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Statistical Advances in Environmental Science
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Abstract. We discuss selected applications of statistical theory and prac-
tice as motivated by and applied to environmental sciences. Included in
the presentation are illustrations on how the interaction between envi-
ronmental scientists and quantitative researchers has been used to
enhance and further learning in both areas, and how this interaction
provides a source of further challenges and growth for the statistical
community.
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1. INTRODUCTION

‘‘Measuring the environment is an awe-
some challenge, there are so many things
to measure, and at so many different

Žtimes and places’’ From Hunter, 1994,
.page 6 .

As a discipline, statistics has been affected greatly
by the other sciences with which it interacts. In the
environmental sciences, this is particularly true.
Links to problems in the atmospheric, ecological,
geological, toxicological, biomedical and economic
sciences, and concerns in public health, risk man-
agement and social policy, have provided rich data
for quantitative analyses, collectively called envi-
ronmetrics. Advances in these subject-matter sci-
ences have produced data analytic challenges that

Žoften motivate new statistical developments Olkin
.et al., 1990 . In turn, these developments prompt

the subject-matter researchers to reevaluate their
design and analytic goals, leading to further data
gathering. If communication is good between the
disciplines, the cycle repeats, with each scientific
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discipline growing and improving. Rather than view
this as simply a circular interaction, we prefer to
call it a spiral, an upward spiral, where science
and society continue to benefit as the disciplines
interact.

These events are perhaps best illustrated by the
number of both edited and sole-authored books ap-
pearing in the past few years that deal with quanti-
tative methods and applications in the environmen-

Ž .tal sciences; examples include Cressie 1993 ,
Ž . Ž .Gunther 1997 , Helsel and Hirsch 1992 , Hewitt¨

Ž . Ž . Ž .1992 , Ott 1995 , Pearson and Turton 1993 ,
Ž . Ž .Rivoirard 1994 and Scheiner and Gurevitch 1993 .

Herein, we survey recent progress in the field, with
particular reference to a series of edited compila-
tions on environmetrics that have appeared since

Ž .1992: Walden and Guttorp 1992 , Barnett and
Ž .Turkman 1993, 1994, 1997 , Cothern and Ross

Ž . Ž .1994 and Patil and Rao 1994 . We use examples
from these collections and many other fine works to
help illustrate modern interactions between the
statistical and environmental sciences. These in-
clude studies of exceedance modeling, atmospheric
pollution and mortality analysis, space]time mod-
eling of acid rain, trend analysis, ecological moni-
toring and assessment, low-dose risk extrapolation
and environmental effects on animal populations.
The examples are intended not only to illustrate
important advances in modern environmental
statistics, but also to emphasize that many impor-
tant problems in these areas remain unsolved.

Before continuing, we acknowledge that it is im-
possible to survey all the excellent theoretical and
applied environmetric research presented in the
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sources noted above. Indeed, we were struck by the
breadth of environmetric problems illustrated in
these works, and by how different editors could
portray so successfully a wide variety of viewpoints
on modern environmental statistics. Within this
context, our goal will be to highlight a selection of

Ž .subject-matter problems noted above and to ac-
cent the diversities of views that have motivated
statistical and environmetric advances for them.

2. EXTREME VALUES AND RARE EVENTS,
WITH AN APPLICATION IN MODELING

ATMOSPHERIC OZONE

Many environmental problems concern extreme
values of some measured environmental variable.
Traditional examples for which there is a long his-
tory of statistical work include floods and sea levels
Ž .see, e.g., Tawn, 1993 . For example, one might seek
to build a sea wall to withstand an ‘‘N-year flood,’’
that is, a water level which is exceeded in any one
year with probability 1rN, where N is some large
number such as 50, 100 or 250. Associated applica-

Žtions occur when studying reservoir levels Ander-
.son and Nadarajah, 1993 and rainfall data

Ž .Buishand, 1993 . Other, modern applications in-
clude the following:

v Extreme levels of tropospheric ozone}Ozone
standards are based typically on the number of
exceedances of some measure of ozone severity
Že.g., hourly maximum value or eight-hour aver-

.age about some specified threshold such as 120
Ž .or 80 parts per billion ppb . A question of statis-

tical interest involves monitoring whether the
rate of exceedance of this level is increasing or
decreasing with time. This could have a com-
pletely different answer from the question of
whether the mean ozone level is increasing or
decreasing with time, but it is widely recognized
that the frequency of extreme ozone events is a
more relevant indicator of health effects than the
average level of daily ozone.

v Extremes in meteorology}Apart from the intrin-
sic interest in extreme weather events, there is
also a wide interest in whether projected global

Ž .warming will affect extreme high or low temper-
atures and rainfalls to a greater or lesser extent
than the mean levels. This again leads to consid-
eration of trends in extreme values.

v Insurance}Part of the concern over environmen-
tal catastrophes such as Hurricane Andrew or
Mississippi River flooding has to do with the
effect of very large claims on the financial sol-
vency of insurance companies. This has focused

attention on the statistical properties of insur-
ance claims to environmentally caused damage.

The traditional method of extreme value analysis
Ž .popularized by Gumbel 1958 was the annual

maximum method, in which one of the three classi-
cal types of extreme value distributions was fitted
to, say, the annual maxima of a river or sea level
series. For many modern environmental applica-
tions, however, traditional methods are too restric-
tive. For example, a typical ozone data series con-
sists of between 10 and 15 years of daily readings,
and to base the statistical analysis on annual max-
ima, or even monthly maxima, wastes valuable
data. Moreover, many of the issues associated with
ozone have to do with the effects of daily meteoro-
logical variation on the observed ozone levels, and
this cannot be captured by studying only maxima
over extended time periods.

The second major approach to extreme value
analysis is based on exceedances over a high
threshold. Originally popularized by hydrologists in

Ž .the 1970s as the peaks over threshold POT
method, this was subsequently refined to deal with
covariates and trends in the data, and also to cope

Žwith time-series dependence Davison and Smith,
.1990; Gomes, 1993 . A variant is to model the

two-dimensional point process of exceedance times
and excess values over a high threshold, using
probabilistic characterizations of the limiting pro-
cess. Statistical inferences based on this approach

Ž .were developed by Smith 1989 , with an applica-
tion to trends in tropospheric ozone. Even this re-
finement does not cope very well with dependence
in the data, however. For instance, time-series de-
pendence affecting the joint distribution of neigh-
boring values in a single series, or the dependence
between different series such as wind and wave
extremes, can introduce dependencies that exceed
the capabilities of these models. In recent years a
number of further improvements have been devel-
oped, based on the joint distributions of dependent

Žextremes Coles and Tawn, 1994; Smith, Tawn and
.Coles, 1997 , but much additional work is needed.

To go into more details about these techniques,
consider the simplest form of a threshold problem:
observe a sequence Y , Y , . . . of independent iden-1 2

Ž .tically distributed i.i.d. data sampled from some
Ž .unknown distribution function F y , and center

interest on the upper tail behavior of F. Let v sF
� Ž . 4 Žsup y: F y - 1 . Notice that v can be infinite;F

the resulting theory holds whether the endpoint of
.the distribution is finite or infinite. An argument

Ž .originally given by Pickands 1975 suggests that
exceedances over a high threshold u can be mod-
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eled approximately by the generalized Pareto dis-
Ž .tribution GPD

w xPr Y F u q x N Y ) u1 1

y1rjj x
f 1 y 1 q , x G 0,ž /s q

Ž .for suitable values of s depending on u and j .
The simplest form of threshold-based analysis fits
the GPD to all exceedances of some high level u
via, for example, numerical maximum likelihood
Ž .Davison and Smith, 1990 . An important practical
question in this case is selection of the threshold u.
This has been the focus of much theoretical discus-

Ž .sion over the years see, e.g., Smith, 1987 , but in
practice the selection is usually handled by a mix-
ture of graphical methods of assessing the GPD fit

Ž .and ad hoc judgment Davison and Smith, 1990 .
One practical difficulty in applying this to, say,

daily river levels, is that such series are always
correlated. The traditional method of dealing with
correlation identifies clusters of dependent extreme
values, and applies the GPD analysis to the cluster
maxima or peaks, rather than to all the threshold

Žexceedances hence the name, peaks over thresh-
.old . Asymptotic theory of extremes in stationary

Žsequences Leadbetter, Lindgren and Rootzen, 1983;´
.Hsing, Husler and Leadbetter, 1988 justifies this¨

approach by showing that high-level exceedances
do tend to form clusters and that the cluster max-
ima also follow a GPD. An additional parameter,
important for the asymptotic distribution of ex-
treme values from a stationary sequence, is the

Ž .extremal index u Leadbetter, 1983 , which is most
simply defined by setting uy1 as the limiting mean
value of the number of exceedances per cluster.
Thus if one can identify appropriate clusters, the
POT method is justified by asymptotic theory. Diffi-
culties with this approach do exist, however. For
instance, it is unclear how to identify the clusters;

Ž .see Smith and Weissman 1994 for a discussion of
this problem in connection with estimating the ex-
tremal index. Or, often one needs to know the joint
distribution of extreme values within a cluster
rather than just the distribution of the cluster max-
imum. For example, one such quantity is the cumu-
lative excess by all exceedances over the threshold
Ž .Anderson, 1994 .

A second major concern in POT modeling is the
treatment of covariates. Suppose Y is the observa-i
tion taken on day i, and let the associated GPD
parameters be denoted by s and j . In principle,i i
one could let s and j depend in quite generali i
ways on covariates, but a convenient representa-

tion in practice is to assume j is some constanti
value j and that

p

Ž .log s s x g ,Ýi i j j
js1

where x , . . . , x are measured values of p covari-i1 i p
ates and g , . . . , g are unknown parameters to be1 p
estimated.

A complete model must also take account of the
frequency of crossing the threshold. One approach,
which in effect assumes we are observing the pro-
cess in continuous time, models the point process of
times when the threshold is exceeded by a nonho-

Žmogeneous Poisson process of intensity l here, tt
. Ž .is time ; log l may depend linearly on covariates.t

An alternative discrete-time approach is to let fi
denote the probability of crossing the threshold on
day i and to apply a logistic regression model:

pfi
log s x b ,Ý i j j½ 51 y fi js1

where b , . . . , b is another set of unknown param-1 p
eters. In practice, some of b , . . . , b or g , . . . , g1 p 1 p
may be offset to zero, thus allowing for different
covariates in the models for s and f . All thesei i
parameters may be estimated by joint maximum
likelihood.

An application of these methods is to tropo-
spheric ozone measurements. Interest here is in
determining whether the rate of threshold ex-
ceedances has increased or decreased in response to
government regulatory policies, correcting for the
confounding effects of meteorology. One can apply
the models above using both time and meteorologi-
cal variables as covariates, and separate studies by

Ž .Smith and Huang 1994 and by Smith and Shively
Ž .1995 have indicated a clear decrease in ozone
exceedances when meteorological effects are re-
moved. This mirrors an earlier conclusion by Smith
Ž .1989 based on similar statistical methodology,
though without taking account of meteorology.

In the case of ozone it is widely assumed that
day-to-day values are conditionally independent
given the meteorology. This is based on physical
models for ozone formation which show that ozone
drops to very low levels during the night and re-
forms from fresh emissions the next day. Unfortu-
nately, it is unclear if the conditional independence
assumption is valid here, and methods have been
devised based instead on bivariate extreme value
theory. Classical bivariate extreme value theory is
concerned with asymptotic expressions for the joint
distribution of maxima from two dependent random

Ž .variables Resnick, 1987 . By analogy with the uni-
variate theory, it is possible to develop threshold
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models for extreme values from bivariate distribu-
tions; for example, use bivariate extreme value the-
ory to characterize the joint distribution of succes-

Žsive values in a time series Smith, Tawn and
.Coles, 1997 . Via such a model, Smith and Huang

Ž .1994 found that ozone values on successive days
were in fact dependent even after adjusting for
meteorology, and this has a significant effect on the
goodness of fit of the model for tail probabilities.
ŽWe give some other illustrations of environmental

.modeling with ozone data in Section 6.
The first two volumes by Barnett and Turkman

Ž .1993, 1994 include many examples of extreme
value methodology applied in many different areas:

Žhydrology Anderson and Nadarajah, 1993; Gomes,
. Ž1993; Klemes, 1994 ; rainfall modeling Buishand,

.1993; Coles, 1994; Reed and Stewart, 1994 ; air
Žpollution Lindgren, Zetterqvist and Holmstedt,

. Ž1993 ; and sea levels Tawn, 1993; Dixon and Tawn,
1994; Tawn, Dixon and Woodworth, 1994; Vrijling,

.1994 . These cover many more techniques than have
been reviewed here, and they provide an excellent
overview of the broad range of modern theory and
application of this methodology.

3. ENVIRONMENTAL EPIDEMIOLOGY
AND THE DEBATE OVER
PARTICULATE MATTER

A major concern in modern environmental health
science is the study of associations between envi-
ronmental pollutants and adverse health outcomes.
As might be expected, there are many statistical
difficulties associated with detection of such associ-
ations, and in this section we review some of these.
For illustrative purposes, we also direct attention
to a particular area of current controversy: the
health effects of airborne particulate matter.

3.1 Disease Clustering

Ž .Elliott, Martuzzi and Shaddick 1995 reviewed
some general issues concerned with making infer-
ences about adverse health effects from observed
associations. One of the earliest successes of envi-
ronmental statistics was of this form: John Snow’s
studies of cholera in London in 1854 led him to
suggest that the cause of the problem was a partic-
ular water pump, years before there was an estab-
lished medical link between cholera and infected
water. Elliott, Martuzzi and Shaddick remarked,
however, that there are very few modern instances
where an observed ‘‘cluster’’ of disease cases has
been followed by the identification of a causal
mechanism associating the cluster with a particu-
lar environmental health hazard. They cite many

reasons why such studies are difficult, including
the following:

v availability of data}often only aggregated health
effects data are available whereas a precise anal-
ysis would require individual data;

v difficulties of measuring a population in small
regions;

v migration, that is, when individuals who become
infected in one location move to another;

v confounding, for example, by socioeconomic sta-
tus;

v the post hoc nature of many of the studies.

Ž . Ž .Diggle 1990 and Diggle and Rowlingson 1994
have considered some of the more methodological
issues associated with detecting clusters in spatial

Ž .point processes of disease. Diggle, et al. 1997 ex-
tended the approach to the modeling of spatially

Ž .aggregated data. Earlier, Stone 1988 proposed a
nonparametric test for identifying disease clusters
which has been widely cited.

In monitoring the effects of very widely spread
pollutants, such as ozone or sulfur dioxide in the
atmosphere, it is usually impossible to associate the
effect with specific sources. Hence, procedures based
on cluster detection are not appropriate. In such
cases it is generally assumed that comparison of
mortality or disease incidence with levels of pollu-
tion across different spatial regions is subject to so
much confounding with other environmental effects
that no meaningful conclusions can be drawn. Nev-
ertheless some of the key studies currently cited in
support of the adverse health effects of particulate
matter are of precisely this form; we return to this
point below.

Ž .In a wide-ranging review, Zidek 1997 cited these
confounding difficulties as the reason for concen-
trating on longitudinal studies}that is, studies
based on detecting associations in temporal fluctua-
tions of both the health effects and pollutant data
at a single site. Nevertheless, the information avail-
able at any one location is usually limited, so there
is still a need for statistical methods of combining

Ž .data from different locations cf. Section 10 .
Zidek formally modeled the errors in variables

Ž .problem in terms of a triple Y, X, X , where Y is ag
set of outcome variables, X is the set of ‘‘true’’
covariates and X is a set of measured or ‘‘gauged’’g
covariates. Zidek highlighted the well-known result
that if Y is regressed linearly on X rather than X,g
the regression coefficient is underestimated by an
amount corresponding to the linear regression coef-
ficient of X on X. Rather than try to apply ag
correction factor based on the latter regression coef-

w xficient, Zidek advocated regressing Y on E X N X .g
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The distinction between the two methods is espe-
cially relevant when extended to nonlinear regres-

w x b9Xsion functions, such as E Y N X s e . Written as
� w x4log E Y N X s b9X, this log-linear model is very

commonly adopted for count data in Poisson regres-
sion.

In pursuit of concrete statistical methodology
based on these ideas, Zidek assumed outcome mea-

� 4sures Y , where, for instance, Y is the numberk t k t
of deaths in the kth region or location on day t.
Each Y depends on a vector of covariates X ,k t k t
some components of which may be measured in
error. The latter feature is captured by assuming
certain functions for the means and covariances of
X , where components which are measured exactlyk t
have all variances and covariances equal to zero.
Random location effects also are allowed.

Based on these associations, Zidek was able to
compute approximate means and covariances of Y,
conditional on the observed X, and hence to apply
quasilikelihood methods to estimate the unknown
parameters of the model. The methodology as-
sumes, of course, that it is possible to characterize
the joint distribution of the measured and unmea-
sured components of X. This may be difficult in the
presence of spatial heterogeneity in the measured
covariates. To estimate the required means and
covariances, Zidek adapted a number of ideas from

Ž .the Bayesian approach of Le and Zidek 1992 ,
Ž .Brown, Le and Zidek 1994 and Le, Sun and Zidek

Ž .1997 on spatial prediction of a multidimensional
variable.

As an illustration, Zidek reported ongoing work
from a study of hospital admissions due to respira-
tory problems in Ontario. He fitted a model of the
form

w x � 4E Y N X s m exp b9X ,k t k t k t k t

Ž .where m is a multiplier assumed known whichk t
accounts for the effects of seasonality, day of week
and variable population size between regions. The
emphasis was on effects of the pollutants ozone
Ž . Ž .O and nitrogen dioxide NO , but with maxi-3 2
mum daily temperature and average daily humid-
ity also incorporated into the analysis as possible
climatological confounders. Some questions raised
by the analysis, which also recur in other problems
of this nature, were: which measure of the pollu-
tant variable to adopt, and how to deal with long-
term trends? The first question essentially boiled
down to whether the current day’s value or that
with a one- or two-day lag should be taken as the
best predictor. After considering all three possibili-
ties for both O and NO , the two-day lagged vari-3 2
able was adopted. The analysis was also performed
separately for each year to look for long-term trends.

In this case the results appeared fairly consistent
for O but with wide year-to-year variations in the3
effect due to NO .2

In another paper from the same volume, Mc-
Ž .Cready, Patel and Rennolls 1997 studied the in-

fluence of road traffic pollution on asthma. An inge-
nious feature of their approach was the use of a

Ž .geographical information system GIS to compute
Ž .a ‘‘road traffic pollution index’’ RTPI based on all

roads within a fixed distance of a subject’s resi-
Ž .dence. They then correlated both a whether a
Ž .subject has ever had asthma and b whether a

subject is currently suffering from asthma, with the
RTPI and other factors such as cigarette smoking
and gender. They found a strong association be-
tween ‘‘ever had asthma’’ and RTPI, but not be-
tween ‘‘current asthma’’ and RTPI. However, there
seemed to be some inconsistencies in the data. For
example, the number of ‘‘ever had asthma’’ patients
was smaller than the number of ‘‘current asthma’’
patients. Another curious result was that, appar-
ently, smoking was not a significant risk factor for
asthma. Whatever the inconsistencies in these par-
ticular results, the idea of using GIS in this way is
undoubtedly an excellent one and could be of con-
siderable value in future studies of this nature.

3.2 PM10

It has long been recognized that airborne particu-
late matter can have major public health impacts.
One of the most famous air pollution events of
history, the December 1952 ‘‘London smog’’ which
resulted in thousands of deaths, was caused pri-
marily by very high levels of particulate matter.
This and similar incidents in other European coun-
tries and in the United States were a major stimu-
lus for new air pollution legislation, including the
Ž .U.S. Clean Air Act of 1970. During the 1990s,
however, the debate has shifted, with claims that
even low levels of particulates are responsible for
thousands of deaths. In the United States this had
led to a highly charged political debate, with strin-
gent new air pollution standards being proposed
despite opposition from industry and from some
sections of the scientific community.

An example of the kind of work which underlies
Ž .this controversy is given by Schwartz 1993 .

Schwartz collected four years of daily mortality
data as well as related data on meteorology from
Birmingham, Alabama. To this was added data on
PM , that is, particulate matter of aerodynamic10
diameter less than 10 mm. Schwartz performed a
Poisson regression analysis of deaths against sea-
sonal and long-term trend effects, meteorology and
three-day averages of PM . He also included cor-10
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rections for overdispersion and serial correlation,
though neither of these was a significant factor in
this particular data set. On the basis of these anal-
yses, Schwartz concluded that a unit milligram per

Ž 3.cubic meter mgrm rise in PM would increase10
the rate of deaths in the elderly population by
about 0.08%. Although this seems a modest enough
effect, when combined with similar results from
studies in other cities, and converted to deaths
across the whole nation, it has led to claims that up
to 60,000 deaths per year in the United States may
be attributed to elevated levels of particulate
matter.

Subsequent studies on the same or similar data
sets have been brought forth; see Samet, Zeger and

Ž .Berhane 1995 , Samet, Zeger, Kelsall and Xu
Ž .1997 or a number of analyses performed originally
at the U.S. National Institute of Statistical Sciences
ŽStyer et al., 1995; Smith, et al., 1997; Smith, Davis

.and Speckman, 1998 . These various studies have
identified a number of important quantitative con-
cerns, including the following:

v Seasonal variation and trends}Whatever effects
may be attributed to either meteorology or air
pollution, there always remains a substantial
seasonal component of variation. In addition,
there are irregular trends. As an example, Figure
1 shows weekly total deaths in Birmingham, Al-
abama, for four years, together with a smoothed
trend. The seasonal effect is very strong but also
irregular; for example, during each of the winters
of 1985]1986 and 1987]1988 the peak deaths
occurred in late February, but in 1986]1987 they
occurred at the end of December. A possible ap-
proach for modeling the trend component in-
volves some form of spline or LOESS smoother

employed in a nonparametric or generalized addi-
tive model.

v Choice of meteorological variables}Meteorology
plays an important role in studies of air pollu-
tion because of its role as a possible confounding
factor. However, the interpretation of different
meteorological variables is open to question. For
example, wind speed is sometimes found to be
correlated with increased death rates, but it is
open to question whether this is a surrogate for

Žparticulates or vice versa high winds tend to
.keep particles suspended . Also, most studies use

temperature and humidity as the main meteoro-
logical variables of interest, the latter measured
either by dew point or specific humidity. Imple-
mentation varies, however. For example,

Ž .Schwartz’s 1993 main model included tempera-
Ž .ture but not humidity, whereas Smith et al. 1997

found for the same data set that humidity was an
important factor. Sensitivity of the estimated PM
effect to the assumed choice of meteorological
variables remains one of the key questions in this
area.

v Choice of exposure measure}Various combina-
tions of current and lagged days of particulate
matter have been used to define an appropriate
measure of exposure. For example, Schwartz
Ž .1993 used three-day averages of PM excluding10
the current day in his study of Birmingham, Al-

Ž .abama, whereas Styer et al. 1995 in a similar
study of data from Chicago, Illinois, used three-
day averages including the current day. Smith,

Ž .Davis and Speckman 1998 pointed out that the
two measures cannot be interchanged without
losing statistical significance. Other studies have
used anything from single-day values to five-day

FIG. 1. Birmingham weekly deaths for 1985]1988 together with smoothed curve obtained via LOESS fit. The dotted vertical lines
Ž .denote the ends of each year weeks 52, 104, 156 .
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averages. The selection effect created by such
differing exposure measures has never been
quantified, but nonetheless must be taken into
account in the assessment of any study claiming
a significant particulates]mortality relationship.

v Existence of a threshold}Schwartz and Marcus
Ž .1990 , in a reanalysis of historical data from
London in the 1960s, questioned the existence of
a particulate threshold}in other words, a level
below which there is no discernible effect}to
determine whether current standards provide
sufficient public health protection. Subsequent
papers have generally supported the claim that
there is no such threshold, but in most cases
without any formal test. Smith, Davis and Speck-

Ž .man 1998 proposed a very simple test based on
Ža particulate matter effect of the form b P y

.P , where P is the level of particulate matter0 q
Žcalculated as a three-day average or whatever

.exposure measure is under study , P is a thresh-0
old level and b is the regression coefficient. By
fitting a linear model including this term for a
sequence of values of P , it is possible to compute0
a profile likelihood function for P . When this0
was applied to the Birmingham, Alabama, data,
it was found that there was little evidence to
discriminate between any two values of P below0
about 80 mgrm3; the bulk of the evidence for a
PM effect comes from data above this value. On10
the other hand, a similar analysis for Chicago,
Illinois, led to the conclusion that any threshold
must be close to zero, in other words, supporting
the lack of any measurable threshold. There ap-
pears to be a need to conduct systematic tests of
this nature with other data series.

v Ž .Mortality displacement harvesting }Some stud-
ies have correlated daily deaths with PM levels10
in order to identify an association between the
two. However, such efforts do not resolve the
question of whether the individuals dying are
those who were already very sick and would have
died anyway, or whether they were otherwise
healthy. The first scenario is known as mortality
displacement, or alternatively, the harvesting ef-
fect. Harvesting is one of the major uncertainties
associated with the interpretation of air pollution
mortality data. In fact, the evidence for the exis-
tence of a harvesting effect is indirect, and such
results that have been obtained must be regarded
as extremely tentative. To aid with this problem,

Ž .Smith, Davis and Speckman 1998 proposed a
compartment-type model, dividing the population
into ‘‘healthy’’ and ‘‘frail’’ subsets and assuming
that most of the deaths occur among the latter

group. In principle this may be treated as a latent
variable problem, where the size of the frail popu-
lation may be estimated using Markov chain
Monte Carlo methods. The results indicated that
the frail population size may be finite and indeed
quite small. This would point to a strong harvest-
ing effect, but there is great uncertainty about
this conclusion.

v Influence of different pollutants}In their analy-
sis of particulate data from Philadelphia, Penn-

Ž .sylvania, Samet et al. 1997 considered the effect
Ž .of total suspended particulates in place of PM10

along with other major airborne pollutants. These
Ž .were ozone, sulfur dioxide SO , NO and carbon2 2

Ž .monoxide CO . In one model with five covariates
representing the five pollutants, all were statisti-
cally significant. Curiously, one coefficient, that
of NO , was negative. Samet et al. attributed this2
to multicollinearity among the covariates rather
than the implausible conclusion that NO has a2
protective effect. In a similar but more limited
study of data from Chicago, Smith, Davis and

Ž .Speckman 1998 included PM , ozone and SO10 2
in the same equation, and achieved similar re-
sults: all three pollutants contributed signifi-
cantly, but now the coefficient of SO was nega-2
tive. Such ambiguities are hardly surprising, since
it is known that there is substantial chemical

Žcoupling between the different pollutants Meng,
.Dabdub and Seinfeld, 1997 . Our own conclusion

from these analyses is that, while there is indeed
evidence that air pollution in general has adverse
health impacts, it can be very difficult to separate
out a specific effect due to particulate matter.

4. ADAPTIVE SAMPLING FOR POLLUTION
‘‘HOT SPOTS’’

The issue of clustering in environmetric analyses
extends beyond the epidemiological studies noted in
Section 3. Other examples where clustering plays a
role include the following: endangered animal or
plant populations; geophysical investigations in
which mineral ores cluster unevenly; fisheries re-
search where schools of fish often cluster together
tightly. A particularly important concern in envi-
ronmental pollution studies results when chemical
contamination occurs in ‘‘hot spots’’ separated by
uncontaminated expanses. In this section, we adopt
the pollutant setting as a backdrop to illustrate
briefly this issue of environmental ‘‘hot spots.’’

Suppose the primary interest in such a setting
lies in estimating the population mean concentra-
tion of the chemical pollutant; we will also be inter-
ested in locating as many of the ‘‘hot spots’’ as
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possible, and perhaps quantifying these individu-
ally. A traditional approach to sampling might se-

Ž .lect a simple random or random-start systematic
sample of sites; the sample average then provides
an unbiased estimate of the population average,
and the sample could provide a contour map that
identifies some pollution peaks. A majority of the
measurements will record a zero level of pollution,
however, and there is a good chance that some
clusters will be overlooked. Although the sample
mean is unbiased as an estimator of the population
mean, it will have a large variance; in addition, the
contour map will have little accuracy in the areas of
high concentration, which are of particular interest.

Adaptive sampling provides a sensible alterna-
tive to this situation. In adaptive sampling, the
direction taken by the sampling procedure at any
stage is determined at least in part by the informa-
tion that has been obtained in the previous sam-
pling. Such a strategy might involve the following:
first, take a random sample of a given size from the
region of interest; if any of the selected units show
contamination, then return and sample every unit
neighboring a contaminated unit. If any neighbor-
ing units show contamination, sample their neigh-
boring units and so on, until a clean boundary is
established for each discovered cluster. Figure 2
illustrates this strategy in the case of a 400-unit
population and a simple random sample of size 20.

Ž .After initial sampling Figure 2a , the four nearest
neighbors of any contaminated sample unit are also

Ž .inspected Figure 2b . An obvious shortcoming of
such a procedure is that the final sample size is not
known in advance; the advantages in terms of
greater accuracy for estimating the hot spots can
far outweigh this drawback, though.

This method of sampling will produce biased esti-
mates of population parameters if the resulting
data are naively analyzed. To avoid this, Seber

Ž .and Thompson 1994 outline a sampling theory
and estimation methodology applicable to a wide
range of variants on the general adaptive sampling
scheme. The classical Horvitz]Thompson or

ŽHansen]Hurwitz estimators see Stehman and
.Overton, 1994 can be modified to obtain unbiased

estimators of the unknown population mean. These
estimators, along with the mean of the initial sam-
ple, are unbiased, but do not necessarily possess
minimum variance. To improve them, the
Rao]Blackwell theorem may be applied. Seber and

Ž .Thompson 1994 provide further details, and also
outline useful strategies for selecting the initial
sample in clusters, stratification and alternative
choices of the criterion for further sampling.

FIG. 2. An illustration of adaptive sampling for hot spot identi-
fication with a 400-unit population and a simple random sample

Ž .of size 20: after initial sampling a , the four nearest neighbors
Ž .of any contaminated sample unit are also inspected b .

5. TREND ANALYSIS

An effect often studied in environmental science
is the analysis of trend in some environmental
phenomenon over time. This often leads to adjust-
ments for autoregressive effects or other spatial]
temporal correlations in the data, and this is an-
other important area of environmetric trend analy-

Ž .sis Esterby, 1996 . We noted some examples of this
in Section 2. We give here two additional illustra-
tions: assessing global warming and monitoring
ecological systems.

5.1 Estimation of Global and Regional Trends

An important, ongoing concern that incorporates
trend analysis is assessing whether global warming
is occurring in our environment. Specifically, has
average ambient temperature increased in the past
50]200 years as the pace of industrial and eco-
nomic development has increased worldwide? Data
representing such an effect possess some form of
time-dependence and possible autocorrelation, call-
ing for a time-series analysis. Since the effect may
involve very small relative increases over an ex-
tended period, however, complementary issues of
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long-range dependence enter into the analysis. For
example, continuing on works by Bloomfield and

ŽNychka Bloomfield, 1992; Bloomfiled and Nychka,
. Ž .1992 , Smith 1993 illustrated a method of analy-

sis that incorporates long-range dependence into
the trend assessment using simple linear forms.

� 4Specifically, let Y , . . . , Y denote a sample of N1 N
observations from a stationary time series with

w xmean zero and autocovariance g s E Y Y .k n nqk
Take the spectral density as

` � 4Ý g exp yinvnsy` nŽ .f v s
2p

over yp - v - p . This is estimable at any fre-
quency v via the periodogram

N Ny1 Nyk2
2Ž . Ž .I v s Y q 2 Y Y cos kv .Ý Ý ÝN n m mqk½ 5N ns1 ks1 ms1

Long-range dependence is incorporated via the re-
Ž . 1y2 Hlationship f v f bv as v x0, for constants

Ž .b ) 0 and H g 0.5, 1 . To test for a linear trend,
Ž .Ž .use the trend variable x s n y 1r2 N q 1 ,n

where x is given zero mean for simplicity. Thenn
the ordinary least squares estimator of rate of in-

ˆ Ncrease takes the well-known form b s Ý Y x rns1 n n
ÝN x . A simple approximation for the variance ofns1 n
b̂ is found as

Ž .36bp 1 y H
2 Hy4ˆVar b f N .Ž . Ž . Ž .H 1 q H G 2 H sin p y p H

If b and H are unknown, these must be estimated
from the data. Applied to environmental warming
data over a variety of sites in central England and

Ž .the continental United States, Smith 1993 esti-
mated the temperature increases to be between
0.278C and 0.358C per year. Standard errors of these
estimators ranged between about 0.19 and 0.31,
however, suggesting a marginal, but not strongly
significant increase in long-range temperatures.
Smith noted that uncertainties with the assump-
tion of a simple linear trend, effects of estimating b
and H on the standard errors and other sensitivi-
ties with selected model parameters make these
inferences at best preliminary; nonetheless, meth-
ods taking into account long-range dependence can
provide improvements over simpler autoregressive
analyses. Further research into their use is called
for, perhaps incorporating more complex polynomi-

Ž .als in the trend Yajima, 1991 , including a compre-
hensive spatial model to account for differences

Ž .across geographic areas Solow, 1994 , centering on
Žthe extremal properties of the distributions Smith,

.1989 , or joint estimation of the long-range and
Ž .regression features Smith and Chen, 1996 .

Of course, this application has focused largely on
the detection of a linear trend, and this need not be
the main question of concern to climatologists. It is
an agreed, empirical fact that global temperatures
have been rising over the past 150 years, and some
climatologists debate the usefulness of testing its
statistical significance. Those scientists are much
more concerned with distinguishing among differ-
ent causes of global warming. In this connection,
there has been much research into the relative
effects of greenhouse gases, sulfate aerosols, varia-
tions in solar flux and other influences. Numerical
models for the earth’s climate produce conjectured
‘‘signals’’ for each of these effects, and the current
task is to determine to what extent each of these
signals is present in the observed temperature
record. Several specific methods have been devel-
oped, including the pattern correlation statistics of

Ž .Santer et al. 1996 and the optimal fingerprinting
Ž .techniques of Hegerl et al. 1996 . Both of these

methods ultimately depend on testing for the pres-
ence of a trend of known functional form in a
multivariate time series, which from a statistical
point of view is a generalization of the problem of
detecting a linear trend in the univariate case.

5.2 Monitoring Status and Trends: EMAP

Estimation of environmental trends also raises
important questions on proper technique and bias
reduction when sampling environmental data.
Driven in part by the need to assess national legis-

Ž .lation such as the U.S. Clean Water Act , there has
been considerable emphasis on the spatial status of
and trends in pollutant concentrations. One effort
which has received much statistical attention is the
Environmental Monitoring and Assessment Pro-

Ž .gram EMAP of the U.S. Environmental Protection
Agency. Designed to describe status and trends of
ecological indicators, the sampling program is based
on a sophisticated, systematic, hexagonal grid sys-

Ž .tem Stehman and Overton, 1994 . Within this con-
text, an important focus is on the ability to evaluate
both status and trends under the EMAP sampling
scheme.

For the purposes of optimal sampling, the status
and trend outcomes conflict for resources. In evalu-
ating status, the emphasis is on sampling the re-
gions over which an inference is to be made. Sam-
ples over time would use different sites. Trend
testing and estimation involve the use of the same
sites rather than different sites. A practical compro-
mise involves designs that vary some of the sites
for estimating status but fix some sites for the
estimation of trends. One design uses a rotating

Ž .panel Duncan and Kalton, 1987 in which a series
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of sites are monitored for several consecutive years,
then replaced by other randomly selected sites.
These are augmented by another set of sites that is
monitored at all times. Another approach is to use
an augmented, serially alternating design in which
some sites are monitored on each sampling occasion
Ž .e.g., each year , while others are monitored using a

Ž .wider interval e.g., every four years . Urquhardt,
Ž .Overton and Irkes 1993 studied the power of tests

for trend and status under these two sampling
schemes. They proposed the model

Y s S q T q « ,i jk ik j i jk

where Y is the measurement made at the ith seti jk
Ž . Ž .of sites i s 1, 2, . . . , s for year j j s 1, 2, . . . , t at

Žthe kth site within the ith set of sites k s
.1, 2, . . . , n , S is the site effect, T is the yeari ik j

effect and « is a random error term. Assumingi jk
simple temporal autocorrelation, Urquhardt, Over-
ton and Irkes evaluated the designs in terms of the
power of test of trend or status and the precision of
the designs. Here, the augmented design appeared
useful for the initial years of the study but became
less important over time. Otherwise, the two de-
signs exhibited fairly similar power and precision.
Bringing into consideration additional characteris-
tics such as the total number of sites visited sug-
gested, however, that the serially alternating de-
sign may in fact be more useful in practice.

In principle, this model has the capacity to ac-
count for other, important statistical features, such

Ž .as substantial gaps in the data i.e., missing data
or random effects in S andror T . For example,ik j

Ž .van Leeuwen, Murray and Urquhardt 1996 dis-
cussed the problem of testing for trend when the
trend is viewed as a fixed effect, but time is viewed
as random. Their results led to exact tests for test-
ing various hypotheses, under a variety of spatial
and temporal correlation structures. Further study
is needed, however, to determine how such compli-
cations affect the model’s ability to make compar-
isons between trends at different sites.

6. SPACE]TIME MODELING, WITH
APPLICATIONS TO ATMOSPHERIC

POLLUTION AND ACID RAIN

As noted throughout the preceding sections, the
analysis of environmental time series data at a
fixed point in space has received generous attention
in the statistics literature; likewise, the analysis of
spatial patterns at any fixed point in time has
undergone extensive, albeit more recent, develop-
ment. However, developing useful methods for joint
spatiotemporal analysis remains one of the great

Žchallenges facing statistical researchers Cressie,

.1993, Chapter 1 . Driven in part by the demand for
quantitative methods for large-scale environmental
monitoring, spatiotemporal modeling has seen con-
siderable activity in the past decade, and the ap-
proaches put forth are as diverse as the data they

Ž .address. Solow and Polasky 1994 and Guttorp and
Ž .Sampson 1994 discuss early work in this and

related areas. In this section, we borrow from their
reviews, and supplement with discussions of addi-
tional work published thereafter to discuss these
issues in more depth. A number of treatments de-
serve more discussion than space considerations
allow, however, and we refer the reader to the early

Ž .approaches of Eynon and Switzer 1983 , Egbert
Ž . Ž .and Lettenmeier 1986 and Eynon 1988 . For more

recent works, the interested reader may study also
the Bayesian approach of Handcock and Wallis
Ž .1994 , the separate mean and scale approach of

Ž .Høst, Omre and Switzer 1995 and the moving-cyl-
Ž .inder models of Haas 1995 .

Notation for spatiotemporal modeling is difficult
to coordinate over the array of different models
seen in this area; one common aspect we employ is
that the response of interest at time t and location

Ž .s will be denoted Z t, s . In most cases, a single
Ž . ŽZ t , s s Z is obtained perhaps after some im-i j i j

.putation or averaging at each combination of n
regularly spaced time points t , i s 1, 2, . . . , n, andi
p locations s , j s 1, 2, . . . , p.j

For example, an early work by Bloomfield,
Ž .Oehlert, Thompson and Zeger 1983 studied global

Žtrends in total ozone measured in a column ex-
tending from the earth’s surface to the top of the

.atmosphere via a frequency domain approach. To-
tal ozone has been measured monthly at 36 loca-
tions in 7 regions worldwide since the later 1950s.
If Z denotes the total ozone at location k ini jk
region j at time i, the basic model took again a
log-linear form:

Ž .log Z s m q a q h q « ,i jk i jk i i j i jk

where m is the mean, a is a random componenti jk i
common to all stations, h is a random componenti j
common to all stations within region j and « is ai jk
station-specific random error. The random compo-
nents were assumed to be mean-zero, stationary,
with no cross-correlations among them. The re-
gional effects h were assumed to have the samei j
spectra, as were the errors « within a region.i jk
The mean term was modeled as m s h q n ,i jk i jk
where h is a temporal trend component and n isi jk
a spatial component independent of time. The data
were deseasonalized by subtracting the monthly
location averages, allowing the terms n to vanishjk
in the subsequent analysis. The global temporal
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trend h was assumed initially to satisfy h s b m ,i i i
where b is an unknown constant to be estimated
and m is a depletion curve predicted by a photo-i
chemical model; testing for b s 1 assesses the va-

Ž .lidity of this model. Bloomfield et al. 1983 also
considered extensions to include solar effects and
effects due to atmospheric nuclear testing.

Under the model of Bloomfield et al., the discrete
Fourier transform of the site-specific series, de-

Ž . Ž .noted by d f y1r2 - f - 1r2 , decomposedi jk
Ž .into terms as follows using obvious notation :

Ž . Ž . Ž . Ž . Ž .d f s d f q d f q d f q d f .i jk h a h «

Bloomfield et al. used variance terms within re-
gions and between regions to estimate d and d ;« h

Ž .using structural model s for h and two kinds ofi
Žassumptions on the a a first-order autoregressivei

.process and a process with a self-similar spectrum
they were able to estimate d . They fit their modelsa

via maximum likelihood in the frequency domain.
The results showed no strong evidence of a trend in
global ozone in the 1970s: the trend coefficient was

ˆestimated as b s 0.1% with a standard error of
0.55%. The associated 95% confidence interval for
b did contain the value b s 1.

Ž .More recently, Niu and Tiao 1995 used exten-
sive data from the total ozone mapping spectrome-

Ž .ter TOMS aboard the NIMBUS-7 satellite, which
has been collecting daily data since 1978. They
reduced the data to monthly averages for the period
1979]1989 on 18 latitude by 1.258 longitude pixels
spanning the globe, and they took advantage of the
regular spatial grid of sample points to model the
average ozone observation at each latitude at time
t and longitude j asi

Ž .Z s m q b t q T t q « .i j j i j i i j

Ž .Here, T ? is a seasonal cyclic term}a weightedj
sum of sine functions with 12- and 6-month periods
}and « is a space]time autoregressive moving-i j

Ž . Ž .average STARMA process Cliff et al., 1975 . Niu
Ž .and Tiao settled on a STAR 2, 1 model for most

latitudes:

« s a « q u « q a «i j 1 i , jy1 1 i , jq1 2 i , jy2

q u « q f« q u .2 i , jq2 iy1, j i j

Ž .6.1

In this model the a- and u-unknowns are spatial
autoregressive parameters modeling correlations to

Ž .the west and east of longitude j respectively , and
f specifies a first-order autoregressive parameter
for correlation in time. The u were assumed un-i j
correlated, with variances allowed to depend on
month. Niu and Tiao used these models to estimate
the trend in ozone by latitude and longitude. Their
results included a contour plot showing negligible

ozone trends in equatorial latitudes, but with in-
creasingly negative and statistically significant
trends in total ozone depletion moving toward the
poles. Their contours showed a decline for the
decade on the order of 5% at the north pole and
10% at the south pole.

A very different atmospheric contaminant model
Ž .was given by Loader and Switzer 1992 , who ana-

lyzed the logarithms of sulfate concentration in
rainfall at 19 sites in the eastern and midwestern
United States for 24 monthly observations, 1982]
1983:

Ž . Ž . Ž . Ž .Z t , s s m q T t q S s q « t , s ,

Ž . Ž .where T ? and S ? are smooth unknown functions,
Ž .and « t, s is a zero-mean noise, uncorrelated in

time at any given site s, but with a possibly nonsta-
tionary spatial covariance structure S at any fixed

Ž . Ž .time. The functions T ? and S ? were estimated
using a LOESS smoother on the marginal means of
the Z’s. Loader and Switzer derived the variance of

Ž .their estimate of E Z in terms of the covariance
structure of « and used it to improve the estimated
variance of predictions. The sample spatial covari-
ance matrix S from the residuals of the fit were
smoothed via an empirical Bayes approach: An in-
verted-Wishart density was assumed as a prior for
the true covariance matrix S, with prior covariance
matrix C and degrees of freedom m. The matrix C
was chosen by fitting an isotropic exponential semi-
variogram model to the residuals. The parameter m
was chosen via empirical Bayes estimation, using
information in the marginal density of S. As noted

Ž .by Guttorp and Sampson 1994 , the empirical
Bayes enhancement does not affect point predic-

Ž .tions for Z t, s , which remain what they would be
under the isotropic exponential semivariogram
model used to estimate C. The estimated variances
of the predicted values are affected by the empirical
Bayes approach, however.

Loader and Switzer examined their models via
cross validation. Their analysis showed that the
prediction variance formulas performed well. They

Ž .noted that the estimator for spatial signal S s was
most likely oversmoothed, but that it might be
unwise to reduce the smoothing parameter with so
few sites.

Ž .Oehlert 1993 also modeled log sulfate concen-
trations in eastern North America, combining infor-

Žmation from four modeling networks the APIOS-C,
.MAP3S, NADPrNTN and UAPSP networks , for a

total of 94 stations over the five-year span 1982]
1986. Most of his analysis was based on yearly
precipitation-weighted means. He first estimated
the five-year mean and linear trend in log concen-
trations for all stations by ordinary least squares.
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He reported results only for the five-year overall
means, however, citing a need for longer series to
address trends adequately. His spatial approach
tiled eastern North America into 18 latitude by 1.58
longitude cells. If a denotes the estimate of five-j
year mean for station j, this assumes

Ž .E a s a q n ,j k Ž j. u

where a denotes the true mean of the cell ink Ž j.
which station j resides and n is an adjustmentu

Žterm for network u, u s 1, 2, 3 relative to the
.NADPrNTN network . Oehlert incorporated the as-

sumption of similarity between neighboring cells
via a partially improper prior on a , with mean

Ž .vector 0 and inverse covariance matrix l A9A . Aa

has a row for every pair of adjacent cells and a
column for every cell; it is all zeros except that each
row has entries of 1 and y1 for the associated cell

Žpair coefficients. This formulation could also be
viewed as a discrete, two-dimensional first-order

.smoothing spline. Oehlert placed independent,
zero-mean normal priors on the network bias terms.
The prior variances were set to 1rl . The resultingv

Ž .posterior distribution for a , n was normal, with
mean vector

y1
l A9A 0ay1 y1W9S W q W9S aa až /0 l Iv

and covariance matrix

y1
l A9A 0ay1W9S W q ,až /0 l Iv

where W is the matrix relating each a to its ex-j
pected value in terms of the parameters a andk Ž j.

Žn , and S is the covariance matrix to be deter-u a
.mined of a.

Oehlert used a combination of historical informa-
Žtion, indirect generalized cross-validation IGCV,

.see Altman, 1990 and sensitivity analysis to deter-
mine values of unknown parameters such as l , la v
and unknowns in S . The terms in this lattera
matrix were assumed to have a component due to

Žsite-specific effects which could be estimated since
.several cells had multiple sites , a first-order mov-

ing-average correlation structure across years
Žwithin sites with correlation on the order of 0.01,

.citing historical sulfate studies , a long-term, large-
scale temporal correlation structure similar to

Ž .ARMA 1, 1 models reported for precipitation and a
Ž .spatial covariance modeled in one of three ways: 1

Ž .an equal variance]equal covariance model; 2 a
kernel-smoothing approach with variances and co-
variances taken as a function of distances between

sites, and smoothing controlled by a parameter l ;K
Ž .or 3 an isotropic, exponential semivariogram

structure.
The IGCV analysis showed essentially identical

fits for the first two models, with somewhat less
satisfactory fits for the isotropic exponential semi-
variogram. Due to its simplicity, Oehlert adopted
the equal variance]equal covariance model for in-
terpretational purposes. It is worth noting, how-
ever, that the kernel covariances showed distinct
but weak anisotropy with peak correlations at an-
gle approximately 0.3p , roughly parallel to domi-
nant high-altitude wind vectors in the region;
anisotropy of this sort was also reported for this

Ž .region using hydrogen ions and winter data by
Ž .Guttorp and Sampson 1994 , employing a deforma-

Ž .tion approach described below to modeling hetero-
geneous covariance functions. Under the equal
variance]equal covariance model, the station-
specific variance was clearly the largest important
component, but this effect would be expected to
decrease with regional averaging. There were few,
if any, network differences; a suggestion of an effect
was evidenced for the APIOS-C network, but this
could have been attributable to partial confounding
with spatial structure since the APIOS-C sites had
little overlap in space with sites from the other
networks.

Ž .The approaches of Loader and Switzer 1992 and
Ž .Oehlert 1993 feature attempts to model anisotropy

and nonstationarity in the covariance structure of
the data. An important general approach to this
problem, known as the deformation approach, has
been the subject of considerable development and
application to atmospheric data. The summary pro-
vided here is taken from Meiring, Monestiez, Samp-

Ž .son and Guttorp 1997 ; in recent years, the
methodology has been applied in analyses of solar

Ž .radiation Sampson and Guttorp, 1992 , acid pre-
Žcipitation Guttorp, Sampson and Newman, 1992;

.Guttorp and Sampson, 1994 and tropospheric ozone
Ž .Guttorp, Meiring and Sampson, 1994 , among
others.

The fundamental idea underlying the deforma-
tion approach is to compute a deformation of the
geographic plane so that the spatial covariance
structure can be considered stationary and isotropic
in terms of a new spatial coordinate system. For
simplicity of presentation, assume independence in
time. The spatial dispersion function, defined as
Ž . w Ž . Ž .xD s, u s Var Z t, s y Z t, u for each pair of spa-

Ž .tial locations s, u , is modeled as

Ž . 5 Ž . Ž . 5D s, u s g f s y f u ,u

Ž . Ž .where f ? represents a smooth bijective transfor-
mation of the original geographic coordinate system
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Ž . Žthe ‘‘G-space’’ to the new coordinate system the
‘‘D-space,’’ which has been of dimension 2 and re-

.ferred to as the ‘‘D-plane’’ in applications to date ,
and g represents an isotropic variogram functionu

with parameters u. The transformation is accom-
Žplished via a pair of thin-plate splines Wahba,

.1990 , with transformation and semivariogram pa-
rameters chosen to minimize the objective criterion

2ˆd y di j i j Ž .C s q l BEP ,ÝÝu , f , l d̂i/j i j

ˆwhere d and d denote the empirical and fittedi j i j
dispersions, respectively, between sample sites s i
and s , l is a smoothing parameter and BEP de-j
notes a bending energy penalty for the transforma-
tion. This penalty is a quadratic form in the D-plane
coordinates. The second term in C controls theu, f , l

smoothness of the transformation; small l may
result in a ‘‘folded’’ D-plane representation which is
generally uninterpretable, while very large l re-
sults in a stationary or homogeneous model with

Ž .elliptical anisotropy. Meiring et al. 1997 demon-
strated effects of various choices of l using both
simulated and real data. Visual interpretation of
the deformation mapping is accomplished via
biorthogonal grids, as discussed by Guttorp and

Ž .Sampson 1994 . Among other applications, these
spatial correlation models may then be used in the
estimation of the values of a spatiotemporal process
at unmonitored locations.

7. ENVIRONMENTAL RISK ASSESSMENT
VIA LABORATORY EXPERIMENTATION

Another important area of environmetric re-
search is that of quantitative risk assessment. In
its simplest environmental characterization, risk
assessment concerns the identification of potential
risks to public health from hazardous chemicals,

Ž .radiation and other stimuli Portier, 1989 . Data
often come from bioassays on small mammals or
other biological systems, or from epidemiological

Žanalyses of human populations at risk. We illus-
trated an example of this issue with human popula-
tions in the discussion on atmospheric particulates

.}see Section 3. A major quantitative component of
such studies is statistical characterization of the
stimulusrdose response of the biological organisms
to the hazardous agent and, from this, estimation of
possible human risks based on low-dose extrapola-
tion from the dose]response data.

A full overview of the many quantitative prob-
Žlems in environmental risk assessment could and

.has! covered entire journal issues and even full
textbooks; hence our discussion here is necessarily
incomplete. We hope, however, to highlight some

open areas of research; for more in-depth surveys,
Ž .see the early review by Krewski and Brown 1981 ,

special journal issues as introduced, for example,
Ž . Ž .by Redmond 1991 or Bailar 1988 or some of the

more recent works in the literature, such as Bailer
Ž . Ž .and Portier 1994 or Hallenbeck 1993 , among

many others.
When conducting predictive or environmental

toxicity studies that generate data based on a dose
response, it is common for the dose levels to be
taken at fairly high values. This is true primarily
for laboratory animal experiments conducted as

Ž .screens for certain toxic effects Haseman, 1984
due to the relatively short time span available for
the animals to exhibit the toxicity. It is a long-
recognized concern in quantitative risk assessment,
however, that the lack of observed low-dose infor-

Žmation often results in suspect inferences Crump
.and Howe, 1985 .

Historically, to estimate low-dose effects regula-
tors have used the lowest or least potent exposure
to a chemical at which toxicity is observed. This is

Ž .called the lowest-observed-effect level LOEL . Ly-
ing ostensibly below the LOEL is the highest con-
centration where no toxicity is observed: the no-

Ž .observed-effect level NOEL . Extensions include
Ž .no-observed-adverse-effect levels NOAEL’s , low-
Ž .est-observed-adverse-effect levels LOAEL’s and so

on. These quantities are determined statistically by
comparing each concentration’s observed response
with the zero-concentration control group: for ex-
ample, the NOAEL can be estimated as the highest
concentration at which no significant increase in
adverse response is seen over the control, after
adjusting for the multiple comparisons. Unfortu-
nately, observed effect level estimation is tied criti-
cally to the spacing of the doses chosen for each
study. If the dose grid is not fine enough, the
resulting observed effect level may be only a crude
estimate.

To illustrate, consider the following data, which
are proportions of mice exhibiting bladder tumors
after exposure to sodium saccharin, as discussed by

Ž .Kodell and Park 1995 . At saccharin exposures of
0.01, 0.10, 1.0, 5.0 and 7.5% of diet, 0r25, 0r27,
0r27, 1r25 and 7r29 mice exhibited tumors, re-
spectively. To determine the NOAEL, we perform a
series of one-sided Fisher exact tests comparing
each exposure group with the control, and applying

Ža Bonferroni adjustment to the P-values. For the
saccharin data, we use the response at d s 0.01%

.to approximate the control response. At a s 0.05,
and adjusting for multiplicity, the NOAEL for these
data is the exposure at 5.0%. Clearly, however, this
is a relatively crude measure of the chemical’s po-
tential toxic risk, and many questions regarding it
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remain. For instance, is the observed response at
Žthis exposure truly different from the control or is

the lack of significance a function of the small
.sample size ; would higher exposures of 6 or 7%

produce essentially the same response; or, for that
matter, is the underlying response at 1% also es-
sentially similar to that at 5%? If the risk analyst
were interested in specifying some form of ‘‘safe
dose’’ estimate for use in public health management
Že.g., the dose at which a very small response rate

y6 .of, say, 10 is incurred , is the NOAEL even use-
ful in this case? Here, since the NOAEL corre-
sponds to a response rate well above 10y6 , it is not
particularly useful for ‘‘safe dose’’ estimation.

Common modifications of the NOAEL include
downward adjustment by an ‘‘uncertainty factor’’}
say, dividing by 10}to account for incertitude in
the estimation process. The result is known as a

Žreference dose, or RfD Cicmanec, Dourson and
.Hertzberg, 1996 , but clearly suffers from the same

limitations as the NOEAL on which it is based.
Some of these questions could be addressed with
more advanced statistical tools, such as confidence

Ž .intervals for NOAEL or NOEL Schoenfeld, 1986 ,
but these may not overcome the fundamental aus-
terity of information the measure presents. In gen-
eral, observed effect levels are viewed as poor sum-

Žmary statistics for modern risk analysis van der
.Hoeven, 1997 . Modifications to incorporate fea-

tures of the dose-response model are under develop-
Žment, such as the benchmark dose concept Crump

.and Howe, 1985 . These hold some potential for
improving the risk characterization process.

Unfortunately, numerous gaps remain in
methodological understanding and implementation
of low-dose extrapolations when used to support

Žquantitative risk assessments Freedman and
.Zeisel, 1988 . In order to develop more realistic risk

assessment formulations, complex models are un-
der continuing development. For example, in cancer
risk assessment multistage modeling of the carcino-
genic process has received extensive interest, going
back to an original formulation of Armitage and

Ž .Doll 1954 . The basic multistage model assumes
that after time t of exposure to a dose d of some
hazardous agent, a group of normal cells acquires a

Ž .mutation that leads to unregulated growth cancer
over a series of k progressive stages. This leads to a
probability function for tumor development of the

Ž . � kŽform P d, t s 1 y exp yCt q q q d q ??? q0 1
k .4q d , where C and q G 0 are unknown constants.k i

ŽOther link functions are possible, such as the logis-
Ž . w �tic form P d , t s 1 q exp y b y b dL 0 1

k4xy1y ??? yb d . These do not share a mechanistick
motivation available with the multistage model,

.however. At k s 1, the multistage form corre-

sponds to a simple one-hit model of carcinogenesis
Ž .Hoel, 1985 . Notice that the one-hit form 1 y

� Ž .4exp yCt q q q d is approximately linear in d as0 1
d ª 0; this feature makes it a popular first approx-
imation for many low-dose problems.

For example, consider the saccharin data dis-
Ž .cussed above for simplicity, set t s C s 1 . Apply-

ing the one-hit model, we find the maximum likeli-
ˆŽ .hood prediction equation to be P d, 1 s 1 y

� 4exp 0.1946 y 0.0512d . From this, greater flexibil-
ity in safe dose estimation is available than, say,

ˆ y6the NOAEL. For example, setting P s 10 and
solving the prediction equation for d yields a safe
dose estimate of d s 3.80%. This is clearly belowSD
the NOAEL of 5% seen above. Improvements in the
estimation process are also possible; for instance,
higher-order linear predictors or low-dose linear
approximations can improve precision in the model
fit, or confidence limits on the slope parameters can
add a conservative property to the safe dose esti-

Ž .mates Kodell and Park, 1995 .
Further development of the multistage model has

incorporated multistep]multistage biological pro-
cesses such as cellular proliferation and transfor-
mation, in vivo pharmacokinetics and pharmaco-
dynamics of the hazardous agent and complex
features of dose-related mutagenesis. A popular
variation is due to Moolgavkar and colleagues
ŽMoolgavkar and Venzon, 1979; Luebeck and Mool-

.gavkar, 1996 , where two mutations are assumed
necessary for a normal cell to transform into a
cancerous one. Various levels of initiation and pro-
motion of the cancer are accommodated in this
model, although further study of the two-mutation
assumption, and stability and interpretation of sta-
tistical estimates for the model parameters remain

Žopen areas of study Portier and Kopp-Schneider,
.1991; Little, 1995 .

8. ECOLOGICAL MODELING: HOW
ENVIRONMENTAL FACTORS AFFECT

ANIMAL POPULATIONS

8.1 Modeling Salmon Populations in the San
Joaquin River

With many environmental data sets, statistical
analyses may be developed from complex models of

Žthe phenomena being studied. The Moolgavkar
two-stage model noted at the end of Section 7 is a

.good example. This can be particularly useful in
cases where a standard regression or time-series
analysis would ignore key features of the data. For
instance, in the area of ecological population dy-

Ž .namics, Speed 1993 discussed the problem of mod-
eling the number of Chinook salmon in the San



PIEGORSCH, SMITH, EDWARDS AND SMITH200

Joaquin River. There, the salmon population has
declined over the last few decades, and great inter-
est exists in understanding possible causes of the
decline, especially those related to environmental
factors. Data are available on Spring river flow,

Žescapement abundance of fish available for spawn-
.ing and catch of fish. The data form a time series,

and Speed indicates that standard approaches
based on classical regression analysis cannot ap-
proximate the complexity of the problem. Con-
versely, basing the analysis on complex age-class
models produces far too many parameters and com-
ponents, making them difficult to fit and evaluate.
A compromise is found in a model which includes
both the age-class components and a stochastic
component. The model is described through the
Ž .unobservable number of fish that survive to a
particular age}called recruits}and the number of
these which spawn. These then lead to models for
the observable number of fish which are caught
Ž . Ž .C and the escapement E . The model equationst t
begin with

2 � 4R s a Q S exp ybS q e ,tq1 t ty1 ty1 tq1

3 Ž .Ž .Ž . 2R s 1 y m 1 y v 1 y r R ,tq1 2 t

4 Ž .Ž .Ž . 3R s 1 y m 1 y g 1 y r Rtq1 3 t

and

Ž .Ž . 2S s 1 y m 1 y v r Rt 2 t

Ž .Ž .Ž 3 4 .q 1 y m 1 y g r R q R ,3 t t

where Rk is the recruitment in year t for fish oft
age k, k s 2, 3, 4, and a is a recruitment parame-
ter; Q is the flow, S is the abundance of spawnerst t
in year t, m is the fraction lost to ocean mortality,
v the fraction lost to fishing for two-year-old fish, g
the fraction caught for three- and four-year-old fish
and r is the fraction of year class i returning toi

Ž .spawn i s 2, 3 . The observable quantities are then
described via the equations

E s S q dt t 1t

and

Ž . Ž 3 4 .C s 1 y m g R q R q d ,t t t 2 t

where the d ’s are additive error terms. By reducing
the number of model parameters to only a select
few, the age-class model is fitted using Kalman
filtering. The resulting model provides a reasonably
good fit to the San Joaquin data, although it raises
almost as many questions as it answers regarding
fishery population management in the face of envi-

Ž .ronmental disruptions. Speed’s 1993 discussion
touches on some of these.

Speed’s article illustrates several important as-
pects of stochastic environmental modeling. First, it

is often foolish to apply statistical methods blindly
to solve complex environmental problems. Second,
understanding of the problem and of its fundamen-
tal components are essential. Third, models and
data must match the questions that are of interest.

8.2 Modeling Animal Abundance for Assessing
Ecological Risk

Statistics has a long, fruitful relationship with
fisheries and wildlife sciences in developing
stochastic models of vertebrate populations. Some
of these methods are finding use in the assessment
of environmental impacts. For instance, Anderson,

Ž .White and Burnham 1995 review the use of ani-
mal abundance models for assessing ecological risks
to vertebrate populations. They apply their method-
ology to analyze survival of the northern spotted
owl after the animal experiences habitat loss, em-
ploying the well-known Leslie]Lefkovitch model
Ž .Leslie, 1945 . The model uses information about
survival and fecundity in a matrix framework to
predict future age structure from past age structure
information. For spotted owls, the model is applied
to a postbirth population with four age classes. The
model sets

N s AN ,tq1 t

where N is a vector containing population sizes oft
the four age classes,

0 b f b f b f1 1 2 2 3 3

f 0 0 01A s ,
0 f 0 01

0 0 f fa a

b is an age-specific fecundity for category i and fi i
is an age-specific annual survival probability, any
of which may depend on environmental factors.
This model has the attractive feature that the dom-
inant root of the characteristic equation of A deter-

Ž .mines the rate of increase or decrease of the popu-
Ž .lation assuming A is fixed . By estimating this

parameter and its uncertainty from estimates of
the parameters of A, the effects of important envi-
ronmental factors can be assessed. With female
spotted owls, for example, Anderson, White and
Burnham determined that the characteristic root
was significantly less than zero, suggesting a de-
cline in female owl populations due perhaps to
habitat loss. However, other parameters, including
many vital rates, did not exhibit significant nega-
tive trends, and the issue remains open for further
study.

Ž .Anderson, White and Burnham 1995 and the
references therein provide other interesting exam-
ples of the application of statistics to ecological risk
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assessment. An important point of their article is
that use of appropriate variance models is critical
in stochastic modeling. For example, misleading
results can occur with an age structured model
when variance estimates for projections are com-
puted based on data from a single sampling season.
A better estimate is obtained by considering the
process variance, which reflects changes in the pa-
rameters over a number of sampling occasions.
Further work into how best to incorporate and
apply process variance information is still needed,
however.

9. DETECTION LIMITS

Environmental monitoring as described, for ex-
ample, in Section 5.2 often requires determination
of a chemical pollutant’s existence and measure-
ment of its concentration. Detection limits and re-
lated quantities arise in these settings primarily
from the need to deal with instrument measure-
ment error. When presented with an environmental
sample, say of water, laboratory instruments for
measuring the presence of a pollutant, a chemical
analyte or a biological microorganism may not have
the sensitivity to detect small amounts of the
Ž .bio chemical component of interest. Or, they may
incorrectly give nonzero responses when presented
with material not containing the chemical.

The problem of assessing environmental effects
with observations that may fall below a detection

Žlimit has a long history see Akritas, Ruscitti and
.Patil, 1994 . In most applications, the detection

limit paradigm is based on the evaluation of ma-
Žchine error and the processing of blank no chemi-

.cal signals. This has led to definitions such as
those presented by the American Chemical Society
Ž .ACS Committee on Environmental Improvement
Ž .1980 , in which the detection limit is given as ‘‘the
lowest concentration level that can be determined
to be statistically different from a blank.’’ Computa-
tionally, the ACS suggested using three times the
standard deviation of blank responses. The under-

Ž .lying foundation for this and other thinking about
Ž .detection limits comes from work by Currie 1968 ,

who took essentially a decision theoretic view. A
detected observation was simply one that led to

Ž .rejection of the null hypothesis that a chemical or
analyte was absent.

Specifically, let j be the true concentration which
results in measured response Y; Y is viewed as a
random variable whose distribution depends on j .

Ž .A calibration curve also depending on j , F j , is
employed to estimate the underlying concentration,

ˆ y1Ž . Ž .via j s F Y . Currie 1968 delineated three pos-
ˆsible limits based on estimating Y or j . The first

such is a ‘‘decision’’ limit, as presented in Davis
Ž . Ž .1994 : ‘‘the signal level response above which an
observed signal may be reliably recognized as being
detected.’’ This may be interpreted statistically as
the critical value for testing the null hypothesis
H : j s 0 using the data on Y. A second limit is the0

Ž .‘‘detection limit or true signal level concentration
which will reliably produce observed signals which
lead to detection.’’ This may be interpreted as the
concentration j which has a high power for the
detection hypothesis. Finally, there is the determi-
nation or method quantitation limit: the ‘‘true sig-

Ž .nal level concentration which will be expected to
provide measurements of adequate precision for

Žquantitative determination as opposed to qualita-
.tive detection .’’ Currie’s approach thus divided the

measurement axis into regions of unreliable detec-
tion, detection but unreliable measurement and re-
liable measurement.

The definition of detection limits may be quite
important when decisions are based on proper de-
tection of hazardous compounds. In compliance
monitoring, for example, measurements may be
taken from several wells around a toxic waste site
to assess if hazardous material is entering the
groundwater. The sampling protocol typically moni-
tors well water in a routine fashion unless a toxin
or toxic indicator is detected; then more intensive
Ž . Žand costly monitoring is applied. Gibbons 1994,

.1996 noted, however, that the simple decision the-
oretic approach to setting a detection limit may be
flawed for this problem. His work focused on two

Ž .important questions: i If k wells are sampled,
what is the probability that at least one exceeds a
regulated standard due to instrument error when

Žin fact all are in compliance cf. Lambert, Peterson
. Ž .and Terpenning, 1991 ? ii How should a method

Ž .detection limit MDL be estimated when the vari-
ance increases with concentration? These problems
have quite different perspectives on what the MDL
is, and estimates of the limit can differ widely.
What seems important is that definitions of detec-
tion limits need to be stated carefully in experimen-
tal protocols and scientific reports.

Even if properly defined, use of MDL’s for estima-
tion and testing purposes is irregular and uneven
in the literature, primarily due to minimal statisti-
cal input on how to quantify MDL’s and nondetects.
Common usage replaces nondetects with a single

Ž .value, such as 0, 1r2 MDL or MDL. Clearly, this
is too simplistic for most applications}although

Ž .Davis 1994 indicates selected cases where the
results can be reasonable}and only slightly greater
effort is required to improve the estimation process.

Ž .For example, Akritas, Ruscitti and Patil 1994 il-
lustrate a robust parametric method for quantify-
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ing nondetects, using simple probability plot re-
gression. Given N observations of which n areC

Žbelow a defined MDL, the N y n detected non-C
. Žcensored observations are plotted on normal or

.lognormal etc. probability paper and then a straight
line is fitted through them. Extrapolated back into
the nondetect region, the line provides estimates
for the nondetected values.

A hypothetical example given by Akritas, Ruscitti
and Patil illustrates the approach. Table 1 contains
data Y i s 1, . . . , 50, generated from a distributioni

� 4 Ž .such that log Y ; N 0, 1 . Suppose detection can
only occur if the observation exceeds 0.4. Thus
n s 10 observations are nondetects in Table 1.C
Plotting the logs of the 40 detected values against
quantiles from a standard normal and then fitting
a straight line to them produces estimates for the
log-nondetects on a line with intercept y0.0689
and slope 1.064. Table 2 gives the corresponding

Ž .estimates on the original scale , along with the
Ž .more naive 0, 1r2 MDL and MDL values. Im-

provements in estimating the nondetects are evi-
denced, although there appears to be a slight up-
ward bias in the estimates with these data. Akritas,

Ž .Ruscitti and Patil 1994 discuss modifications and
improvements to address variance and bias reduc-
tion for this and other approaches with detection
limit data.

In these areas, many further problems remain
unresolved. For example, the chemical monitoring
problem typically involves multivariate data, bring-
ing with it the potential for multiple censoring
Ž .El-Shaarawi and Naderi, 1991 . How can the ideas
of detection limits be extended to the multivariate
setting, and how should detection limit studies be
designed in this case? How should monitoring pro-
grams apportion resources between the expense of
a detection limit study and the larger monitoring
effort? Also, Lambert, Peterson and Terpenning
Ž . Ž .1991 and Gibbons 1994 emphasize that nonde-
tects in the field are different from those in the
laboratory, and issues important to one area may

Ž .be only secondary in the other. Indeed, Davis 1994
notes the need for more emphasis on random effects

TABLE 2
Ž .n s 10 non-detected observations ordered fromC

Table 1 assuming the MDL is 0.4, along with estimated
Ž .values from Akritas, Ruscitti and Patil 1994

Probability
( )Actual values plot regressed 0 1 rrrrr 2 MDL MDL

0.1007 0.1040 0.0 0.2 0.4
0.1113 0.1434 0.0 0.2 0.4
0.1167 0.1765 0.0 0.2 0.4
0.1848 0.2068 0.0 0.2 0.4
0.2531 0.2357 0.0 0.2 0.4
0.2621 0.2639 0.0 0.2 0.4
0.2747 0.2917 0.0 0.2 0.4
0.2915 0.3194 0.0 0.2 0.4
0.3529 0.3472 0.0 0.2 0.4
0.3629 0.3754 0.0 0.2 0.4

and variance components in the analysis of data
from field studies.

Ž .It is worth noting that Currie’s 1968 seminal
work focused largely on quality control and error
rates. In actual applications, there may be errors
associated with technicians, machines and labora-
tories, as well as confounding effects due to the
manner in which the soil or water is collected and
treated following collection. The data collection ef-
fort may also introduce new complexities. For ex-
ample, when data have been collected over time,
there may be multiple limits due to ongoing im-
provements in measurement. Or, it is often as-
sumed that an observation measured as a non-
detect actually corresponds to a value below the
detection limit. As pointed out by Lambert, Peter-

Ž .son and Terpenning 1991 , however, this is not
true; in fact, depending on how the limit is defined
and what is studied, there may be cases where a
known concentration is recorded as a nondetect.

10. COMBINING ENVIRONMENTAL
INFORMATION

Another increasingly important issue in the envi-
ronmental sciences is the need to combine informa-
tion from diverse sources that relate to a common

TABLE 1
1r2 2Ž .N s 50 observations ordered from a lognormal distribution with mean e s 1.649 and variance e y e s 4.671,

Ž .from Akritas et al. 1994 ; asterisks indicate MDL at 0.4

*0.1007 *0.1113 *0.1167 *0.1848 *0.2531 *0.2621 *0.2747 *0.2915
*0.3529 *0.3629 0.4014 0.4136 0.4154 0.4182 0.4443 0.4696
0.5282 0.5386 0.5648 0.6152 0.6779 0.7485 0.7508 0.8170
1.1029 1.1210 1.1938 1.3856 1.4381 1.4526 1.5144 1.5220
1.5470 1.5472 1.6761 1.7095 2.0705 2.2106 2.2118 2.2966
2.4249 2.4444 2.4615 2.7230 2.7461 3.3692 4.4418 4.8487

4.8613 6.9258
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endpoint. Statistical techniques for data combina-
tion continue to develop, however, and the issue of
combining environmental information is a very ac-
tive area of statistical and applied subject-matter
research. A common rubric for combining indepen-

Ždent results is meta analysis Hedges and Olkin,
.1985 , where the goal is to bring together results of

different studies, reanalyze the disparate results
within the context of their common endpoints and
provide a quantitative analysis of the phenomenon
of interest based on the combined data. With many
environmental endpoints, however, the effects of
interest often are small and therefore hard to de-
tect with limited sample sizes; or, data on many
multiple endpoints may mask small or highly local-
ized effects.

In this section, we assume the different studies
are considering similar endpoints, and that the
data derived from them will provide essentially
similar information when associated with similar
study conditions. This is a form of homogeneity or
exchangeability among the data sources. For this
setting, we discuss how some attempts at solving
these data combination problems have led to a
number of interesting environmetric developments
and modifications of standard statistical methods.

10.1 Combining P-values

Perhaps the best-known method of combining in-
2 Žformation is Fisher’s inverse x method Fisher,

.1948 , where individual P-values, P , from K inde-k
Ž .pendent studies are combined k s 1, . . . , K .

The result is a combined P-value: X 2 sF
K Ž . 2y2Ý log P , which is compared to a x refer-ks1 k

ence distribution with 2 K df. For example, when
characterizing or remediating environmental waste
sites, levels of various toxic chemicals are recorded
at a single site to identify if a particular cleanup
technology is operating properly. The data are col-
lected at K different locations within the site, re-
quiring efficient combination as part of the report-
ing process. One questions whether the overall
cleanup has been successful, or is more effort
required?

If there are M different chemicals concentrations
recorded at each location, this may be viewed as a
multiparameter hypothesis testing problem, where
we observe K independent P-vectors Z sk
w xZ , . . . , Z 9, each with common mean m sk k k1 Mw xm , . . . , m 9 and possibly unequal covariancek k1 M

matrices S . Then we test if m has exceeded somek k
0 w 0 0 xknown threshold vector m s m , . . . , m 9. If thek k1 M

null hypothesis of no exceedance is rejected, the
cleanup has not been successful and requires con-
tinuation.

For the special case S s s 2 I, k s 1, . . . , K, andk k
assuming normality, each separate location pro-
vides an independent F-statistic for testing m sk
m0. Combination of the information to achieve an
omnibus test of the cleanup’s effectiveness across
all M chemicals can be achieved via Fisher’s
method: take the individual P-values, P , based onk
each F , and compute X 2. If X 2 is larger than ank F F

2Ž .upper-a x 2 K critical point, conclude that the
cleanup requires continuation.

Alternatively, in selected cases it is possible to
derive a more powerful combined test, by taking
advantage of possible correlations between the Zk
values. Consider the case K s 2: let R be the ob-
served correlation coefficient between Z y m0 and1
Z y m0. Under H , R possesses a distribution2 0

Ž 2 .ŽMy3.r2whose density is proportional to 1 y r ,
and this allows for calculation of a one-sided P-
value, say, P . Then Mathew, Sinha and ZhouR
Ž .1993 show that Fisher-combination of the P-
values P , P and P , via1 2 R

2 � Ž . Ž . Ž .4X s y2 log P q log P q log P ,R 1 2 R

yields a more powerful test statistic than X 2, refer-F
2 2Ž .encing X to a x 6 distribution. In this particu-R

lar environmental cleanup application, there are
the concerns that statistics based on the simple
correlation may also be sensitive to cases where the
observed vector drops well below the threshold level,
or whether the sample sizes are large enough to
assure reasonable power to detect departures from
H . Also, it may be more appropriate to test for0
threshold exceedance in population extremes,
rather than population means. Useful modifications
and extensions may be possible in these regards,
however, and development of this environmet-
ric application is an important area of further
research.

10.2 Hierarchical Bayesian Methods for
Combining Information from Multiple Studies

Some fascinating applications of combining envi-
ronmental data involve settings where a hierarchi-
cal model is posited, and appeal is made to some
form of Bayesian or empirical Bayesian analysis.
For instance, following an analyses by Hasselblad
Ž . Ž .1994 , DuMouchel 1994 considered nine separate
studies from North America and western Europe on
toxicity to the airborne irritant nitrogen dioxide
Ž .NO . The studies reported adverse lower respira-2
tory symptoms after NO -exposure in children aged2
5 to 12 years, using odds ratios to quantify any
increased risk of lower respiratory distress.

To adjust for possible sources of heterogeneity
across differences in design and subject characteris-
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tics among the nine studies, DuMouchel employed
a hierarchical regression model. A key feature was
inclusion of covariates that represented the differ-
ent sources of heterogeneity. For each study the
outcome of interest was the odds ratio of exposure

Ž .for responding subjects ‘‘cases’’ to odds of exposure
Ž .for nonresponding, healthy subjects ‘‘controls’’ .

Denote the log-odds ratios as c , i s 1, . . . , 9, andi
Ž . Ž 2 .assume c ; indep. N u , s . DuMouchel made si i i i

� 4proportional to log y rl , where y and l are thei i i i
upper and lower 95% confidence limits on the odds
ratio reported in the ith study. The hierarchical

Ž . Ž Ž . 2 .feature assumed u ; indep. N h b , t , wherei i
Ž .h b is a linear predictor encompassing the regres-i

Ž .sion feature, h b s b q b x q ??? qb x , andi 0 1 1 i P P i
2 Žt is a hierarchical variance parameter DuMouchel

.and Harris, 1983 . The x terms represent covari-k i
ates that quantify the known sources of heterogene-
ity. DuMouchel set P s 3 and defined the covari-
ates as indicators that identified if the ith study

Ž . Ž .failed to correct for 1 background smoking, 2
Ž .NO measurement heterogeneity or 3 subject gen-2

der. In this way, the b parameters act to correct
the log-odds ratios for any single study’s failure to
correct for these factors.

If in the parameter hierarchy the prior quantities
2 Ž .b and t are unknown as is common , further

hierarchical hyperprior distributions can be as-
signed to them. Often, the hyperpriors are taken as
diffuse functions in order to represent a form of
vague prior knowledge. The various levels of the
hierarchy are then combined in standard fashion to
yield posterior specifications for the parameters of
interest, here, the expected log-odds ratios u . Pointi
estimates are taken as the posterior means of the
u ’s, and standard errors are available as the squarei
roots of the posterior variances of the u ’s. Appliedi
to the nine NO studies, DuMouchel’s hierarchical2
regression model produced posterior interval esti-
mates based on normal approximations for the pos-
terior log-odds in which five of the nine studies
exhibited significant posterior increases in odds of

Ždisease. Unadjusted for the hierarchical model ef-
fects, only four of the nine separate studies were

.viewed as significant; see Piegorsch and Cox, 1996.
The hierarchical model was able to synthesize in-
formation across the ensemble of data, helping to
more sensitively identify the significant effects.

Hierarchical Bayesian analyses such as this rep-
resent important advances for understanding the
complex effects of environmental toxins, and fur-
ther formulations and applications of such models
represent important examples of advanced statisti-
cal research in the environmental sciences. We ex-
pect their development will continue, as this and

Žother recent examples Warren-Hicks and Wolpert,

1994; Consonni and Veronese, 1995; Dominici,
.Parmigiani, Reckhow and Wolpert, 1997 have be-

gun to illustrate.

11. SUMMARY

The many environmetric problems described here
represent only a sampling of the great diversity of
challenging issues in quantitative environmental
research, and of the great diversity of views on how
to solve them. A goal of our presentation has been
to mirror both forms of diversity, illustrating that a
great many perspectives exist on the nature of
‘‘environmental statistics.’’ Many of these areas re-
main open for further advancement and, as we
have noted throughout, any such advances in both
the science and the statistics cannot occur without
greater multidisciplinary collaboration among
subject-matter scientists, social policy makers, and
statisticians. We encourage statistical and subject-
matter readers to assume these challenges and, in
doing so, to work toward better multidisciplinary
interaction. The resulting quantitative methodology
will best represent good statistics, good science and
good public policy.
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