class theorems provide a powerful underlying
link between frequentist and Bayesian statistics.

One of the most prominent frequentist principles for
choosing a statistical procedure is thatnahimaxity;
see Brown (1994, 2000) and Strawderman (2000) for
reviews on the important impact of this concept on

Utilizing an mle of 0 as a variance estimate can be
quite dangerous, because it will typically affect the
ensuing analysis in an incorrectly aggressive fashion.
In the above example, for instance, settirfgto O is
equivalent to stating that all the; are exactly equal to
each other. This is clearly unreasonable in light of the

fact tff|1 at thde'r eF|§ actuSaII%/.grea;[]u?Eelr_thamté/ aboﬂt statistics. Bayesian analysis again provides the most
as reflected in Figure 5. Since the likelinood maximum e, tool for deriving minimax procedures: one

IS occurring a_t Fhe bounc_jgry_of t_he parameter Space, finds the “least favorable prior distribution,” and the
is also very difficult to utiliz likelihood or frequentist minimax procedure is the resulting Bayes rule.
methods to attempt to incorporate uncertainty ahdut To many Bayesians, the most compelling foundation

into the analysis. of statistics is that based on exchangeability, as de-

None of these difficulties arises in the Bayesian \e|oned in de Finetti (1970). From the assumption of
approach, and the vague nature of the information in exchangeability of an infinite sequencey, X», . ..

the data about such variances will be clearly reflected ot ghservations (essentially the assumption that the
in the posterior distribution. For instance, if one were to istripution of the sequence remains the same under
use the constant prior dens@(rz) =linthe above  hermytation of the coordinates), one can sometimes de-
example, the posterior density would be proportional q,ce the existence of a particular statistical model, with
to the likelihood N Figure 5, and the significant \;nknown parameters, and a prior distribution on the
uncertainty about© would permeate the analysis. parameters. By considering an infinite series of obser-
3.3 Foundations, Minimaxity and Exchangeability vations, frequentist reasoning—or at least frequentist
mathematics—is clearly involved. Reviews of more re-
There are numerous ties between frequentist andcent developments and other references can be found in
Bayesian analysis at the foundational level. The foun- pjzconis (1988b) and Lad (1996).
dation of frequentist statistics typically focuses onthe  There are many other foundational arguments that
class of “optimal” procedures in a given situation, pegin with axioms of rational behavior and lead to the
called acomplete class of procedures. Through the conclusion that some type of Bayesian behavior is im-
work of Wald (1950) and others, it has long been plied. (See Bernardo and Smith, 1994, for review and
known that acomplete class of procedures is identi-  references.) Many of these effectively involve simul-
cal to the class of Bayes procedures or certain limits taneous frequentist-Bayesian evaluations of outcomes,
thereof. Furthermore, in proving frequentist optimal- such as Rubin (1987), which is perhaps the weakest set

ity of a procedure, it is typically necessary to employ of axioms that implies Bayesian behavior.
Bayesian tools. (See Berger, 1985a; Robert, 2001, for

many examples and references.) Hence, at a fundamen3-#4 USe of Frequentist Methodology in
tal level, the frequentist paradigm is intertwined with Prior Development
the Bayesian paradigm. In principle, a subjective Bayesian need not worry
Interestingly, this fundamental duality has not had a about frequentist ideas—if a prior distribution is elici-
pronounced effect on the Bayesian versus frequentistted and accurately reflects prior beliefs, then Bayes’
debate. In part, this is because many frequentiststheorem guarantees that any resulting inference will
find the search for optimal frequentist procedures to be optimal. The hitch is that it is not very common to
be of limited practical utility (since such searches have a prior distribution that accurately reflects all prior
usually take place in rather limited settings, from the beliefs. Suppose, for instance, that the only unknown
perspective of practice), and hence do not themselvesnodel parameter is a normal mearComplete assess-
pursue optimality and thereby come into contact with ment of the prior distribution fof involves an infinite
the Bayesian equivalence. Even among frequentistsnumber of judgments [e.g., specification of the prob-
who are significantly concerned with optimality, it is ability of the interval(—oo, r) for any rational num-
typically perceived that the relationship with Bayesian berr]. In practice, of course, only a few assessments
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are ever made, with the others being made conven- EXAMPLE 3.4. In numerous models in use today,
tionally (e.g., one might specify the first quartile and the number of parameters increases with the amount
the median, but then choose a Cauchy density for theof data. The classic example of this is the Neyman—
prior). Clearly one should worry about the effect of fea- Scott problem (Neyman and Scott, 1948), in which

tures of the prior that were not elicited. one observes
Even more common in practice is to utilize a default )
or objective prior distribution, and Bayes’s theorem Xij ~N(ui,0%), i=1...,n,j=12,

does not then provide any guarantee as to performance, o . L 5 o
It has proved to be very useful to evaluate partially and is mtereisted_ n eSE'mat'gg : ,[,)efmmg i :2
elicited and objective priors by utilizing frequentist 11t %i2)/2,X=(¥1..... Xn), $7 =2 j_y (xi1 — Xi2)
technigues to evaluate their properties in repeated use"’mOI p = (1,..., un), the likelihood function can

be written
3.4.1 Information-based developments. A number 2
of develo ior distributi ilize i - 1 1/ §
pments of prior distributions utilize informa L(p, o) o —— exp[—— <|x —plPt _)}
tion-based arguments that rely on frequentist measures. o2 o2 4
Consider thereference prior theory, for instance, ini- Until relatively recently, the most commonly used

tiated in Bernardo (1979) and refined in Berger and gpiactive prior was the Jeffreys-rule prior (Jeffreys,
Bernardo (1992). The reference prior is defined to 1961), here given byr’ (u,0) = 1/0"*L. The re-

be that distribution which minimizes the asymptotic ’
Kullback—Leibler divergence between the posterior
distribution and the prior distribution, thus hopefully

sulting posterior distribution fot is proportional to
the likelihood times the prior, which, after integrating

e . T ) R outpu, is
obtaining a prior that “minimizes information” in an
appropriate sense. This divergence is calculated with S2
respect to a joint frequentist-Bayesian computation 7 (0 |X) o meXp[—m]'
since, as in design, it is being computed before any data
has been obtained. One common Bayesian estimatecof is the poste-

The reference prior approach has arguably beenrior mean, which here i§2/[4(n — 1)]. This estimate
the most generally successful method of obtaining is inconsistent, as can be seen by applying simple fre-
Bayes rules that have excellent frequentist performancequentist reasoning to the situation. Indeed, note that
(see Berger, Philippe and Robert, 1998, as but one(X;; — X;2)2/(20'2) is a chi-squared random variable
example). There are, furthermore, many other featureswith one degree of freedom, and hence t5%t(202)
of reference priors that are influenced by frequentist js chi-squared wittk degrees of freedom. It follows by
matters. One such feature is that the reference priorihe |aw of large numbers tha&?/(2n) — o2, so that
typically depends not only on the model, but also on {he Bayes estimate convergesty2, the wrong value.
which parameter is the inferential focus. Without such (Any other natural Bayesian estimate, such as the pos-

dependence on the “parameter of interest,” optimal o jor median or posterior mode, can also be seen to
frequentist performance is typically not attainable by be inconsistent.)

Bayesian methods.

A number of other information-based priors have The problem in the above example is that the
also been derived. See Soofi (2000) for an overview Jeffreys-rule prior is often inappropriate in multidi-
and references. mensional settings, yet it can be difficult or impossible
¢ to assess this problem within the Bayesian paradigm

estimation tool that a Bayesian can usefully employ is itself. Indeed, the inadequacy of the mult_idimensional
consistency: as the sample size growsdo does the tJeff_reys-r_ule prior ha; qul toa sea_rch for improved ob-
estimate being studied converge to the true value (inJ€Ctive priors in multivariable settings. The reference
a suitable sense of convergence). Bayes estimates arBrior approach, mentioned earlier, has been one suc-
virtually always consistent if the parameter space is cessful solution. [For the Neyman—Scott problem, the
finite-dimensional (see Schervish, 1995, for a typical reference prior ist®(n, o) = 1/0, which results in
result and earlier references), but this need not bea consistent posterior mean and, indeed, yields infer-
true if the parameter space is not finite-dimensional ences that are numerically equal to the classical in-
or in irregular cases (see Ghosh, Ghosal and Samantdgrences fow2.] Another approach to developing im-
1994). Here is an example of the former. proved priors is discussed in Section 3.4.3.

3.4.2 Consistency. Perhaps the simplest frequentis
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3.4.3 Frequentist performance: coverage and ad- this topic was initiated in Stein (1956), which effec-
missibility. Consistency is a rather crude frequentist tively showed that the usual constant prior for a multi-
criterion, and more sophisticated frequentist evalua- variate normal mean would result in an inadmissible
tions of performance of Bayesian procedures are of-estimator under quadratic loss (in three or more di-
ten considered. For instance, one of the most commonmensions). One of the first Bayesian works to ad-
approaches to evaluation of an objective prior distribu- dress this issue was Hill (1974). To access the huge
tion is to see if it yields posterior credible sets that have resulting literature on the role of admissibility in
good frequentist coverage properties. We have alreadychoice of hierarchical priors, see Brown (1971), Berger
seen examples of this method of evaluation in Exam- and Robert (1990), Berger and Strawderman (1996),
ples 2.2 and 3.1. Robert (2001) and Tang (2001).

Evaluation by frequentist coverage has actually been Here is an example where initial admissibility con-

given a formal theoretical definition and is called the Siderations led to significant Bayesian developments.
frequentist-matching approach to developing objective  ExampLE 3.5. Consider estimation of a covari-
priors. The idea is to look at one-sided Bayesian cred-ance matrixX, based on i.i.d. multivariate normal
ible sets for the unknown quantity of interest, and data(xy, ..., X,), where each column vectay arises
then seek that prior distribution for which the credible from the N (0, X) density. The sufficient statistic for
sets have optimal frequentist coverage asymptotically. ¥ is S — Y1 XiX;. Since Stein (1975), it has been
Welch and Peers (1963) developed the first extensiveunderstood that the commonly used estimate pf
results in this direction, essentially showing that, for which are various multiples & (depending on the loss
one-dimensional continuous parameters, the Jeffreysfunction considered) are seriously inadmissible. Hence
prior is frequentist-matching. There is an extensive lit- there has been a great effort in the frequentist literature
erature devoted to finding frequentist-matching priors (see Yang and Berger, 1994, for references) to develop
in multivariate contexts; see Efron (1993), Rousseau better estimators af.
(2000), Ghosh and Kim (2001), Datta, Mukerjee, The interest in this from the Bayesian perspective is
Ghosh and Sweeting (2000) and Fraser, Reid, Wongthat by far the most commonly used subjective prior
and Yi (2003) for some recent results and earlier for a covariance matrix is the inverse Wishart prior (for
references. subjectively specified andb)

Other frequentist properties have also been used to(3 %) 7(T)x |):|‘“/2exp{—ltr[b):‘1]}
help in the choice of an objective prior. For instance, if * 2 ’
estimation is the goal, it has long been common to uti- A frequently used objective version of this prior is the
lize the frequentist concept of admissibility to help in Jeffreys-rule prior given by choosing= + 1 and
the selection of the prior. The idea behind admissibility »#=0. When one notes that the Bayesian estimates
is to define a loss function in estimation (e.g., squaredarising from these priors are linear functions 8f
error loss), and then see if a proposed estimator can bavhich were deemed to be seriously inadequate by the
beaten in terms of frequentist expected loss (e.g., mearfrequentists, there is clear cause for concern in the
squared error). If so, the estimator is said toihad-  routine use of these priors.
missible; if it cannot be beaten, it isdmissible. For In this case, it is possible to also indicate the problem
instance, in situations having what is known as a group With these priors utilizing Bayesian reasoning. Indeed,
invariance structure, it has long been known that the Write X = H’DH, whereH is an orthogonal matrix
prior distribution defined by the right-Haar measure @ndD is a diagonal matrix with diagonal entries being
will typically yield Bayes estimates that are admis- h€ €igenvalues of the matrixiy > d > --- > dj.
sible from a frequentist perspective, while the seem- A change of variables yields
ingly more natural (to a Bayesian) left-Haar measure 7 (%)d¥ = |D|_“/2exp{—%tr[bD_1]}
will typically fail to yield admissible estimators. Thus
use of the right-Haar priors has become standard. See 1@ —dp) - Iay>..~a0dDaH,

Berger (1985a) and Robert (2001) for general discus- i<j
sion and many examples of the use of admissibility. ~ where Ij4~...~4] denotes the indicator function on

Another situation in which admissibility has played the given set. Sincg];_;(d; — d;) is near zero when
an important role in prior development is in choice of any two eigenvalues are close, it follows that the
Bayesian priors in hierarchical modeling. In a sense, conjugate priors (and the Jeffreys-rule prior) tend to
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force apart the eigenvalues of the covariance matrix; 3.4.5 Nonparametric Bayesian analysis. In nonpa-

the priors give near-zero density to close eigenvalues.rametric statistical angs$is, the unknown quantity in a
This is contrary to typical prior beliefs. Indeed, often statistical model is a function or a probability distrib-

in modelling, one is debating between assuming anution. A Bayesian approach to such problems requires
exchangeable covariance structure (and hence equgblacing a prior distribution on this space of functions or
eigenvalues) or allowing a more general structure. space of probability distributions. Perhaps surprisingly,
When one is contemplating whether or not to assumeBayesian analysis of such problems is computationally
equal eigenvalues, it is clearly inappropriate to use aquite feasible and is seeing significant practical imple-
prior distribution that gives essentially no weight to mentation; cf. Dey, Miiller and Sinha (1998).

equal eigenvalues, and instead forces them apart. Function spaces and spaces of probability measures

As an alternative objective prior here, the reference gre enormous spaces, and subjective elicitation of a
prior was derived in Yang and Berger (1994) and is prior on these spaces is not really feasible. Thus, in
given bys*(D,H) = |D|"'dDdH; this clearly elim-  practice, it is typical to use a convenient form for
inates the forcing apart of eigenvalues. Furthermore, it 5 nonparametric prior (typically chosen for computa-
is shown in Yang and Berger (1994) that use of the ref- iona| reasons), with perhaps a small number of fea-
erence prior often results in improvements in estimat- {,res of the prior being subjectively specified. Thus,
ingXx Qnthe o'rderof 50% over use 'ofthe'Jeffr.ey's Prior. much as in the case of the Neyman—Scott example,

Motivated, in part, by the significant inferiority of  4ne worries that the unspecified features of the prior
the standard inverse _\leh_art and Jeffreys-rule priors may overwhelm the data and result in inconsistency
for ¥, a large Bayesian literature has developed in g o frequentist performance. Furthermore, there is
recent years tha’_[ provides .alternatlve prior distribu- o ijence (e.g., Freedman, 1999) that Bayesian credi-
tlon§ for a covariance ”,“at”x- See Tang (2001) and ble sets and frequentist confidence sets need not agree
I_Danlels and Pourahmadi (2002) for examples and earin nonparametric problems, making it more difficult to
lier references. judge performance.

Note that we are not only focusing on objective pri-  There is a long-time literature on such issues, the
ors here. Even proper priors that are commonly used byearlier period going from Freedman (1963) through
subjectivists can have hidden and highly undesirable Diaconis and Freedman (1986). To access the more re-
features—such as the forcing apart of the eigenvaluescent literature, see Barron (1999), Barron, Schervish
for the inverse Wishart priors in the above example— and Wasserman (1999), Ghosal, Ghosh and van der
and frequentist (and objective Bayesian) tools can ex-Vaart (2000), Zhao (2000), Kim and Lee (2001),
pose these features and allow for development of betteiBelitser and Ghosal (2003) and Ghosh and
subjective priors. Ramamoorthi (2003).

3.4.4 Robust Bayesian analysis. Robust Bayesian 3.4.6 Impropriety and identifiability. One of the
analysis formally recognizes the impossibility of com- most crucial problems that Bayesians face in dealing
plete subjective specification of the model and prior with complex modeling situations is that of ensuring
distribution; as mentioned earlier, Complete SpeCiﬁca' that the posteriordistribution is proper; use Ofimproper
tion would involve an infinite number of assessments, gpjective priors can result in improper posterior distrib-
even in the simplest situations. It follows that one ytions, (Use of “vague proper priors” in such situations
should, ideally, work with a class of prior distribu- | formally result in proper posterior distributions,
tionsT" with the class reflecting the uncertainty remain- .t these posteriors will essentially be meaningless if

ing after the (finite) elicitation efforts.I{ could also e limiting improper objective prior would have re-
reflect the differing judgments of various individuals ¢ jtedin an improper posterior distribution.)

involved in thﬁ dfecision process.) vsis takes bl One of the major situations in which impropriety
While much of robust Bayesian analysis takes place ., arise is when there is a problem of parameter

in a purely Bayesian framework (e.g., determining the identifiability, as in the following example.
range of the posterior mean as the prior ranges Byer '

it also has strong connections with the empirical Bayes, EXAMPLE 3.6. Suppose, foi =1,..., p, that
gamma minimax and restricted risk Bayes approaches X; ~ Normaku;,o?) and p; ~ Normal0, z2), all
discussed in Section 2.3. See Berger (1985a, 1994)random variables being independent. Then, marginally,
Delampady et al. (2001) and Rios, Insua and RuggeriX; ~ Normal0,c2 + t2), and it is clear that we
(2000) for discussion and references. cannot separately estimaté andz? (although we can
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estimate their sum); in classical languag€,and t2 indeed, Bayesian and frequentist asymptotic answers
are notidentifiable. Were a Bayesian to attempt to are often (but not always) the same; see Schervish
utilize an improper objective prior here, suchra@ 2, (1995) for an introduction to Bayesian asymptotics and

t2) = 1, the posterior distribution would be improper. Le Cam (1986) for a high-level discussion. One might

conclude that this is thus another significant poten-
tial use of frequentist methodology by Bayesians. It is
rather rare for Bayesians to directly use asymptotic an-
propriety. Thus, in the above example, upon recogniz_swers, however, since Bayesians can typically direct_ly
ing the identifiability problem, the Bayesian will know COMPUte exact small sample size answers, often with
not to use the improper objective prior and will attempt €SS €ffort than derivation of the asymptotic approxi-

to elicit a true subjective proper prior for at least one of Mation would require. _
o2 or 72, (Of course, more data, such as replications at  Still, asymptotic techniques are useful to Bayesians,

The point here is that frequentist insight and litera-
ture about identifiability can be useful to a Bayesian in
determining whether there is a problem with posterior

S ments. For instance, the popular Laplace approxima-
3.5 Frequentist Simplifications and tion (cf. Schervish, 1995) and BIC (cf. Schwarz, 1978)

Asymptotic Approximations are based on an asymptotic arguments. Important

Situations can occur in which straightforward use of Bayesian methodological developments, such as the
frequentist intuition directly yields sensible answers. In definition of reference priors, also make considerable
the Neyman—Scott problem, for instance, considerationuse of asymptotic theory, as was mentioned earlier.
of the paired differencesy;1 — x;2, directly yielded
a sensible answer. In contrast, a fairly sophisticated 4. TESTING, MODEL SELECTION AND
objective Bayesian analysis (use of the reference prior) MODEL CHECKING
was required for a satisfactory answer.

This is not to say that classical methodology is
universally better in such situations. Indeed, Neyman
and Scott created this example primarily to show that
use of maximum likelihood methodology can be very
inadequate; it essentially leads to the same “bad”
answer in the example as the Bayesian analysis base
on the Jeffreys-rule prior. This points out the dilemma
facing Bayesians in use of frequentist simplifications: o : ; X HHe
a frequentist answer might be “simple,” but a Bayesian of cqndltlonlng WhICh could, in a variety of S|t.uat|ons,
might well feel uneasy in its utilization unless it were € fixéd. This is the focus of the next section, after
felt to approximate a Bayesian answer. (For instance, Which we turn to more general issues involving the
is the answer conditionally sound, as discussed inlnteractlon offrequentlstgnd Bayesian methodology in
Section 3.2.2.) Of course, if only the frequentist answer t€sting and model selection.
is available, the issue is moot. 4.1 Conditional Frequentist Testing

It would be highly useful to catalogue situations in
which direct frequentist reasoning is arguably simpler Unconditional Neyman-Pearson testing, in which
than Bayesian methodology, but we do not attempt One reports the same error probability regardless of the
to do so. Discussion of this and examples can be Size of the test statistic (as long as it is in the rejection
found in Robins and Ritov (1997) and Robins and region), haslong been viewed as problematical by most
Wasserman (2000). statisticians. To Fisher, this was the main inadequacy

Outside of standard models (such as the normal lin- of Neyman—Pearson testing, and one of the chief mo-
ear model), it is unfortunately rather rare to be able to tivations for his championing-values in testing and
obtain exact frequentist answers for small or moderatemodel checking. Unfortunately (as Neyman would ob-
sample sizes. Hence much of frequentist methodologyserve),p-values do not have a frequentist justification
relies on asymptotic approximations, based on assum-n the sense, say, of the frequentist principle in Sec-
ing that the sample size is large. tion 2.2. For more extensive discussion of the perceived

Asymptotics can also be used to provide an approx-inadequacies of these two approaches to testing, see
imation to Bayesian answers for large sample sizes;Berger (2003).

Unlike estimation, frequentist reports and conclu-
sions in testing (and model selection) are often in con-
flict with their Bayesian counterparts. For a long time
it was believed that this was unavoidable—that the two
paradigms are essentially irreconcilable for testing.
%erger, Brown and Wolpert (1994) showed, however,
that this is not necessarily the case; that the main diffi-
culty with frequentist testing was an inappropriate lack
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The “solution” proposed in Berger, Brown and allowed (and encouraged) within the frequentist para-
Wolpert (1994) for testing, following earlier devel- digm. The Bayesian connection arises because Berger,
opments in Kiefer (1977), was to use the Neyman- Brown and Wolpert (1994) show that
Pearson approach of formally defining frequentist er- B(X) 1
ror probabilities of Type | and Type II, but to do so (4.3) a(s)=-—+— and B(s)=—F——,

» - 1+ B(X) 1+ B(X)
conditional on the observed value of a statistic measur- ) o ]
ing the “strength of evidence in the data,” as was done WNere B(x) is the likelihood ratio (or Bayes factor),
in Example 3.2. (Other proposed solutions to this prob- 3“0' these expressions are precisely t_he Baye3|an_ poste-
lem have been considered in, e.g., Hwang et al., 1992_):|hor flmba:ﬁ'lmes ﬁfHo andHll, re_spectl\k/)elgzlil_ssumlrlg

For illustration, suppose that we wish to test that € nypotheses have equal prior probabilities 2.

. . . Therefore, a conditional frequentist can simply com-
the dataX arises from the simple (i.e., completely . ) .

e . , pute the objective Bayesian posterior probabilities of
specified) hypothesedy: f = foor H1: f = f1. The .
dea is lect a statiste — S(X) which the hypotheses, and declare that they are the condi-
! ea“ls 0 select a stalistib = ( .) WRICh MEASUTES 45 ) frequentist error probabilities; there is no need
the “strength of the evidence” iiX, for or against

- > to formally derive the conditioning statistic or perform
the hypotheses. Then, conditional error probabilities the conditional frequentist computations. (There are
(CEPs) are computed as some technical details concerning the definition of the
rejection region, but these have almost no practical im-

= P(Type | = : i
o(s) (Type lerror|$ =) pact; see Berger, 2003, for further discussion.)

= Po(rejectHp|S(X) =), The value of having a merging of the frequentist and
(4.1) objective Bayesian answers in testing goes well beyond
B(s) = P(Type Il errols = s) the technical convenience of computation; statistics as
= Py(acceptHo|S(X) =), awhole is the big winner because of the unification that
results. But we are trying to avoid philosophical issues
where Py and Py refer to probability undefy and Hy, here and so will simply focus on the methodological
respectively. advantages that will accrue to frequentism.

The proposed conditioning statisticand associated Dass and Berger (2003) and Paulo (2002) extend this
test utilize p-values to measure the strength of the result to many classical testing scenarios; here is an
evidence in the data. Specifically (see Wolpert, 1996; example from the former.

Sellke, Bayarri and Berger, 2001), we consider EXAMPLE 4.1. McDonald, Vance and Gibbons

(1995) studied car emission daxa= (X, ..., X,),
testing whether the i.i.dX; follow the Weibull or
where pg is the p-value when testingdy versusHy, Lognormal distribution, given, respectively, by

and p;p is the p-value when testingH1 versus Hp. y (x\’ L X\

[Note that the use op-values in determining eviden-  Ho : fw(x; B, y) = —(—) exp[—(—) ]

tiary equivalence is much weaker than their use as BB p

an absolute measure of significance; in particular, use 1 ox —(Inx — M)Z}

of ¥ (p;), wherey is any strictly increasing function, 2762 202 '
would determine the same conditioning.] The Corre- a0 are several difficulties with classical analysis of
sponding conditional frequentist test is then as follows: 4. cit,ation. First, there are no low-dimensional suf-
ficient statistics, and no obvious test statistics; indeed,
McDonald, Vance and Gibbons (1995) simply consider

S = max{po, p1},

Hy: fi(x;p, 0% =

if po < p1 rejectHpand

report Type | CERx(s); a variety of generic tests, such as the likelihood ra-
42) tio test (MLR), which they eventually recommended as
if po > p1 acceptHo and being the most powerful. Second, it is not clear which
report Type Il CEP3(s); hypothesis to make the null hypothesis, and the clas-
sical conclusion can depend on this choice (although
where the CEPs are given in (4.1). not significantly, in the sense of the choice allowing

To this point, there has been no connection with differing conclusions with low error probabilities). Fi-
Bayesianism. Conditioning, as above, is completely nally, computation of unconditional error probabilities
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requires a rather expensive simulation and, once com- TABLE 2

puted, one is stuck with error probabilities that do not For CO data, the MLR test at level o = 0.05, and the conditional
vary with the data. test of Hy: Lognormalversus Hy : Weibull

For comparison, the conditional frequentist test when

n=16 (one of the cases considered by McDonald, M9 0 4000  24000(b)  24000(2)
Vance and Gibbons, 1995) results in the following test: MLR decision A A A A
. B(X) 2436  9.009 6.211 2.439
if B(_X) =0.94, 7€ decision A A A A
rejectHop and report Type | CEP CEP 0.288  0.099 0.139 0.291

a(X) = B(X)/(1+ B(X)),

TC =
if B(X) > 0.94,
acceptHp and report Type Il CEP
B(X)=1/(1+ B(X)),
where
B(x) = 20 (n)n—"/?
- T((n—1)/9n =D/
(4.4)

i —2Z

ysz

| /Om[ggexp( )rdy,

with z;=Inx;, 2= 237, z;ands? = 137 (z;— )%
In comparison with the situation for the unconditional
frequentist test:

e There is a well-defined test statistitx).
¢ If one switches the null hypothesis, the new Bayes
factor is simplyB(x)~1, which will clearly lead to

the same CEPs (i.e., the CEPs do not depend on

which hypothesis is called the null hypothesis).
Computation of the CEPs is almost trivial, requiring
only a one-dimensional integration.

Above all, the CEPs vary continuously with the data.

In elaboration of the last point, consider one of the

the considered mileages. Further analyses and compar-
isons can be found in Dass and Berger (2003).
Derivation of the conditional frequentist test. The
conditional frequentist analysis here depends on recog-
nizing an important fact: both the Weibull and the
lognormal distributions are location—scale distributions
(the Weibull after suitable transformation). In this case,
the objective Bayesian (and, hence, conditional fre-
guentist) solution to the problem is to utilize the right-
Haar prior density for the distributions [, o) = o1
for the lognormal problem] and compute the result-
ing Bayes factor. (Unconditional frequentists could, of
course, have recognized the invariance of the situation
and used this as a test statistic, but they would have
faced a much more difficult computational challenge.)
By invariance, the distribution oB(X) under ei-
ther hypothesis does not depend on model parameters,
so that the original testing problem can be reduced
to testing two simple hypotheses, namély: “ B(X)
has distributionF\3,” versus Hy:"“B(X) has distrib-
ution F*,” where Fy, and F* are the distribution
functions of B(X) under the Weibull and Lognormal
distributions, respectively, with an arbitrary choice of

testing situations considered by McDonald, Vance andthe parameters (e.g8, = y = 1 for the Weibull, and
Gibbons (1995), namely, testing for the distribution of u = 0,0 = 1 for the Lognormal). Recall that the CEPs
carbon monoxide emission data, based on a sample ohappen to equal the objective Bayesian posterior prob-
sizen = 16. Data was collected at the four different abilities of the hypotheses.

mileage levels indicated in Table 2, with (b) and (a)
indicating “before” or “after” scheduled vehicle main-
tenance. Note that the decisions for both the MLR and Clyde and George (2004) give an excellent review of
the conditional test would be to accept the lognormal Bayesian model selection. Frequentists have not typ-
model for the data. McDonald, Vance and Gibbons ically used Bayesian arguments in model selection,
(1995) did not give the Type Il error probability associ- although that may be changing, in part due to the pro-
ated with acceptance (perhaps because it would dependounced practical success that Bayesian “model aver-
on the unknown parameters for many of the test statis-aging” has achieved. Bayesians often use frequentist
tics they considered) but, even if Type Il error had been arguments to develop approximate model selection
provided, note that it would be constant. In contrast, the methods (such as BIC), to evaluate performance of
conditional test has CEPs (here, the conditional Type Il model selection methods and to develop default pri-
errors) that vary fully with the data, usefully indicating ors for model selection. There is a huge list of arti-
the differing certainties in the acceptance decision for cles of this type, including many listed in Clyde and

4.2 Model Selection
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George (2004). Robert (2001), Berger and Pericchiare many non-Bayesian ways of doing so, some of
(2001, 2004) and Berger, Ghosh and Mukhopadhyaywhich are reviewed in Bayarri and Berger (2000) and
(2003) also have general discussions and numeroudRobins, van der Vaart and Ventura (2000). Here we
other recent references. The story here is far from set-consider only the most common method, which is to

tled, in that there is no agreement on the immediate replaced in (4.5) by its mle . The resultingp-value
horizon as to even a reasonable method of model sewill be called theplug-in p-value (ppiug). Henceforth

lection. It seems highly likely, however, that any such

using a superscript to denote the density with respect

agreement will be based on a mixture of frequentist andto which thep-value in (4.5) is computed, th@ug-in

Bayesian arguments.

4.3 p-Values for Model Checking

p-valueis thus defined as

(4.6) Pplug = Prf("é) (Z(X) = I(Xobs))-

Both classical statisticians and Bayesians routinely Although very simple to use, there is a worrisome
use p-values for 'model 'ch.e.cklng. We first consider «qouple use” of the data ippiyg, first to estimate and
their use by classical statisticians and show the value ofinan to compute the tail area corresponding(tQye

Bayesian methodology in the computation of “proper”
p-values; then we turn to Bayesignvalues and the
importance of frequentist ideas in their evaluation.

4.3.1 Use of Bayesian methodology in computing
classical p-values. Suppose that a statistical model
Hp: X ~ f(x|0) is being entertained, datagys is

in that distribution.

Bayarri and Berger (2000) proposed the following
alternative way of eliminating, based on Bayesian
methodology. Begin with an objective prior densi-
ty 7(0); we recommend, as before, that this be a
reference prior (when available), but even a constant

observed and it is desired to check whether the modelPrior density will usually work fine. Next, define the
is adequate, in light of the data. Classical statisticiansPartial posterior density (Bayesian motivation will be

have long usedp-values for this purpose. A strict
frequentist would not do so (sinceg-values do not

given in the next section)

7 (0]Xobs \ fobs) X f (XobslZobs €))7 (0)

satisfy the frequentist principle), but most frequentists (4.7)

relax their morals a bit in this situation (i.e., when
there is no alternative hypothesis which would allow
construction of a Neyman—Pearson test).

The common approach to model checking is to
choose a statisti@ = ¢(X), where (without loss of
generality) large values df indicate less compatibility
with the model. Thep-value is then defined as

p=Pr(t(X) = 1 (Xops)|6).

Whené is known, this probability computation is with
respect tof (x|6). The crucial question is what to do
wheng is unknown.

For future reference, we note a key property of
the p-value whené is known: considered as a ran-
dom function ofX in the continuous casg;(X) has
a Uniform(0, 1) distribution underHy. The implica-
tion of this property is thap-values then have a com-

(4.5)

J (Xobg®)7r (0)
f (tobdl€)

resulting in thepartial posterior predictive density
of T,

(4.8) m(t[Xobs\ fobs) =/f(f|9)”(9|xobs\fobs)d9-

Since this density is free @, it can be used in (4.5) to
compute thepartial posterior predictive p-value,

(49) Popp= Py (- [Xobs\fobs) (T > toby).

Note thatpppp uses only the information ifgps that
iS not in fops =t (Xobg) to “train” the prior and to then
eliminated. Intuitively this avoids double use of the
data because the contributionsgfs to the posterior is
“removed” befored is eliminated by integration. (The
notationXqps\ fopsWas chosen to indicate this.)

mon interpretation across statistical problems, making WhenT is not ancillary (or approximately so), the
their general use feasible. Indeed, this property, or itsdouble use of the data can cause the plug-value to

asymptotic version for compositdy, has been used
to characterize “proper,” well-behavegvalues (see
Robins, van der Vaart and Ventura, 2000).

When 6 is unknown, computation of g-value
requires some way of “eliminating’from (4.5). There

fail dramatically, in the sense of being moderately large
even when the null model is clearly wrong. Examples
and earlier references are given in Bayarri and Berger
(2000). Here is anotlmdnteresting illustration, taken
from Bayarri and Castellanos (2004).
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EXAMPLE 4.2.
dom effects) model

Xij|MiNN(Miaai2) f0ri=1,..-,17

Consider the hierarchical (or ran- dramatically failing to clearly indicate that the as-
sumption of i.i.d. normality of the:; is wrong, while
pppp=0.010. Many other similar examples can be

found in Castellanos (2002).

(4.10) Jj=1....n;, e :
A strong indication that a proposeg-value is

fori=1,....1, inappropriate is when it fails to be asymptotically
where all variables are independent and, for simplicity, Uniform(0, 1) under the null hypothesis for all values
we assume that the varianceg at the first level ~ 0f 6, as a propep-value should. Robins, van der Vaart
are known. Suppose that we are primarily interested and Ventura (2000) prove that the plugzirvalue often

in investigating whether the normality assumption fails to be asymptotically proper in this sense, while the
for the meansu; is compatible with the data. We partial posterior predictivg-value is asymptotically
choose the test statistie = max{X1, ..., X;}, where proper. Furthermore, they show that the latpevalue

X; denotes the usual group sample means, which herds uniformly most powerful with respect to Pitman al-
are sufficient statistics for the;. When no specific  ternatives, lending additional powerful frequentist sup-
alternative hypothesis is postulated, “optimal” test port to the methodology. Note that this is completely
statistics do not exist, and casual choices (such as thisp frequentist evaluation; no Bayesian averaging is in-
are not uncommon. The issue under study is whethervolved. Numerical comparisons in the above example

wilv, T ~N(v, 72

such (easy) choices of the test statistic can usefully beof the behavior ofppug and pppp under the assumed

used for computing-values.
Since theu; are random effects, it is well known

that tests should be based on the marginal densities

of the sufficient statistics(;, with the u; integrated
out. (Replacing thex; by their mle’s would result in a
vacuous inference here.) The resulting null distribution
can be represented

(4.11) X;|v,t ~N(w,02+71%) fori=1,...,1.

Thus ppiyg is computed with respect to this distri-
bution, with the mle’sd, #2 [numerically computed
from (4.11)] inserted back into (4.11) and (4.10).

To compute the partial posterior predictipevalue,
we begin with a common objective prior fgp, 72),
namely (v, 7% = 1/t (not 1/r2 as is sometimes

(null) model is deferred to Section 4.3.2.

4.3.2 Evaluating Bayesian p-values. Most Bayesian
p-values are defined analogously to (4.8) and (4.9),
but with alternatives tor (6 |Xops \ fobs). Subjective
Bayesians simply use the prior distributiar(9) di-
rectly to integrate ouf. The resultingp-value, called
thepredictive p-value and popularized by Box (1980),
has the property, when considered as a random variable
of X, of being uniformly distributed under the null pre-
dictive distribution. (See Meng, 1994, for discussion of
the importance of this property.) Thisvalue is thus
Uniform[O, 1] in an average sense ovkrwhich is pre-
sumably satisfactory (for consistency of interpretation
across problems) to Bayesians who believe in their sub-

done, which would result in an improper posterior). 1€ctive prior.

The computation ofppg is based on an MCMC,
discussed in Bayarri and Castellanos (2004).

Both p-values were computed for a simulated data
set, in which one of the groups comes from a distribu-
tion with a much larger mean than the other groups. In
particular, the data was generated from

Xijlwi ~N(ui, 4 fori=1,...,5,
j:]'""’87
(4.12) .
pi~N@1 fori=1,...,4
us~ N5, 1.

The resulting sample mesanvere 1.560, 0.641, 1.982,

Much of model checking, however, takes place in
scenarios in which the model is quite tentative and,
hence, for which serious subjective prior elicitation
(which is invariably highly costly) is not feasible.
Hence model checking is more typically done by
Bayesians using objective prior distributions; guaran-
tees concerning “average uniformity” pfvalues then
no longer apply and, indeed, the resultipgyalues are
not even defined if the objective prior distribution is
improper (since the predictive distribution @f will
then be improper). The “solution” that has become
quite popular is to utilize objective priors, but to use the
posterior distributiont (0|Xpg), instead of the prior, in

0.014 and 6.964. Note that the sample mean of the fifthdefining the distribution used to computepavalue.

group is 665 standard deviations away from the mean
of the other four groups. With this datgg|yg = 0.130,

Formally, this leads to thgosterior predictive p-value,
defined in Guttman (1967) and popularized in Rubin
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(1984) and Gelman, Carlin, Stern and Rubin (1995), In this regard, Robins, van der Vaart and Ventura

given by (2000) show thatppost is often severely conservative
. (and, surprisingly, is worse in this regard thamjs,g),
413 Ppost=Pr" P9 (T = 1gp9), while ppppis asymptotically Unifornfo, 1].
(4.13) It is also of interest to numerically study the nonas-
m(t[Xobs) = / f(#10)7 (@1Xobg) db. ymptotic null distribution of the threg-values con-

sidered in this section. We thus return to the random

Note that there is also “double use” of the data effects example.

in ppost first to convert the (possibly improper) prior
into a proper distribution for determining the predic- EXAMPLE 4.3. Consider again the situation de-
tive distribution, and then for computing the tail area Scribed in Example 4.2. We considejiug(X), pppp(X)
corresponding to(xops in that distribution. The detri-  and ppostX) as random variables and simulate their
mental effect of this double use of the data was dis- distribution under an instance of the null model.
cussed in Bayarri and Berger (2000) and arises again inSPecifically, we chose the random effects mean and
Example 4.2. Indeed, computation yields that the pos-Vvariance to be 0 and 1, respectively, thus simulat-
terior predictive p-value for the given data is.909, N9 Xi; asin (4.12), butnow generating all fiye from
which does not at all suggest a problem with the ran- tth(O, 1 dis_tribution (so t_hat the null normal hiera_r—
dom effects normality assumption; yet, recall that one chical model is correct). Figure 6 shows the resulting
of the means was more than six standard deviationsS@mpling distributions of the thrgevalues.
away from the others. Not_e that the distribution of)ppP(X) is quite close_
The point of this section is to observe that the fre- {0 uniform, even though only five means were in-
quentist property of “uniformity of ap-value under volved. In contr_ast, the dlstrlbgtlons qn‘mug(X) and
the null hypothesis” provides a useful discriminatory Ppos{X) are quite far from uniform, with the latter
tool for judging the adequacy of Bayesian (and other) P€INg the worst. Even for larger numbers of means
p-values. Note that if @-value is uniform under the ~ (6:9- 25) Pplug(X) and ppos(X) remained signifi-
null hypothesis in the frequentist sense for amy cqntly nonunlfor.m, indicating a serious and inappro-
then it has the strong Bayesian property of being mar- priate conservatism.
ginally Uniform[O, 1] underany proper prior distribu- Of course, Bayesians frequently criticize the direct
tion. More important, if a proposeg-value isalways  use ofp-values in testing a precise hypothesis, in that
either conservative or anticonservative in a frequentist p-values then fail to correspond to natural Bayesian
sense (see Robins, van der Vaart and Ventura, 2000measures. There are, however, variaaibrations
for definitions), then it is likewise guaranteed to be of p-values that have been suggested (see Good,
conservative or anticonservative in a Bayesian sense1983; Sellke, Bayarri and Berger, 2001). But these are
no matter what the prior. If the conservatism (or anti- “higher level” considerations in that, if a purported
conservatism) is severe, then tpevalue cannot cor-  “Bayesianp-value” fails to adequately criticize a null

respond to any approximate true Bayesiaivalue. hypothesis, the higher level concerns are irrelevant.
o _ o _ " o _
[s2] [s2] § (3]
S S Wils
z = z L
2 SR —
) e ] T
o o
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Pplug Ppost Prpp

FiG. 6. Null distribution of ppjug(X) (left), ppostX) (center)and pppp(X) (right) when the null normal hierarchical model is correct.
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5. AREAS OF CURRENT DISAGREEMENT An interesting recent development is the finding,
in Berger, Boukai and Wang (1999), that “optimal”
conditional frequentist testing also essentially obeys
the stopping rule principle. This suggests the admit-
Pedly controversial speculation that optimal (condi-
tional) frequentist procedures will eventually be found
to essentially satisfy the stopping rule principle; and
that we currently have a controversy only because sub-

reconciliation also occurs in these other areas. optimal (unconditional) frequentist procedures are be-
Multiple comparisons. When doing multiple tests, ing used.

such as occurs in the variable selection problem in |1 is nowever. also worth noting that in prior de-

regression, classical statistics pe_rforms some type Ofvelopment Bayesians sometimes utilize the stopping
adjustment (e.g., the Bonferonni adjustment to the yje to help define an objective prior, for example,
significance level) to account for the multiplicity of the Jeffreys or reference prior (see Ye, 1993; Sun and
tests. In contrast, Bayesian analysis does not explicitly gerger, 2003, for examples and motivation). Since the
adjust for multiplicity of tests, the argument being statistical inference will then depend on the stopping
that a correct adjustment is automatic within the ryle, objective Bayesian analysis can involve a (proba-
Bayesian paradigm. bly slight) violation of the stopping rule principle. (See
Unfortunately, the duality between frequentist and Sweeting, 2001, for related discussion concerning the
Bayesian methodology in testing, discussed in Sec-extent of violation of the likelihood principle by objec-
tion 4, has not been extended to the multiple hypothesistive Bayesian methods.)
testing framework, so we are left with competing and  Finite population sampling. In this central area of
quite distinct methodologies. Worse, there are multi- statistics, classical inference is primarily based on fre-
ple competing frequentist methodologies and multiple quentist averaging with respect to the sampling proba-
competing Bayesian methodologies, a situation that isbilities by which units of the population are selected for
professionally disconcerting, yet common when there inclusion in the sample. In contrast, Bayesian analy-
is no frequentist—Bayesian consensus. (To access somsis asserts that these sampling probabilities are irrele-
of these methodologies, see http://www.ba.ttu.edu/isqsivant for inference, once the data is at hand. (See Ghosh,
westfall/mcp2002.htm.) 1988, which contains excellent essays by Basu on this
Sequential analysis. Thestopping rule principlesays subject.) Hence we, again, have a fundamental philo-
that once the data have been obtained, the reasonsophical and practical conflict.
for stopping experimentation should have no bearing There have been several arguments (e.g., Rubin,
on the evidence reported about unknown model pa-1984; Robins and Ritov, 1997) to the effect that there
rameters. This principle is automatically satisfied by are situations in which Bayesians do need to take into
Bayesian analysis, but is viewed as crazy by many fre-account the sampling probidibes, to save themselves
quentists. Indeed frequentist practice in clinical trials from a too-difficult (and potentially nonrobust) prior
is to “spenda” for looks at the data; that is, if there development. Conversely, there has been a very signif-
are to be interim analyses during the clinical trial, with icant growth in use of Bayesian methodology in finite
the option of stopping the trial early should the data Population contexts, such as in the use of “small area
look convincing, frequentists feel that it is then manda- €stimation methods” (see, e.g., Rao, 2003). Small area
tory to adjust the allowed error probability (down) to estimation methods actually occur in the_ broader con-
account for the multile analyses. text of_ the m(_)del-baseo_l approach to flnlt_e populatlc_Jn
This issue is extensively discussed in Berger and S@mpling (which mostly ignores the sampling probabil-
Berry (1988), which has many earlier references. That !i€s), and this model-based approach also has frequen-
it is a controversial and difficult issue is admirably 1St and Bayesian versions (the differences, however,

expressed by Savage (1962): “I learned the stoppingbeing much smaller thap the differgnces arising from
rule principle from Professor Barnard, in conversation US€: Of not, of the sampling probabilities).

in the summer of 1952. Frankly, | then thought it a
scandal that anyone in the profession could advance an
idea so patently wrong, even as today | can scarcely It seems quite clear that both Bayesian and frequen-
believe that people resist an idea so patently right.”  tist methodology are here to stay, and that we should

It is worth mentioning some aspects of inference in
which it seems very difficult to reconcile the frequentist
and Bayesian approaches. Of course, as discussed i
Section 4, it was similarly believed to be difficult
to reconcile frequentist and Bayesian testing until
recently, so it may simply be a matter of time until

6. CONCLUSIONS
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not expect either to disappear in the future. This is not
to say thatall Bayesian orall frequentist methodol-
ogy is fine and will survive. To the contrary, there are
many areas of frequentist methodology that should be
replaced by (existing) Bayesian methodology that pro-
vides superior answers, and the verdict is still out on
those Bayesian methodologies that have been expose
as having potentially serious frequentist problems.
Philosophical unification of the Bayesian and fre-
guentist positions is not likely, nor desirable, since
each illuminates a different aspect of statistical infer-
ence. We can hope, however, that we will eventually
have a general methodological unification, with both

Bayesians and frequentists agreeing on a body of stan-

dard statistical procedures for general use.
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