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Integrated Likelihood Methods for
Eliminating Nuisance Parameters
James O. Berger, Brunero Liseo and Robert L. Wolpert

Abstract. Elimination of nuisance parameters is a central problem in
statistical inference and has been formally studied in virtually all ap-
proaches to inference. Perhaps the least studied approach is elimination
of nuisance parameters through integration, in the sense that this is
viewed as an almost incidental byproduct of Bayesian analysis and is
hence not something which is deemed to require separate study. There
is, however, considerable value in considering integrated likelihood on
its own, especially versions arising from default or noninformative pri-
ors. In this paper, we review such common integrated likelihoods and
discuss their strengths and weaknesses relative to other methods.

Key words and phrases: Marginal likelihood, nuisance parameters, pro-
file likelihood, reference priors.

1. INTRODUCTION

1.1 Preliminaries and Notation

In elementary statistical problems, we try to
make inferences about an unknown state of nature
ω (assumed to lie within some set � of possible
states of nature) upon observing the value X = x
of some random vector X = �X1; : : : ;Xn� whose
probability distribution is determined completely
by ω. If X has a density function f�x�ω�, strong
arguments reviewed and extended in Berger and
Wolpert (1988) and Bjørnstad (1996) suggest that
inference about ω ought to depend upon X only
through the likelihood function L�ω� = f�x�ω�
which is to be viewed as a function of ω for the
given data x.
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Rarely is the entire parameter ω of interest to the
analyst. It is common to select a parameterization
ω = �θ; λ� of the statistical model in a way that sim-
plifies the study of the “parameter of interest,” here
denoted θ, while collecting any remaining parame-
ter specification into a “nuisance parameter” λ.

In this paper we review certain of the ways that
have been used or proposed for eliminating the nui-
sance parameter λ from the analysis to achieve
some sort of “likelihood” L∗�θ� for the parameter
of interest. We will focus on integration methods,
such as eliminating λ by simple integration (with
respect to Lebesgue measure), resulting in the
uniform-integrated likelihood

�1� LU�θ� =
∫
L�θ; λ�dλ:

In justifying integration methods, we will occasion-
ally refer to alternative maximization methods, such
as the profile likelihood

�2� L̂�θ� = sup
λ
L�θ; λ�:

(Typically the sup over λ is achieved at some value
λ̂θ, which we will call the conditional mle.) However,
no systematic discussion of nonintegration methods
will be be attempted.
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Example 1. Suppose X1;X2; : : : ;Xn are i.i.d.
normal random variables with mean µ and vari-
ance σ2 �N�µ;σ2��. Suppose the parameter of
interest is σ2 while µ is a nuisance parameter.
(Thus, in the above notation, θ = σ2 and λ = µ.)
Here, easy computations yield

LU�σ2� =
∫
L�σ2; µ�dµ

=
∫ n∏
i=1

1√
2πσ2

exp
{
− 1

2σ2
�xi − µ�2

}
dµ

= 1
�2πσ2��n−1�/2√n exp

{
− 1

2σ2

n∑
i=1

�xi− x̄�2
}
;

L̂�σ2� = sup
µ
L�σ2; µ� = L�σ2; x�

= 1
�2πσ2�n/2 exp

{
− 1

2σ2

n∑
i=1

�xi − x̄�2
}
y

note that x is the conditional mle. Since proportion-
ality constants do not matter for likelihoods, LU�σ2�
and L̂�σ2� differ only in the powers of σ2 in the de-
nominators.

Notationally, we will write integrated likeli-
hoods as

�3� L�θ� =
∫
L�θ; λ�π�λ � θ�dλ;

where π�λ�θ� is the “weight function” for λ. (In this
paper, we consider only examples with continuous λ
taking values in Euclidean space, and consider only
integration with respect to Lebesgue measure.) It
is most natural to use Bayesian language, and call
π�λ�θ� the “conditional prior density of λ given θ,”
although much of the paper will focus on nonsub-
jective choices of π�λ�θ�. Also, we will have occasion
to refer to a prior density, π�θ�, for the parameter
of interest θ. As is commonly done, we will abuse
notation by letting the arguments define the prior;
thus π�θ� is the prior for θ, while π�λ� would be the
(marginal) prior for λ.

1.2 Background and Preview

The elimination of nuisance parameters is a cen-
tral but difficult problem in statistical inference. It
has formally been addressed only in this century
since, in the nineteenth century Bayes–Laplace
school of “Inverse Probability” (see, e.g., Zabell,
1989), the problem was not of particular concern;
use of the uniform integrated likelihood LU�θ� was
considered “obvious.”

With the Fisher and Neyman rejection of the
Bayes–Laplace school, finding alternative ways
to eliminate nuisance parameters was felt to be

crucial. Student’s derivation of the sampling distri-
bution of the mean of a normal population when
the variance is unknown and the derivation of the
distribution of the sample correlation coefficient
of a bivariate normal population (Fisher, 1915,
1921), are probably the first examples of a frequen-
tist approach to the problem. Both were based on
derivation of a pivotal quantity whose distribution
is free of the nuisance parameters. Other famous
examples include the Bartlett (1937) test of homo-
geneity of variances and the various solutions of
the Behrens–Fisher problem (Fisher, 1935).

There have been numerous efforts to create a like-
lihood approach to elimination of nuisance param-
eters (Barnard, Jenkins and Winston, 1962). The
beginnings of the “modern” likelihood school can
perhaps be traced to Kalbfleisch and Sprott (1970,
1974), who proposed systematic study of a variety
of methods for eliminating nuisance parameters (in-
cluding integrated likelihood) and opened the way to
a rich field of research.

Probably the simplest likelihood approach to
eliminating nuisance parameters is to replace them
with their conditional maximum likelihood esti-
mates, leading to the profile likelihood in (2); this
can then be used as an ordinary likelihood. Many
examples of misleading behavior of the profile like-
lihood (Neyman and Scott, 1948; Cruddas, Cox and
Reid, 1989) have given rise to various “corrections”
of the profile, which aim to account for the “error”
in simply replacing λ by a point estimate. Among
the advances in this area are the modified pro-
file likelihood (Barndorff-Nielsen, 1983, 1988) and
the conditional profile likelihood (Cox and Reid,
1987). These methods were primarily developed to
provide higher-order asymptotic approximations to
(conditional) sampling distributions of statistics of
interest, such as the maximum likelihood estima-
tor or the likelihood ratio. As a by-product, these
approximate distributions can be interpreted as
likelihood functions for the parameter of interest
and/or used in a frequentist spirit via tail area ap-
proximations. However, use of these methods tends
to be restricted to rather special frameworks (e.g.,
exponential families or transformation groups). Ex-
cellent references include Reid (1995, 1996), Fraser
and Reid (1989); see also Sweeting (1995a, b, 1996)
for a Bayesian version of these approaches. A dif-
ferent way to adjust the profile likelihood, based on
the properties of the score function, is developed in
McCullagh and Tibshirani (1990).

Other likelihood approaches arise when one or
more components of the sufficient statistics have
marginal or conditional distributions which depend
on θ, but not on λ. In these cases, such distributions
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are often used as the likelihood for θ, and are called
the “marginal likelihood” or the “conditional likeli-
hood.” Basu (1977) gives an interesting example of
conflicting marginal and conditional likelihoods for
the same problem, indicating that use of these tech-
niques is likely to remain somewhat arbitrary.

Marginal and conditional likelihoods are special
cases of the more general partial likelihood (Cox,
1975). If there exists a partition �y; z� of the data
x, such that

�4� f�x � θ; λ� = h�x� f1�y � θ; λ�f2�z � y; θ�
or

�5� f�x � θ; λ� = h�x� f1�y � θ�f2�z � y; θ; λ�;
then the terms hf1 in (4) or hf2 in (5) are ignored,
and the remaining factor is taken as the partial like-
lihood for θ. Since the ignored term does depend on
θ, there is some loss of information. Supporters of
the approach suggest, however, that one loses only
the information about θ which is inextricably tied
with the unknown parameter λ. Basu (Ghosh, 1988,
page 319) criticizes the idea of partial likelihood on
the ground that it usually cannot be interpreted in
terms of sampling distributions, and one is left only
with the possibility of exploring the shape of the
particular observed partial likelihood.

From a subjective Bayesian point of view, the
problem has a trivial solution: simply integrate
the joint posterior with respect to the nuisance pa-
rameters and work with the resulting marginal
posterior distribution of θ. From a philosophical
or foundational level, it would be difficult to add
much to the fascinating articles (Basu, 1975, 1977)
comparing subjective Bayesian and likelihood meth-
ods for elimination of nuisance parameters. There
is, however, considerable resistance to general
implementation of subjective Bayesian analysis,
centering around the fact that elicitation of a sub-
jective prior distribution for multiple parameters
can be quite difficult; this is especially so for nui-
sance parameters, whose choice and interpretation
are often ambiguous.

Even if one is not willing to entertain subjective
Bayesian analysis, we feel that use of integrated
likelihood is to be encouraged. The integration must
then be with respect to default or noninformative
priors. Our main goal will thus be to discuss and il-
lustrate integrated likelihood methods based on dif-
ferent choices of conditional noninformative priors
for the nuisance parameters.

In Section 2, we argue in favor of the use of inte-
grated likelihood on the grounds of simplicity, gener-
ality, sensitivity and precision. In Section 3, we will
illustrate the uses and interpretations of integrated

likelihood in various conditional approaches to in-
ference, ranging from the pure likelihood to the fully
Bayesian viewpoints. Section 4 reviews the various
integrated likelihoods that have been considered;
these primarily arise from different definitions of
conditional noninformative priors for the nuisance
parameters. The last section focuses on criticisms
and limitations of integration methods.

Throughout the paper, we will repeatedly use sev-
eral examples to illustrate and compare different
methods. Several of these examples (Examples 4
and 7, in particular) are simple to state but of near
impossible difficulty to analyze, in the sense that de-
fault methods of any type are questionable. In these
examples at least, we will thus be asking effectively,
“What is the best method of doing the impossible?”
While firm conclusions cannot then be forthcoming,
we feel that consideration of such extreme examples
can greatly aid intuition.

1.3 Some Philosophical Issues

In this section we discuss several issues that are
somewhat tangential to the main theme, but relate
to overall perspective.

1.3.1 What is the likelihood function? Bayarri,
DeGroot and Kadane (1988) argued that there can
be no unique definition of a “likelihood function,”
rejecting as incomplete the usual (and usually
vague) definitions such as the one Savage (1976)
attributes to Fisher: “probability or density of the
observation as a function of the parameter.”

Such definitions give no guidance as to how to
treat the value of an unobserved variable (for ex-
ample, a future observation z): should we condi-
tion on it, as we do for unknown parameters, lead-
ing to what Bayarri, DeGroot and Kadane (1988)
call the “observed” likelihood Lobs�θ; z� ≡ f�x�θ; z�?
Or should we treat it like other observations, lead-
ing to the “random variable” likelihood Lrv�θ; z� ≡
f�x; z�θ�? They argue that likelihood-based infer-
ence will depend on this choice and offer examples
illustrating that either choice may be the best one
in different examples.

Here, we avoid this difficulty by assuming that
the problem begins with a specified likelihood func-
tion of the form

f�x; θ∗; λ∗ � θ; λ�;
where (as before) x is the observed value of the data
vector X, and θ∗ and λ∗ are unobserved variables of
interest and nuisance variables, respectively, having
probability distributions as specified by f. The vec-
tor θ∗ could include a future observation z or some
“random effects” that are of interest, for example;
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thus any variables with known (conditional) distri-
bution are put to the left of the bar, while those
without given distributions are placed on the right.
Following Butler (1988) we recommend immediate
removal (by integration) of the nuisance variable λ∗,
passing to

�6� f�x; θ∗ � θ; λ� =
∫
f�x; θ∗; λ∗ � θ; λ�dλ∗y

this then would be the likelihood we study, seeking
to eliminate λ. [In most of our examples “θ∗” will
be absent and so we will just write f�x�θ; λ�.] This
elimination of λ∗ by integration is noncontroversial,
and should be acceptable to most statistical schools.
See Bjørnstad (1996) for additional discussion.

Example 2. Random effects. Let Xi be indepen-
dent N�µi;1� random variables, with unobserved
means µi drawn in turn independently from the
N�ξ; τ2� distribution; we wish to make inference
about θ = �ξ; τ2�, ignoring the nuisance parameter
λ∗ = µ = �µ1; : : : ; µp� (the random effects). Here,
(6) becomes (with no θ∗ or λ present)

f�x � θ� =
∫
Rp
�2π�−p/2

· exp
(
−

p∑
i=1

�xi − µi�2
2

)
�2πτ2�−p/2

· exp
(
−

p∑
i=1

�µi − ξ�2
2τ2

)
dµ1 · · ·dµp

=
(
2π�1+ τ2�

)−p/2 exp
(
−

p∑
i=1

�xi − ξ�2
2�1+ τ2�

)

∝ �1+ τ2�−p/2

· exp
(
− p �s2 + �x̄− ξ�2�

/
2�1+ τ2�

)
;

(7)

where x is the sample mean and s2 =∑�xi−x�2/p.
Again, most statistical schools would accept elim-

ination of µ by integration here; for instance, the
usual alternative of maximizing over the unob-
served parameters µi would lead instead to the
profile likelihood

L̂�θ� = sup
µ∈Rp

�2π�−p/2

· exp
(
−

p∑
i=1

�xi − µi�2
2

)
�2πτ2�−p/2

· exp
(
−

p∑
i=1

�µi − ξ�2
2τ2

)

= �4π2τ2�−p/2 exp
(
−

p∑
i=1

�xi − ξ�2
2�1+ τ2�

)

∝ τ−p exp
(
− p �s2 + �x̄− ξ�2�

/
2�1+ τ2�

)
;

(8)

which differs from L�θ� by having a singularity at
τ = 0 that strongly (and wrongly) suggests that
any data support an inference that τ2 ≈ 0. In sit-
uations such as this it is often suggested that one
use a local maximum of the likelihood. Interestingly,
no local maximum exists if s2 < 4: Even if s2 ≥ 4,
the local maximum is an inconsistent estimator of
τ2 as p→∞; for instance, if τ2 = 3, the local max-
imum will converge to 1 as p → ∞. Figure 1 indi-
cates the considerable difference between the like-
lihoods; graphed, for p = 6, s2 = 4 and x = ξ are
L�τ2� = f�x�τ2; ξ = x� and L̂�τ2; x�. Note that we
have “maximized” over ξ to eliminate that parame-
ter for display purposes. Had we integrated over ξ
in f�x�θ�, the difference would have been even more
pronounced.

1.3.2 The subjective Bayesian integrated likeli-
hood. Since integrated likelihood methods can be
viewed in a Bayesian light, it is useful to review the
purist Bayesian position. For subjective Bayesians
there is no ambiguity concerning how to treat nui-
sance parameters: all inference is based on the
joint probability distribution f�x; θ; λ� of all pa-
rameters and variables, whether or not observed,
which can be constructed from any of the condi-
tional data distributions along with appropriate
subjective prior distributions. In problems without
nuisance parameters, for example, the joint density
is f�x; θ� = f�x�θ�π�θ�, the product of the likeli-
hood and the prior distribution π�θ� for θ; in this
setting, Bayes’ theorem is simply the conditional
probability calculation that the posterior density
for θ is

�9� π�θ � x� = f�x � θ�π�θ�∫
f�x � θ�π�θ�dθ ∝ L�θ�π�θ�:

In the presence of a nuisance parameter λ, a subjec-
tive Bayesian will base the analysis on a full prior
πB�θ; λ�, which can also be factored as πB�θ; λ� =
πB�θ�πB�λ�θ�, the product of the marginal and con-
ditional prior densities of θ and λ (given θ), respec-
tively. The subjective Bayesian still seeks π�θ�x�
and would accept an integrated likelihood L�θ� if
it satisfied π�θ�x� ∝ L�θ�πB�θ�. It is easy to see
that the only L�θ� which satisfies this relationship
is given (up to a multiplicative constant) by

�10� LB�θ� =
∫
f�x � θ; λ�πB�λ � θ�dλ:

This thus defines the unique integrated likelihood
that would be acceptable to a subjective Bayesian.

1.3.3 Why eliminate nuisance parameters? First,
an explanation of the question: while, almost by
definition, final inference about θ needs to be free
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Fig. 1. Integrated and profile likelihoods for the random effects model.

of λ, it is not clear that one must pass through a
likelihood function, L�θ�, that is free of λ. Most
non-Bayesian analyses pass through some such in-
termediary, but Bayesian analyses need not. For
instance, many Bayesian analyses today proceed by
Monte Carlo generation of a sequence of random
variables �θ�1�; λ�1��; : : : ; �θ�m�; λ�m�� from the full
posterior distribution π�θ; λ�x�; inferences concern-
ing θ then follow from direct use of the simulated
values θ�1�; : : : ; θ�m� (e.g., the usual estimate of
θ would be the average of these simulated val-
ues). There is then no apparent need to explicitly
consider an L�θ� that is free of λ. (Indeed, it is
even common for Bayesians to introduce artificial
nuisance parameters to simplify the Monte Carlo
process.)

There are, nevertheless, several uses of L�θ� in
Bayesian analysis, which we list here.

1. Scientific reporting. It is usually considered good
form to report separately L�θ� and π�θ�x� (often
graphically) in order to indicate the effect of the
prior distribution. This also allows others to uti-
lize their own prior distributions for θ.

2. Sensitivity analysis. It is often important to study
sensitivity to π�θ�, and having L�θ� available for
this purpose is valuable. [Of course, sensitivity to
π�λ�θ� is also a potential concern, but frequently
this is of less importance.]

3. Elicitation cost. It is typically very expensive (in
terms of time and effort) to obtain subjective

prior distributions. Under the frequent cost limi-
tations with which we operate, elicitation efforts
may have to be limited. It is often cost effective to
eliminate nuisance parameters in a default fash-
ion, resulting in L�θ� and concentrate subjective
elicitation efforts on π�θ�.

4. Objectivity. Although most statisticians are justi-
fiably skeptical of the possibility of truly “objec-
tive” analysis (cf. Berger and Berry, 1988), there
is an undeniable need, in some applications, for
an analysis which appears objective. Using L�θ�,
with default π�λ�θ�, can satisfy this need.

5. Combining likelihoods. If one obtains informa-
tion about θ from different independent sources,
and the information arrives as likelihoods, Li�θ�;
then one can summarize the information by∏
iLi�θ�. This is the basis of many important

meta-analysis techniques. One cannot, of course,
simply multiply posteriors in this way. (But see
Section 5.2 for cautions concerning multiplica-
tion of likelihoods.)

6. Improper priors. Focusing on integrated likeli-
hood seems to reduce some of the dangers of us-
ing improper priors. This is illustrated in Sec-
tion 3.2.

2. ADVANTAGES OF INTEGRATED LIKELIHOOD

Once one departs from the pure subjective Bay-
esian position, one cannot argue for integrated
likelihood solely on grounds of rationality or co-
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Fig. 2. The likelihood surface for Example 3; when n = 1; x = 1 and y = 0.

herency. Here we present a mix of pragmatic and
foundational arguments in support of integrated
likelihood. Other advantages will be discussed as
we proceed.

2.1 Integration Versus Maximization

Most of the nonintegration methods are based on
some type of maximization over the nuisance pa-
rameter. This can be very misleading if the like-
lihood has a sharp “ridge,” in that the likelihood
along this ridge (which would typically be that ob-
tained by maximization) may be quite atypical of
the likelihood elsewhere. Here is a simple example.

Example 3. SupposeX1; : : : ;Xn are i.i.d.N�θ;1�
random variables, while Y is (independently)
N�λ; exp�−nθ2��. Here θ and λ are unknown, with
θ the parameter of interest. The joint density for
X = �X1; : : : ;Xn� and Y is

f�x;y � θ; λ�

= �2π�−n/2 exp
(
−1

2

n∑
i=1

�xi − θ�2
)

· �2π exp�−nθ2��−1/2 exp
(
− �y− λ�2

2 exp�−nθ2�

)

= �2π�−�n+1�/2

· exp
(
−n

2
�x2 − 2xθ� − �y− λ�2

2 exp�−nθ2�

)
;

(11)

where x is the sample mean. For n = 1 and the
data x = 1, y = 0; the overall likelihood L�θ; λ� =
f�1;0�θ; λ� is graphed in Figure 2 for θ > 0. Note
the sharp ridge.

The profile likelihood is easy to compute, since the
conditional mle for λ is just λ̂θ = y. Thus

�12�
L̂�θ� = f�x;y � θ; λ̂θ�

∝ exp�nxθ�;
ignoring factors that do not involve θ. Note that this
is a very strange “likelihood,” rapidly growing to in-
finity as θ→∞ or θ→ −∞, depending on the sign
of x.

In contrast, the uniform integrated likelihood is

�13�
LU�θ� =

∫
f�x;y � θ; λ�dx

∝ exp
(
−n

2
�x− θ�2

)
;

which is clearly proportional to a N�x;1/n� dis-
tribution, just as if Y with its entirely unknown
mean λ had not been observed. These two likeli-
hoods would, of course, give completely different im-
pressions as to the location of θ.

The integrated likelihood answer can also be pro-
duced by a classical conditionalist. One can obtain
the marginal likelihood for X by integrating out Y;
the answer is clearly LU�θ�. There would thus be
little disagreement as to the “correct” answer here,
but the example does serve to indicate the danger
inherent in maximization.
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2.2 Accounting for Nuisance
Parameter Uncertainty

The profile approach of replacing λ by its condi-
tional mle, λ̂θ, would appear to be dangerous in that
it ignores the uncertainty in λ. Example 1 demon-
strates a very mild version of this problem; the pro-
file likelihood has one more “degree of freedom” than
it should, given the replacement of µ by x. We will
mention a more serious standard example of this in
Section 3.4, but do not dwell on the issue because it
is a well-recognized problem. Indeed, many of the
modifications to profile likelihood that have been
advanced have, as one of their primary goals, ad-
justments to account for nuisance parameter uncer-
tainty. It is important to emphasize that such mod-
ifications can be crucial, especially because “raw”
likelihood procedures will typically be anticonserva-
tive, erring on the side of suggesting more accuracy
than is actually warranted. Among the many dis-
turbing examples of this is the exponential regres-
sion model (see discussion in Ye and Berger, 1991,
and the references therein).

In contrast, integration methods automatically
incorporate nuisance parameter uncertainty, in
the sense that an integrated likelihood is an av-
erage over all the possible conditional likelihoods
given the nuisance parameter. We do not claim that
(default) integration methods are guaranteed to
incorporate nuisance parameter uncertainty in a
satisfactory way, but they certainly appear more
naturally capable of doing so. As a final comment,
note that if the conditional likelihoods do not vary
significantly as the nuisance parameter λ changes,
then the integrated likelihoods will be very insensi-
tive to choice of π�λ�θ�.

2.3 Simplicity and Generality

In comparing the simplicity of integration ver-
sus likelihood methods, it is difficult to draw firm
conclusions because of the wide range of possible
methods under each label. For instance, the pro-
file likelihood in (2) is very simple to use while, on
the integration side, the simplest is the uniform-
integrated likelihood in (1). The various adjusted
profile likelihoods and marginal likelihoods form
an array of likelihood methods of modest to great
complexity. Correspondingly, “optimal” integrated
likelihoods can require difficult developments of
noninformative priors. Computational considera-
tions also come into play, although the historical
wisdom that Bayesian computations are harder
has today been reversed by the advent of MCMC
computational techniques.

The key to comparison is judging the quality of
the answers relative to the simplicity of the method.
For instance, comparison at the simplest level, pro-
file versus uniform-integrated likelihood, convinces
many that the latter is considerably more effective
in producing good answers in practice. Not many
comparisons have been done at higher levels of
complexity (Liseo, 1993, and Reid, 1996, are excep-
tions).

A few general observations are worth mentioning.
First, integration methods are all based on the same
basic idea; the only difference is in the prior distri-
bution used to perform the integration. In contrast,
the various profile, conditional and marginal likeli-
hood approaches are based on very different ratio-
nales, and obtaining a feel for when each approach
should be applied is not easy.

Second, the default Bayesian approaches have
lately been used, with apparently great success,
on a very large variety of complex applied prob-
lems. There are fewer successes in complex applied
problems for the likelihood methods. This could, of
course, be due to other factors, but is not irrelevant
in terms of judging effectiveness versus difficulty.

A second relevant issue is generality of applica-
tion. Likelihood methods are well known to have
difficulties with nonregular problems, such as prob-
lems where the parameter is restricted to a certain
range and the sample size is modest (so that likeli-
hood surfaces can have strange shapes). Even worse
is when the range restriction is affected by the data
(e.g., a model where xi > θ, i = 1; : : : ; n�, in which
case standard asymptotics do not apply (Barndorff-
Nielsen, 1991).

Another very difficult class of problems for likeli-
hood methods is the Gleser–Hwang class, discussed
in Section 5.1. A third difficult class is that consist-
ing of problems involving discrete data and espe-
cially discrete parameters. These are “difficult”
because the discreteness very much reduces the
possibility of developing reasonable “adjustments”
when basic methods are unreasonable. Here is a
classic illustration.

Example 4. Binomial �N;p�. Consider k inde-
pendent success counts s = �s1; : : : ; sk� from a
binomial distribution with unknown parameters
�N;p�, and assume that N is the parameter of
interest with p a nuisance parameter. This prob-
lem has been discussed in Draper and Guttman
(1971), Carroll and Lombard (1985), Kahn (1987),
Raftery (1988), Aitkin and Stasinopoulas (1989),
Lavine and Wasserman (1992) and the references
therein. Most of the points we make have already
been made, in some form, in these articles.
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Fig. 3. Likelihoods for Nx L̂ is the profile; LC is the conditional; LU is the uniform-integrated and LJ is the Jeffreys-integrated.

The likelihood function is

L�N;p� =
[ k∏
j=1

(
N
sj

)]
pT �1− p�Nk−T;

0 < p < 1; N ≥ smax;

where T= ∑k
j=1 sj and smax= maxj sj. This likeli-

hood is difficult to deal with by likelihood methods.
For instance, the profile likelihood is

L̂�N�=
[ k∏
j=1

(
N
sj

)]�Nk−T�Nk−T
�Nk�Nk ;

�14�
N≥ smax;

and a “natural” conditional likelihood, the condi-
tional distribution of �s1; : : : ; sk� given T and N, is

LC�N�=
[ k∏
j=1

(
N
sj

)]/(
kN
T

)
;

�15�
N ≥ smax:

For the data set s = �16;18;22;25;27�, Figure 3
gives the graphs of L̂�N� and LC�N�. These are
nearly constant over a huge range of N and are
clearly nearly useless for inference. Such behavior
of L̂�N� and LC�N� is typical for this problem. [In-
deed, LC�N� is often an increasing function of N.]

The uniform integrated likelihood is

�16�

LU�N� =
∫ 1

0
L�N;p�dp

=
[ k∏
j=1

(
N
sj

)]
0�kN−T+ 1�
0�kN+ 2� ;

N ≥ smax:

This is also graphed in Figure 3 and appears to
be much more useful than either L̂�N� or LC�N�.
There is more to be said here, and we will return to
this example several times.

2.4 Sensitivity Analysis

One of the considerable strengths of using inte-
grated likelihood is that one has a readily available
sensitivity analysis: simply vary π�λ�θ�, and see
how L∗�θ� varies. This can be crucial in evaluating
the robustness of the answer. Also, if considerable
sensitivity is discovered, it is often possible to de-
termine which features of π�λ�θ� are especially
crucial, enabling either subjective elicitation of
these features or the identification of additional
data that could be collected to reduce sensitivity.

Example 4 (Continued). Use of LU�θ� corre-
sponds to choice of a U�0;1� prior distribution for
p. Another common noninformative prior is the
Jeffreys prior, π�p� ∝ p−1/2�1 − p�−1/2, which will
yield an integrated likelihood we denote by LJ�θ�.
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More generally, one could consider Beta �a; a� prior
densities for p; note that a = 1 and a = 1/2 yield
the uniform and Jeffreys priors, respectively. Cal-
culation yields, for the integrated likelihood with a
Beta �a; a� prior for p,

La�N� = ca
[ k∏
j=1

(
N
sj

)]
0�kN−T+ a�
0�kN+ 2a� ;

�17�
N ≥ smax;

where ca is the prior normalization constant ca =
0�2a�/�0�a��2:

We also graph LJ�N� = L1/2�N� in Figure 3;
La�N� for 1/2 < a < 1 can be shown to lie between
LJ�N� andLU�N� = L1�N�, so that sensitivity over
this range can be judged effectively simply by com-
paring LJ and LU. A useful general result here is
that

�18�

LU�N�
LJ�N�

≈
(
1− T+�0:7�

kN+1

)1/2 π√
kN+1

≈
(
1− 21:7

N

)1/2 �1:4�√
N

(in the example);

so that the main difference is the more quickly de-
creasing tail of LU. It is worth emphasizing that
all these reasonable “default” integrated likelihoods
have tails that are considerably sharper than that
of L̂�N� [or LC�N�], indicating that the extremely
flat tail of L̂�N� may be due to a “ridge” effect.

We later discuss the question of how to use in-
tegrated likelihoods. For now, we simply report the
modes of LU�θ� and LJ�θ� for the data s1 = �16;18;
22;25;27�, along with those of L̂�θ� and LC�θ�. Ta-
ble 1 gives these modes along with the correspond-
ing modes for two other data sets, s2 = �16;18;22;
25;28� and s3 = �16;18;22;25;26�. (The reason for
considering such perturbations is that small errors
in collection of count data such as these are almost
inevitable, and one hopes the answer is not overly
sensitive to such errors.)

Table 1
Modes of likelihoods for N

Data set

Likelihood type s1 s2 s3

Profile �L̂�N�� 99 191 69
Conditional �LC�N�� ∞ ∞ ∞
Uniform-integrated �LU�N�� 51 57 46
Jeffreys-integrated �LJ�N�� 54 62 49

While modes alone are surely insufficient as a
summary of likelihoods, the stability of those for
the integrated likelihoods, over both change in the
prior and small perturbations in the data, is quite
appealing. For considerably more complete discus-
sion of sensitivity of integrated likelihood in this
problem, see Lavine and Wasserman (1992). We also
should mention that sensitivity analysis of other
types is certainly possible; see Olkin, Petkau and
Zidek (1981) for an illustration.

3. INTERPRETATION AND USE OF
INTEGRATED LIKELIHOOD

Since we are proposing use of integrated likeli-
hood in general, and not only within the Bayesian
paradigm, we need to discuss how it is to be in-
terpreted and used. We discuss, in order, its use in
likelihood analysis, Bayesian analysis and empirical
Bayes analysis. Note that, of course, one might sim-
ply report the entire integrated likelihood function,
leaving its interpretation and use to the consumer.

3.1 Use in Likelihood Analysis

Those likelihood methods which operate solely on
the given L�θ� can also be used with an integrated
likelihood. Examples of such methods are (1) using
the mode, θ̂, of L�θ� as the estimate of θ; and (2) us-
ing (if θ is a p-dimensional vector)

C =
{
θx − 2 log�L�θ�/L�θ̂�� ≤ χ2

p�1− α�
}

as an approximate 100�1−α�% confidence set for θ,
where χ2

p�1− α� is the �1− α�th quantile of the chi-
squared distribution with p degrees of freedom. The
arguments which justify such methods for profile or
modified profile likelihoods will typically also ap-
ply to integrated likelihoods (and can apply in more
generality; see Sweeting, 1995a, b). Example 4 in
Section 2.4 was one illustration. The following ex-
ample, which will also be used later for other pur-
poses, is another standard example.

Example 5. Suppose that, independently for i =
1; : : : ; p, Xi∼N�µi;1�. The parameter of interest is

θ = 1
p
�m�2 = 1

p

p∑
i=1

µ2
i :

The usual choice of nuisance parameter here is
λ = m/�m�, that is, the “direction” of m in Rp. Note
that λ can also be viewed as a point on the sur-
face of the unit ball in Rp; hence it is natural to
assign λ the uniform prior on this surface. The re-
sulting uniform-integrated likelihood (see Chang
and Eaves, 1990 or Berger, Philippe and Robert,
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1998) is

�19�
LU�θ� ∝ θ−�p−2�/4 exp�−pθ/2�

· I�p−2�/2
(√
pθ�x�

)
;

where �x� = �∑p
i=1 x2

i �1/2 and Iν is the modified
Bessel function of the first type of order ν.

For large p and assuming that θ stays bounded
as p→∞, it can be shown that the mode of (19) is
approximately

�20� θ̂ ≈ 1
p
�x�2 − �p− 1�

p
− 1
p

(
2�x�2
�p− 2� − 1

)−1

:

This is a sensible estimate. For instance, since
��x�2/p − E�X�2/p� → 0 as p → ∞ by the law of
large numbers, it is immediate that θ̂−θ→ 0. Thus
θ̂ is consistent for θ.

In contrast, the profile likelihood does not yield a
consistent estimator. Indeed, the profile likelihood
for this problem can easily be seen to be

�21� L̂�θ� ∝ exp
(
−��x� −

√
pθ�2

)
;

which has mode θ̂ = �x�2/p: Clearly θ̂ − θ → 1, es-
tablishing the inconsistency. (There do exist “classi-
cal” methods which would yield reasonable answers.
One such is to look at the marginal distribution of∑p
i=1 X2

i , which is a noncentral chi-square distri-
bution with parameter pθ; the resulting likelihood,
though complicated, will behave reasonably.)

3.2 Use in Bayesian Analysis

It is natural to seek to use an integrated likeli-
hood, L�θ�, via the Bayesian approach of choosing a
prior distribution, π�θ�, for the parameter of inter-
est and obtaining the posterior distribution

π�θ � x� ∝ L�θ�π�θ�:
This is completely legitimate when π�λ�θ� is a
proper distribution, as observed in Section 1.3.2.
When π�λ�θ� is improper, however, certain in-
coherencies such as marginalization paradoxes
(Dawid, Stone and Zidek, 1973) can creep in, mak-
ing this practice questionable. Fortunately, the
practical effect of such incoherencies appears to be
minor, and they can be minimized by appropriate
choice of π�λ�θ� [and π�θ�], such as the “reference
prior” (see Section 4.4).

In Section 1.3.3, we listed some of the ways in
which L�θ� can be of direct value to a Bayesian.
There is an additional, rather subtle but important,
reason for Bayesians to consider approaching the
problem through integrated likelihood: one is con-
siderably less likely to make a damaging mistake
through use of improper prior distributions.

Example 5 (Continued). Bayesians need not
classify parameters as interesting or nuisance.
Indeed, the common “naive” default Bayesian
approach to this problem would be to base infer-
ence on the noninformative prior π�m� = 1 for
m = �µ; : : : ; µp�; the resulting posterior distribu-
tion, given x = �x1; : : : ; xp�, is

�22� π�m � x� = �2π�−p/2 exp
{
−

p∑
i=1

�µi − xi�2/2
}
:

If, now, one is interested in θ = �∑p
i=1 µ2

i �/p,
one can easily determine the posterior distribution
π�θ�x� for θ, since, from (22), pθ has a noncentral
chi-square distribution with p degrees of freedom
and noncentrality parameter �x�2 =∑p

i=1 x
2
i .

This posterior for θ is “bad.” For instance, a com-
mon estimate of θ is the posterior mean, which here
would be θ̂ = �x�2/p + 1. This is badly inconsistent
as p → ∞, in the sense that θ̂ − θ → 2. The pos-
terior median and posterior mode also exhibit this
behavior.

Thinking in terms of θ and the nuisance param-
eters λ in Section 3.1 avoided this problem. It was
“obvious” to use the uniform distribution on λ to in-
tegrate out the nuisance parameters, and the ensu-
ing integrated likelihood in (19) will work well with
any sensible π�θ�. The “error” in use of π�m� = 1
above can be seen by changing variables to �θ; λ�.
Then π�m� = 1 is transformed into

π�θ; λ� = θ−�p−2�/2 π�λ � θ�;
where π�λ�θ� is the uniform distribution on the sur-
face of the unit ball, as before. Thus, π�m� = 1 has
unwittingly introduced a drastic and unreasonable
prior distribution on θ. Separately considering λ and
θ, through integrated likelihood, can help to avoid
this type of error. (It should be noted that sophisti-
cated default Bayesian approaches, such as the ref-
erence prior approach, automatically avoid this type
of error; hence formal consideration of integrated
likelihood is not strictly necessary if reference pri-
ors are employed.)

We have not discussed which priors π�θ� should
be used with L�θ�. Subjective choices, when avail-
able, are to be encouraged. Default choices and ex-
amples of the possible importance of the choice are
discussed in Section 5.1.

3.3 Use in Empirical Bayes Analysis

In a variety of situations, including empirical
Bayes analysis, it is common to estimate nuisance
parameters using integrated likelihood and then to
replace them in the likelihood with their estimates.
This also goes under the name “Type II maximum
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likelihood” (see Good, 1983). We content ourselves
here with an example.

Example 2 (Continued). Suppose now that θ =
m = �µ; : : : ; µp� is of interest, with nuisance param-
eter λ = �ξ; τ2�. The joint “likelihood” of all param-
eters is

�23�
L�θ; λ� ∝ exp

{
−

p∑
i=1

�xi − µi�2/2
}

· exp
{
−

p∑
i=1

�µi − ξ�2/�2τ2�
}
;

which already includes the given prior distribution,
π�m�ξ; τ2�. In any case, to eliminate ξ and τ2 the
standard method is to form the integrated likelihood
from (7),

L�λ� = L�ξ; τ2� =
∫
L�θ; λ�dθ

∝ �1+ τ2�−p/2 exp
{−p�s2 + �x− ξ�2�

2�1+ τ2�

}
;

estimate �ξ; τ2� by the mode

ξ̂ = x; τ̂2 = max�0; s2 − 1�
and plug back into (23). After simplification, the re-
sult is

�24� L�θ� ∝ exp
{
− 1

2v

p∑
i=1

�µi −mi�2
}
;

where v = τ̂2/�1 + τ̂2� and mi = vxi + �1 − v�x.
This is actually typically interpreted directly as the
posterior distribution of m.

Bayesians would argue that a superior approach
is to integrate directly,

�25� L�θ� =
∫
L�θ; λ�π�λ�dλ

[note that it would be incorrect to use the con-
ditional prior π�λ�θ� here, since L�θ; λ� already
contains π�θ�λ� as the second factor in (23); only
the marginal prior for λ is still needed]. A common
choice for π�λ� is π�λ� = π�ξ; τ2� = 1 [although
Berger and Strawderman, 1996, suggest that
π�ξ; τ2� = �1+ τ2�−1 is better]. In a sense, the supe-
riority of (25) over (24) is almost obvious, since (e.g.)
if τ̂2 = 0, then v = 0 and mi = x, so that (24) would
imply that all µi = x with absolute certainty. This
is another example of the potential inadequacy of
failing to incorporate the uncertainty in nuisance
parameters.

Although the direct integrated likelihood in (25)
is arguably superior to (24), it is worth noting that
estimation of λ in L�θ; λ� by Type II MLE is at

least better than using profile likelihood. Indeed,
the profile likelihood can be easily seen to be

�26�
L̂�θ� ∝

( p∑
i=1

�µi − µ�2
)−p/2

· exp
{
−

p∑
i=1

�µi − xi�2/2
}
:

It is hard to know what to do with L̂�θ�; the
first term has a singularity along the line m =
�c; c; : : : ; c�, and it is far from clear which, if any, of
the other modes are reasonable.

4. VERSIONS OF INTEGRATED LIKELIHOOD

As mentioned in the introduction, any conditional
prior density π�λ�θ� can be used to define an in-
tegrated likelihood. In this section, we review the
more common choices of default or noninformative
conditional priors and discuss their strengths and
weaknesses.

4.1 Proper Conditional Priors

When π�λ�θ� is naturally a proper conditional
density, certain of the concerns with interpret-
ing and using the resulting integrated likelihood
disappear. In particular, the resulting integrated
likelihood can unambiguously be interpreted as a
likelihood and can be combined with any (proper)
prior density for θ to produce a true posterior.
Example 5 provides an illustration of this, with
π�λ�θ�—the uniform distribution on the sphere of
rotations—clearly being proper. Example 4 offers
another illustration, with both the Jeffreys and the
uniform distributions proper on the unit interval.

Today it is popular, for computational reasons, to
use “vague” proper priors (often “vague” conjugate
priors). Unfortunately, the use of such does not re-
ally provide protection against the concerns that
arise with use of improper conditional priors; if a
difficulty would arise in using an improper condi-
tional prior, the same difficulty would manifest itself
through great sensitivity to the degree of “vague-
ness” chosen.

4.2 Uniform Conditional Prior

The uniform choice of π�λ�θ� = 1 has already been
mentioned in the introduction and in several of the
examples. It is still the most commonly used de-
fault conditional prior and is an attractive choice
when nothing else is available. (When λ is a vec-
tor, many even prefer the uniform prior to the Jef-
freys prior because of concerns with the behavior of
the Jeffreys prior in higher dimensions.) There are,
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however, well-documented difficulties with the uni-
form prior, perhaps the most well known being its
lack of invariance to reparameterization. (Using the
uniform prior for a positive parameter λ will yield
a different integrated likelihood than using the uni-
form prior for its logarithm λ∗ = log λ, for exam-
ple.) While this tends not to be a serious issue in
practice (Laplace, 1812, suggested that parameteri-
zations are typically chosen so that a uniform prior
is reasonable), it does suggest that a uniform prior
cannot be the final answer.

A more serious potential problem with the uni-
form conditional prior is that the resulting inte-
grated likelihood may not exist. Here is a simple
example.

Example 6. Suppose X1 and X2 are independent
N�θ; σ2� and the uniform prior π�σ2�θ� = 1 is used
for the nuisance parameter σ2. Then

LU�θ� =
∫ ∞

0

1
2πσ2

· exp
{
− 1

2σ2
��x1− θ�2+�x2− θ�2�

}
dσ2

= ∞:
In contrast, use of the usual conditional prior
π�σ2�θ� = 1/σ2 (see Section 4.4) would yield

�27� LR�θ� = 1
π��x1 − θ�2 + �x2 − θ�2�

:

Interestingly, this latter integrated likelihood co-
incides with the profile likelihood and with the
marginal likelihood.

4.3 Right Haar Measure

If f�x�θ; λ� is invariant with respect to an
amenable group whose action on the parame-
ter space leaves θ unchanged, then the compelling
choice for π�λ�θ� is the induced right invariant Haar
density for λ (see Berger, 1985, and Eaton, 1989, for
definitions). Virtually all default Bayesian meth-
ods recommend this conditional prior, as do various
“structural” and even frequentist approaches.

Example 1 (Continued). The model is invariant
under a location shift, and the right invariant Haar
density for θ is the uniform density π�θ�σ2� = 1.

Example 5 (Continued). The model is invariant
under rotations of x and m, and the rotation group
leaves θ = �m�2/p unchanged. The right invariant
Haar density (actually the Haar density here, since
the rotation group is compact and hence unimodu-
lar) induced on λ = m/�m� is the uniform density on
the unit sphere discussed in Section 3.1.

For formal discussion and other examples of use
of the right Haar density as the conditional prior,
see Chang and Eaves (1990) and Datta and Ghosh
(1995a). The chief limitation of this approach is the
rarity of suitable invariance. A secondary limitation
is that, if the group is not amenable, use of the re-
sulting right Haar density can be problematical.

4.4 Conditional Reference Integrated Likelihood

The reference prior algorithm (Bernardo, 1979;
Berger and Bernardo, 1989, 1992; Bernardo and
Smith, 1994) is a quite general and powerful tool for
obtaining “automatic” priors to be used in Bayesian
analysis. It is motivated by trying to find that prior
distribution which is least informative, in the sense
of maximizing (in an asymptotic sense) the expected
Kullback–Liebler divergence between the prior dis-
tribution and the posterior distribution. (Intuitively,
such a prior distribution allows the data to “speak
most loudly.”) The reference prior is typically the
same as the Jeffreys prior in the one-dimensional
case; when the parameter space is multivariate, the
reference algorithm takes into account the order of
inferential importance of the parameters, by parti-
tioning the parameter vector ω = �ω1;ω2; : : : ; ωp�
into several blocks of decreasing interest to the in-
vestigator. Berger and Bernardo suggest using the
one-at-time reference prior which corresponds to
partitioning ω into p one-dimensional blocks.

Since the reference prior depends on which
parameters are of primary interest, it is usually
different from the Jeffreys prior. In numerous mul-
tivariate examples, it has been shown to perform
considerably better than the Jeffreys prior. Also, it
seems to typically yield procedures with excellent
frequentist properties (Ghosh and Mukerjee, 1992;
Liseo, 1993; Sun, 1994; Datta and Ghosh, 1995a, b).

In the standard Bayesian approach, the reference
prior is used to produce the joint posterior distribu-
tion for �θ; λ�; then λ is integrated out to obtain the
marginal posterior for θ. In this approach, there is
no need to develop the notion of a likelihood for θ.
Indeed, any attempt to do so directly, via an expres-
sion such as (10), is made difficult by the typical
impropriety of reference priors; one cannot define
conditional and marginal distributions directly from
an improper distribution.

Therefore, to produce a reference-integrated like-
lihood, we need to slightly modify the reference prior
algorithm. In this paper, we only discuss the “two
groups” case, where the parameter vector is split
in the parameters of interest, θ, and the nuisance
parameters, λ; extensions to several groups is im-
mediate. For simplicity of notation, we will take θ
and λ to be scalars.
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Under certain regularity conditions (see, e.g.,
Bernardo and Smith, 1994), basically the existence
of a consistent and asymptotically normal estimator
of the parameters, the reference prior for λ, when θ
is known, is defined to be

�28� π∗�λ � θ� ∝
√
I22�θ; λ�;

where I22�θ; λ� is the lower right corner of the ex-
pected Fisher information matrix. Since direct use
of this, as in (10), to obtain an integrated likeli-
hood is problematical due to its typical impropriety
(Basu, 1977), we employ the idea of the Berger and
Bernardo (1992) reference prior algorithm and con-
sider a sequence of nested subsets of � = 2 × 3,
�1;�2; : : :, increasing to � and over which (28) can
be normalized; then the conditional reference prior,
and associated integrated likelihood, will be defined
as the appropriate limit. Indeed, defining 3m�θ� =
�λx �θ; λ� ∈ �m� and the normalizing constant over
this compact set as Km�θ�−1 =

∫
3m�θ� π

∗�λ � θ�dλ,
the conditional reference prior is defined as

�29� πR�λ � θ� = h�θ�π∗�λ � θ�;
where

�30� h�θ� = lim
m→∞

Km�θ�
Km�θ0�

;

assuming the limit is unique up to a proportionality
constant for any θ0 in the interior of 2. The corre-
sponding integrated likelihood is then given by

�31� LR�θ� =
∫
3
f�x � θ; λ�πR�λ � θ�dλ;

which is in the “standard” form of an integrated
likelihood.

This definition of the conditional reference prior
can be shown to be consistent with the definition
of the joint reference prior πR�θ; λ� in Berger and
Bernardo (1992), providing the joint reference prior
exists and (30) holds, in the sense that then

�32� πR�θ; λ� = πR�λ � θ�πR�θ�
for some function πR�θ�. We will then define πR�θ�
to be the marginal reference prior for θ. The condi-
tional reference prior can be shown to share many of
the desirable properties of the joint reference prior,
such as invariance to reparameterization of the nui-
sance parameters. Note that this conditional refer-
ence prior was also considered in Sun and Berger
(1998), although for different purposes.

Example 7. The coefficient of variation. Let X1;
X2; : : : ;Xn be n iid random variables with distri-
bution N�µ;σ2�. The parameter of interest is the
coefficient of variation θ = σ/µ and λ = σ is the

nuisance parameter. The expected Fisher informa-
tion matrix, in the �θ; λ� parameterization, is

�33� I�θ; λ� =




1
θ4

− 1
λθ3

− 1
λθ3

2θ2 + 1
λ2θ2


:

The above algorithm gives

�34� π∗�λ � θ� ∝ 1
λ

√
2θ2 + 1
θ2

:

A natural sequence of compact sets in the �µ;σ�
parameterization is given by

�m =
{
�µ;σ�x − am < µ < am;

1
bm

< σ < bm

}

for increasing sequences am and bm that diverge to
infinity. Then the resulting 3m�θ� sequence is

3m�θ� =





�1/bm; bm�; �θ� > bm
am
;

�1/bm; �θ�am�;
1

ambm
< �θ� < bm

am
;

\; �θ� < 1
ambm

:

Therefore

K−1
m =





2

√
2θ2 + 1
θ2

log bm; �θ� > bm
am
;

√
2θ2 + 1
θ2

log��θ�ambm�;

1
ambm

< �θ� < bm
am
;

0; �θ� < 1
ambm

;

and

h�θ� = lim
m→∞

Km�θ�
Km�θ0�

∝
√

θ2

2θ2 + 1
:

Thus the conditional reference prior and integrated
likelihood are πR�λ � θ� = 1/λ and

�35�

LR�θ� =
∫ ∞

0

1
λ
f�x � θ; λ�dλ

∝ exp
[
− n

2θ2

(
1− x2

D2

)] ∫ ∞
0
zn−1

· exp
[
−n

2
D2
(
z− x

D2θ

)2]
dz;

where x is the sample mean and D2 = ∑
x2
i /n.

[Note, also, that the problem is invariant to scale
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changes, and π�λ � θ� = 1/λ is the resulting right
invariant Haar density.] This example will be fur-
ther discussed in Section 5.1.

Example 5 (Continued). When θ = �∑p
1 µ

2
i �/p is

the parameter of interest, then the conditional ref-
erence prior for the nuisance parameters λ is simply
the uniform prior on the surface of the unit ball, as
discussed in Section 3.1.

Example 6 (Continued). Unlike the conditional
uniform prior, the conditional reference prior for
this model, namely πR�λ � θ� ∝ 1/λ, yielded a finite
integrated likelihood in (27). Of course, with three
or more observations, LU�θ� would also be finite
here, but the example is indicative of the commonly
observed phenomenon that reference priors virtu-
ally always yield finite integrated likelihoods, while
the uniform prior may not.

4.5 Other Integrated Likelihoods

In one sense, there are as many integrated likeli-
hoods as there are priors. For instance, any method
which yields a noninformative prior, πN�θ; λ�, leads
to an integrated “likelihood”

�36� L�θ� ∝
∫
L�θ; λ� πN�θ; λ�dλ:

Since πN�θ; λ� is a joint prior distribution on both θ
and λ, however, this is not formally in the spirit of
(3); equation (36) would actually yield the proposed
marginal posterior distribution for θ and must be
normalized by dividing by the marginal πN�θ� =∫
πN�θ; λ�dλ (if finite) to yield a likelihood.
Reference noninformative priors offer a ready so-

lution to this dilemma, since the reference prior al-
gorithm itself suggested a suitable πR�λ�θ� for use
in (3). While it is easy to normalize proper priors
correctly, other noninformative priors are more dif-
ficult to modify to produce an integrated likelihood.
We illustrate the possibility by considering how to
modify the Jeffreys prior approach to yield an in-
tegrated likelihood, since the Jeffreys prior is prob-
ably the most widely used default prior distribu-
tion. (The motivation for the Jeffreys prior can be
found in Jeffreys, 1961, and was primarily the de-
sire to construct default priors such that the result-
ing Bayesian answers are invariant under reparam-
eterization.)

The Jeffreys prior for �θ; λ� is

πJ�θ; λ� ∝
√

det�I�θ; λ��;
where I�θ; λ� is the expected Fisher information
matrix. To obtain a reasonable πJ�λ�θ�, perhaps the
most natural option is to simply treat θ as given,

and derive the Jeffreys prior for λ with θ given. It
is easy to see that the result would be

�37� π∗�λ � θ� ∝
√

det�I22�θ; λ��;
where I22�θ; λ� is the corner of I�θ; λ� corresponding
to the information about λ. This, however, also has
ambiguities. In Example 7, for instance, we found
from (34) that π∗�λ�θ� ∝ λ−1

√
2+ θ−2 but, since θ

is now to be viewed as given, the factor
√

2+ θ−2 is
just a proportionality constant which can be ignored
(the problem does not arise for proper priors, since
such a factor would disappear in the normalizing
process).

The net result of this reasoning suggests that
the correct definition of πJ�λ�θ� is as given in (37),
but ignoring any multiplicative factors which only
involve θ. Thus, in Example 7, we would obtain
πJ�λ�θ� = 1/λ which is the same as πR�λ�θ�. We
have not explored the quality of integrated likeli-
hoods based on πJ�λ�θ�, but suspect that they would
typically be satisfactory.

The other prominently studied default priors are
the probability matching priors, designed to produce
Bayesian credible sets which are optimal frequen-
tist confidence sets in a certain asymptotic sense.
Literature concerning these priors can be accessed
through the recent papers by Berger, Philippe
and Robert (1998), Datta and Ghosh (1995a, b)
and Ghosh and Mukerjee (1992). We have not ex-
plored the use of these priors in defining integrated
likelihood.

5. LIMITATIONS OF INTEGRATED LIKELIHOOD

5.1 The Posterior Distribution May Be Needed

As in the univariate case without nuisance
parameters, the integrated likelihood function con-
tains the information provided by the data (filtered
by the conditional prior on λ) and often can be used
directly for inferential purposes. In some cases,
however, L∗�θ� needs to be augmented by a prior
distribution for θ (possibly noninformative), yield-
ing a posterior distribution for θ, before it can serve
as a basis for inference. (We are envisaging that
the posterior distribution would be used in ordi-
nary Bayesian ways, to construct error estimates,
credible sets, etc.)

Example 4 (Continued). In Section 2.4, we used
only the modes of LU�N� and LJ�N� as point es-
timates for N. How can we do more, for example,
convey the precision of the estimates?

Classical approaches have not made much head-
way with this problem, and the “standard” non-
informative prior Bayesian approach also fails.
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Fig. 4. Posterior distributions proportional to LU�N�π1�N�;LJ�N�π1�N�; LU�N�π2�N� and LJ�N�π2�N�.

The standard noninformative prior for N would be
π�N� = 1. But La�N� behaves like cN−a for large
N (see Kahn, 1987), as does the resulting poste-
rior, so for a ≤ 1 the posterior will be improper
and Bayesian analysis cannot succeed. (In a sense
the difficulty here is that sophisticated noninfor-
mative prior methodology does not really exist for
discrete N; see the next example for an illustration
of what such methodology can do for a continuous
parameter.)

Subjective Bayesians would argue the importance
of introducing proper subjective prior distributions
here, and it is hard to disagree. This could be done
either by keeping the (vague) π�N� = 1, but intro-
ducing a Beta �a; b� prior for θ with a > 1 (in which
case Kahn, 1987, can be used to show that the pos-
terior is proper), or by choosing an appropriately
decreasing π�N�.

One could still, however, argue for the benefits of
having a default or conventional analysis available
for the problem. To go along with the default LU�N�
or LJ�N� [see (16) and (17)], one might consider, as
default priors, either π1�N� = 1/N (Raftery, 1988;
Moreno and Girón, 1995; de Alba and Mendoza,
1996) or the Rissanen (1983) prior

π2�N� ∝
kN∏
i=0

�log�i��N��−1;

where log�0��N�=N and log�k+1��N�= log log�i��N�,
with kN the largest integer such that log�kN��N� >
1. This latter prior is, in some sense, the vaguest

possible proper prior. Both π1 and π2 can easily be
shown to yield proper posteriors when paired with
either LU�N� or LJ�N�. Figure 4 shows the four
resulting posterior distributions for the data s =
�16;18;22;25;27�.

Inferential conclusions are straightforward from
these proper posteriors. For instance, the quartiles
of the four posteriors are given in Table 2. (Provid-
ing quartiles is more reasonable than providing mo-
ments when, as here, the distributions have large
and uncertain tails.)

Compare this with the much more limited (and
questionable) inferences provided in Table 1. While
the answers in Table 2 vary enough that a subjective
Bayesian analysis might be deemed by many to be
necessary, a case could also be made for choosing, as
a conventional analysis, the LUπ1 or LJπ2 posterior
distributions.

The Gleser–Hwang class. Example 4 is a rather
special situation, because the parameter is discrete.
However, similar phenomena occur for a large

Table 2
Quartiles of the posterior distributions for N

Posterior First quartile Median Third quartile

LU�N� π1�N� 51 80 158
LJ�N� π1�N� 59 112 288
LU�N� π2�N� 44 63 106
LJ�N� π2�N� 47 74 152
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class of problems, which includes Fieller’s problem,
errors-in-variables models, and calibration models.
We begin discussion of this class by presenting an
example and then discuss the characterization of
the class given by Gleser and Hwang (1987).

Example 7 (Continued). The use of the condi-
tional reference prior, π�λ�θ� ∝ 1/λ, for the nuisance
parameter λ = σ in the coefficient of variation prob-
lem leads to the integrated likelihood (35). It can be
easily seen that this likelihood does not go to zero
as �θ� goes to infinity, making direct inferential use
of LR�θ� difficult. To progress, one can bring in the
marginal reference prior

�38� πR�θ� ∝ 1

�θ�
√
θ2 + 1/2

:

This leads to the reference posterior distribution,

�39�

πR�θ � x�

∝ 1

�θ�
√
θ2 + 1/2

exp
[
− n

2θ2

(
1− x2

D2

)]

·
∫ ∞

0
zn−1 exp

[
−n

2
D2
(
z− x

D2θ

)2]
dz;

which, interestingly, is proper, and hence can be
used for inference. This is an example of the rather
amazing property of reference (and Jeffreys) priors
that they virtually always seem to yield proper pos-
terior distributions, at least in the continuous pa-
rameter case.

Of course, one might object to using (39) for in-
ference, either because a Bayesian analysis is not
wanted or because the introduction of the reference
prior seems rather arbitrary. Indeed, it is difficult
to come up with auxiliary supporting arguments for
use of the reference prior here. For instance, the re-
sulting Bayesian inferences will often not have par-
ticularly good frequentist properties, which is one of
the commonly used arguments in support of refer-
ence priors.

It is important, however, to place matters in per-
spective. For this situation, there simply are no
methods of “objective” inference that will be viewed
as broadly satisfactory. Consider likelihood meth-
ods, for instance. The profile likelihood for θ can be
shown to be

L̂�θ� ∝
(

θ

g�x; θ�

)n

· exp
[
− n

2θ2
+ 2n
g2�x; θ��xg�x; θ�− θ

2D2�
]
;

where g�x; θ� = −x+�sgnθ�
√
x2 + 4D2θ2. It is easy

to see that, as �θ� → ∞, this approaches a positive

constant. The correction factor for the profile likeli-
hood given by the Cox–Reid (1987) method (see the
Appendix) yields the conditional profile likelihood

L̂C�θ�

∝
{
�θ��x sgn θ+

√
x2+4D2θ2�

}

·
{√

θ2+1/2

·
√

4θ2D4+x2(x sgn θ+
√
x2+4D2θ2 )2

}−1

· L̂�θ�:

(40)

It is easy to see that this, too, is asymptotically con-
stant.

The similarities between the three different like-
lihoods [LR�θ�, L̂�θ� and L̂C�θ�] are better appre-
ciated in the special case where x = 0 and D = 1.
Then

�41�
LR�θ� ∝ L̂�θ�

∝
√
θ2 + 1/2
�θ� L̂C�θ� ∝ exp

(
− n

2θ2

)
:

These are graphed in Figure 5, along with πR�θ�x�.
Note that the conditional profile likelihood is vir-
tually indistinguishable from the other likelihoods.
There is no appealing way to use these likelihoods
for inference.

Frequentists might argue that this simply reveals
that no type of likelihood or Bayesian argument
is appealing for this example. However, frequen-
tist conclusions are also very problematical here,
since this example falls within the class of prob-
lems, identified in Gleser and Hwang (1987), where
frequentist confidence procedures must be infinite
sets (and often the whole parameter space) with pos-
itive probability. [Saying that a 95% confidence set
is �−∞;∞� is not particularly appealing]. First, we
restate the Gleser and Hwang result in our nota-
tion.

Theorem 1 (Gleser and Hwang, 1987). Consider
a two parameter model with sampling density
f�x�θ; λ�, θ ∈ 2, λ ∈ 3, on the sample space X . Sup-
pose there exists a subset 2∗ of 2 and a value of λ∗

in the closure of 3 such that θ has an unbounded
range over 2∗ and such that for each fixed θ ∈ 2∗
and x ∈ X ,

�42� lim
λ→λ∗

f�x � θ; λ� = f�x � λ∗�

exists, is a density on X and is independent of θ.
Then every confidence procedure C�X� for θ with
positive confidence level 1− α will yield infinite sets
with positive probability.
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Fig. 5. Reference, profile and conditional likelihoods and reference posterior for the coefficient of variation problem, with x = 0; n = 5
and D = 1.

To show that Example 7 is an example of this
type, we must slightly generalize Theorem 1, as fol-
lows.

Theorem 1′. Assume there exist a sequence
�θm; λm� and a value λ∗; with λm → λ∗ and
�θm� → ∞; such that

�43� lim
m→∞

f�x � θm; λm� = f�x � λ∗�;

for some density f�x � λ∗�. Then the conclusion of
Theorem 1 holds.

The proof in Gleser and Hwang (1987) can be fol-
lowed exactly, using the new condition in obvious
places.

Example 7 (Continued). If θ = σ/µ and the nui-
sance parameter is chosen to be λ = µ, then defining
λm = 1/�θm� with �θm� → ∞ yields

lim
m→∞

f�x � θm; λm� =
1

�2π�n/2 exp
{
−nD

2

2

}
;

so that (43) is satisfied. Hence frequentist confi-
dence sets must be infinite with positive probability.

Another interesting fact is that the class of densi-
ties satisfying (43) appears to be related to the class
of densities for which the profile likelihood does not
go to zero at infinity.

Lemma 1. Under the conditions of Theorem 1′, the
profile likelihood does not converge to zero.

Proof. From condition (43),

lim
m→∞

sup
λ∈3

f�x � θm; λ� ≥ lim
m→∞

f�x � θm; λm�

= f�x � λ∗� > 0:

Recall that this class of densities, which are very
problematic from either a likelihood or a frequentist
perspective, includes a number of important prob-
lems (in addition to the coefficient of variation prob-
lem) such as Fieller’s problem, errors-in-variables
models and calibration models. One can make a con-
vincing argument that such problems are simply not
amenable to any “objective” analysis; prior informa-
tion is crucial and must be utilized. If, however, one
is unwilling or unable to carry out a true subjec-
tive Bayesian analysis, then a case can be made for
having standard “default” analyses available. The
Bayesian analyses with reference noninformative
priors, such as that leading to πR�θ�x� in Example 7,
are arguably the best candidates for such “default”
analyses.

Visualization. We have argued that, for certain
important classes of problems, inference appears
impossible based on L�θ� alone. A counterargument
is sometimes advanced, to the effect that formal
inference is not necessary; it may suffice simply
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to present L�θ� itself as the conclusion, with con-
sumers learning to interpret likelihood functions
directly.

One difficulty with this argument is that likeli-
hood functions can appear very different, depending
on the parameterization used.

Example 7 (Continued). The conditional refer-
ence likelihood, LR�θ�, for x = 1, n = 2 and D = 2,
is presented in Figure 6a. Suppose, instead, that
the parameterization ξ = θ/�1+ �θ�� had been used.
The conditional reference likelihood for ξ can then
easily be seen to be

L̃R�ξ� = LR�ξ/�1− �ξ���;

which is plotted in Figure 6b over �−1;1�, the range
of ξ. Visually, L̃R�ξ� and LR�θ� appear to convey
markedly different information: for L̃R�ξ� the “lo-
cal” mode appears to dominate, while for LR�θ� it
appears to be insignificant relative to the huge tail.
Yet these two functions clearly reflect the same in-
formation.

Introducing π�θ� removes this difficulty [provid-
ing that the method used for obtaining π�θ� is in-
variant under reparameterization of θ], because the
Jacobian will correct for the influence of the change
of variables. Subjective priors will be suitably in-
variant, as are the Jeffreys and reference priors (see
Datta and Ghosh, 1996).

Example 7 (Continued). The marginal reference
prior, πR�θ� in (38), results in the proper posterior
in (39). If, instead, the ξ parameterization had been
used, the marginal reference prior for ξ would be

π̃R�ξ� = πR�ξ/�1− �ξ��� · �1− �ξ��−2;

which is obtainable from πR�θ� by straightforward
change of variables. Because of this invariance of
the prior, it is clear that the two posteriors, πR�θ �
x� ∝ LR�θ�πR�θ� and π̃�ξ � x� ∝ L̃R�ξ�π̃R�ξ�, are
simple transformations of each other. Figure 7a
and 7b graphs these two posteriors for the same
situation as in Figure 6. These seem to be visu-
ally satisfactory, in the sense of conveying similar
information.

One possibility for “correcting” likelihoods to pre-
vent this visualization problem is to mimic the
Bayesian approach by including a “Jacobian” term
to account for reparameterization. Various sug-
gestions to this effect have been put forth in the
likelihood literature, from time to time, but none
seem to have caught on.

5.2 Premature Elimination of
Nuisance Parameters

Any summary reduction of data runs the risk of
losing information that might later be needed, and
nuisance parameter elimination is no exception. We
review a few of the ways in which this loss of in-
formation can occur. The most basic situation that
can cause problems is if more data are later to be
observed.

Example 1 (Continued). Defining S2
1=
∑n
i=1�xi−

x�2/n, the uniform integrated likelihood for σ2 was
LU1 �σ2� ∝ σ−�n−1� exp�−nS2

1/2σ
2�. Suppose ad-

ditional data xn+1; : : : ; xn+m become available.
The corresponding uniform integrated likeli-
hood for σ2 from these data alone is LU2 �σ2� ∝
σ−�m−1� exp�−mS2

2/2σ
2�, with S2

2 being the cor-
responding sum of square deviations. To find the
overall likelihood for σ2, it is tempting to multiply
LU1 �σ2� and LU2 �σ2�, since the two data sets were
independent (given the parameters). Note, however,
that, if all the data were available to us, we would
use the integrated likelihood

LU3 �σ2� ∝ σ−�n+m−1� exp
{−�n+m�S2

3

2σ2

}
;

where S2
3 is the overall sum of square deviations,

and this is not the product of LU1 and LU2 . Indeed,
from knowledge only of LU1 and the new data, LU3
cannot be recovered. (To recover LU3 , one would also
need x from the original data.)

A second type of loss of information can occur in
meta-analysis, where related studies are analyzed.

Example 2 (Continued). We generalize this ex-
ample slightly, supposing the observations to be
Xij ∼ N�µi; σ2

i �; j = 1; : : : ; ni and i = 1; : : : ; p.
Of interest here are the study-specific µi or the
overall �ξ; τ2�, where µi ∼ N�ξ; τ2�; i = 1; : : : ; p.
Such data might arise from studies at p differ-
ent sites, with the means at the different sites
being related to the overall population mean, ξ,
as indicated. Each site might choose to eliminate
the nuisance parameter σ2

i by integration [using,
say, πR�σ2

i � = 1/σ2
i ], resulting in the report of the

integrated likelihoods

�44� LRi �µi� ∝
[
S2
i + �xi − µi�2

]−ni/2;

where xi =
∑ni
j=1 xij/ni and S2

i =
∑ni
j=1�xij−xi�2/ni,

i = 1; : : : ; p. One might then be tempted to use the
product of these likelihoods [along with the knowl-
edge that µi ∼N�ξ; τ2�] in the meta-analysis.
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Fig. 6. Integrated likelihoods for Example 7 when x = 1; n = 2 and D = 2. (a) θ parameterization; (b) ξ parameterization.

If the σ2
i were completely unrelated, such an anal-

ysis would be reasonable. Typically, however, the σ2
i

would themselves be closely related, as in Hui and
Berger (1983), and their “independent” elimination
by integration would then not be appropriate. In-
terestingly, in this situation the original likelihood
can be recovered (assuming the original model is

known), in that the sufficient statistics ni, xi and
S2
i can all be found from (44). But one would have

to use these sufficient statistics to reconstruct the
full likelihood and not use the LRi �µi� directly.

A third situation in which one should not use an
integrated likelihood for θ is when prior informa-
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Fig. 7. The reference posteriors for the situation of Figure 6; (a) θ parameterization; (b) ξ parameterization.

tion is available in the form of a conditional prior
distribution π�θ�λ�. If λ is first eliminated from the
likelihood, then one cannot subsequently make use
of π�θ�λ�. [One possible default treatment of this sit-
uation is described in Sun and Berger (1998): first
find the reference marginal prior for λ, based on
π�θ�λ�, and then find the resulting posterior for θ.]

While one should be aware of the potential prob-
lems in premature elimination of nuisance param-
eters, the situation should be kept in perspective.
Problems arise only if the nuisance parameters con-
tain a significant amount of information about how
the data relate to the quantities of interest; in such
a situation one should delay integrating away the
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nuisance parameters as long as possible. In the ex-
amples discussed above, however, the nuisance pa-
rameters hold little enough information about the
quantities of interest that the answers obtained by
simply multiplying the integrated likelihoods are
reasonably close to the answers from the “correct”
likelihood. Indeed, much of statistical practice can
be viewed as formally or informally eliminating nui-
sance parameters at different stages of the analysis,
then multiplying the resulting likelihoods. The trick
is to recognize when this is a reasonable approxima-
tion and when it is not.

APPENDIX

To derive a conditional profile likelihood for the
coefficient of variation in Example 7, one first needs
to obtain an orthogonal parameterization. It can be
shown that ξ = �

√
2σ2 + µ2�−1 is orthogonal to θ.

Cox and Reid (1987) defined the conditional profile
likelihood as

L̂C�θ� = L̂�θ��jξ;ξ�θ; ξ̂θ��−1/2;

where �jξ;ξ�θ; ξ̂θ�� is the lower right corner of the
observed Fisher Information matrix, and ξ̂θ is the
conditional maximum likelihood estimate. Calcula-
tions show that

�jξ;ξ�θ; ξ̂θ��−1/2

∝ �θ�
(
x+

√
x2 + 4D2θ2

)
√
θ2 + 1/2

√
4D4θ2 + x2(x+

√
x2 + 4D2θ2

)2 :

Together with the fact that the profile likelihood is
invariant with respect to the choice of the nuisance
parameters, one obtains expression (40).
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Laplace, P. S. (1812). Theorie Analytique des Probabilities
Courcier, Paris.

Lavine, M. and Wasserman, L. A. (1992). Can we estimate N?
Technical Report 546, Dept. Statistics, Carnegie Mellon Univ.

Liseo, B. (1993). Elimination of nuisance parameters with refer-
ence priors. Biometrika 80 295–304.

McCullagh, P. and Tibshirani, R. (1990). A simple method for
the adjustment of profile likelihoods. J. Roy. Statist. Soc.
Ser. B 52 325–344.

Moreno, E. and Girón, F. Y. (1995). Estimating with incomplete
count data: a Bayesian Approach. Technical report, Univ.
Granada, Spain.

Neyman, J. and Scott, E. L. (1948). Consistent estimates based
on partially consistent observations. Econometrica 16 1–32.

Olkin, I., Petkau, A. J. and Zidek, J. V. (1981). A comparison of
n estimators for the binomial distribution. J. Amer. Statist.
Assoc. 76 637–642.

Raftery, A. E. (1988). Inference for the binomial N parameter:
a hierarchical Bayes approach. Biometrika 75 223–228.

Reid, N. (1995). The roles of conditioning in inference. Statist.
Sci. 10 138–157.

Reid, N. (1996). Likelihood and Bayesian approximation meth-
ods. In Bayesian Statistics 5 (J. O. Berger, J. M. Bernardo,
A. P. Dawid and A. F. M. Smith, eds.) 351–369. Oxford Univ.
Press.

Rissanen, J. (1983). A universal prior for integers and estima-
tion by minimum description length. Ann. Statist. 11 416–
431.

Savage, L. J. (1976). On rereading R. A. Fisher. Ann. Statist. 4
441–500.

Sun, D. (1994). Integrable expansions for posterior distributions
for a two parameter exponential family. Ann. Statist. 22
1808–1830.

Sun, D. and Berger, J. O. (1998). Reference priors with partial
information. Biometrika 85 55–71.

Sweeting, T. (1995a). A framework for Bayesian and likelihood
approximations in statistics. Biometrika 82 1–24.

Sweeting, T. (1995b). A Bayesian approach to approximate con-
ditional inference. Biometrika 82 25–36.

Sweeting, T. (1996). Approximate Bayesian computation based
on signed roots of log-density ratios. In Bayesian Statistics
5 (J. O. Berger, J. M. Bernardo, A. P. Dawid and A. F. M.
Smith, eds.) 427–444. Oxford Univ. Press.

Ye, K. and Berger, J. O. (1991). Non-informative priors for infer-
ence in exponential regression models. Biometrika 78 645–
656.

Zabell, S. L. (1989). R.A. Fisher on the history of inverse prob-
ability. Statist. Sci. 4 247–263.



ELIMINATING NUISANCE PARAMETERS 23

Comment
Jan F. Bjørnstad

This paper by Berger, Liseo and Wolpert deals
with the important theoretical and practical prob-
lem of eliminating nuisance parameters in the like-
lihood function. The authors are to be commended
for taking up this difficult task in a pragmatic and
practical approach, really trying to find out what
works and what doesn’t work, especially in exam-
ples where regular statistical analyses are hard to
attain. There is a vast literature on various sug-
gestions for partial likelihood for the parameter of
interest, θ, in the case of nuisance parameters, λ, as
indicated by the list of references in the paper, even
though the bibliography is not complete, of course.
Much of the effort so far has been based on one of
the following operations on the likelihood L�θ; λ�:
maximization (giving us the profile likelihood), con-
ditioning on a sufficient statistic for λ or finding
pivots or components of sufficient statistics with dis-
tribution independent of λ. Integration of the like-
lihood with respect to λ has for the most part been
regarded as a Bayesian approach, needing prior in-
formation about λ. In this paper, Berger, Liseo and
Wolpert argue, I think convincingly, for the use of
integrated likelihood, where integration is with re-
spect to default or noninformative priors, as a gen-
eral likelihood method, whether or not one is willing
to assume a Bayesian model.

Integrated likelihood methods are discussed and
illustrated by using several examples. I especially
found Examples 4, 5 and 7 interesting and illumi-
nating, covering cases that are very difficult to an-
alyze. It certainly seems that integrated likelihood
methods have more promise in complicated prob-
lems than methods based on alternative partial like-
lihood like the profile likelihood, not overlooking the
problems of nonuniqueness and lack of parameter
invariance.

The use of integrated likelihood is considered
both in a Bayesian and a non-Bayesian perspec-
tive. I shall concentrate my discussion mostly on
non-Bayesian issues, but let me just make a brief
comment on Bayesian aspects. A Bayesian analysis
with available prior for �θ; λ� does not in principle

Jan F. Bjørnstad is Professor of Statistics at the
Agricultural University of Norway, Department of
Mathematical Sciences, P.O. Box 5035, N-1432 Ås,
Norway �e-mail: jan.bjornstad@imf.nlh.no�.

need L�θ�, of course. However, I find that Berger,
Liseo and Wolpert argue convincingly that there
are several reasons why L�θ�, althoughnot neces-
sary, can be very useful in Bayesian analysis. The
most important of these, it seems to me, deals with
models with a large number of nuisance parame-
ters where it may be difficult to construct priors for
the nuisance parameters, noninformative or proper.
One can then modify L�θ� with Bayes (or empirical
Bayes) information about θ alone, without worrying
about nuisance parameters. A promising alter-
native approach to integrated likelihood for this
problem is the fiducially related concept of implied
likelihood introduced by Efron (1993).

As noted by Berger, Liseo and Wolpert, in non-
Bayesian inference one cannot argue for integrated
likelihood solely on grounds of rationality and co-
herency . However, one can at least say that as
a likelihood method, integrated likelihood satisfies
the likelihood principle, and is a proper likelihood.
That is, if two likelihood functions for �θ; λ� are pro-
portional, then so are the corresponding integrated
likelihoods for θ. The main inferential issue with
eliminating nuisance parameters λ from the likeli-
hood function is to be able to take into account the
uncertainty in λ. It is well known that replacing
λ by an estimate or even conditional to θ estimate
(giving us the profile likelihood) ignores the uncer-
tainty in λ. This can be especially serious if the di-
mension of λ is large. The resulting L�θ� can then
be much too accurate, giving the impression that we
have more information about θ than is warranted. I
think that the single most important reason for us-
ing an integrated likelihood is, as emphasized in the
paper, that this partial likelihood automatically and
naturally takes into account parameter uncertainty
in λ.

A central theme in the paper is the comparison
of the operations of integration and maximization.
One of the main messages I read from the paper is
that any reasonable integrated likelihood will typ-
ically outperform the profile likelihood. It seems
quite clear that integration is a safer operation
than maximization, so if it is obvious what kind
of noninformative π�λ�θ� to use, integration would
clearly be preferable. In fact, it seems to me that
maybe the best thing is to do what Laplace sug-
gested, choose parametrizations of the nuisance
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parameters such that the uniform prior is rea-
sonable. Then at least there is no question what
weight function to use. The question is now how
to define such parametrizations. Outside simple
location-scale families, this seems rather difficult.
Maybe one should simply try to develop a “com-
plete” theory for the uniform integrated likelihood,
LU�θ� =

∫
L�θ; λ�dλ, possibly restricting integra-

tion to a finite interval so that the uniform prior is
equivalent to a proper flat distribution for λ.

One of the examples used to illustrate the differ-
ent consequences of maximization and integration
is Example 4, estimating the binomial size N.
Here, the uniform integrated likelihood LU and
beta-prior based Bayesian likelihood Lbeta give
seemingly much more “accurate” information about
N than the profile Lprofile and the conditional like-
lihood LC (given total number of successes). This is
a rather strange case, contrary to the typical case
of being too accurate, here Lprofile (and LC) in fact
seems to be too inaccurate; they are nearly constant
over a huge range of N and are nearly useless for
inference, according to Berger, Liseo and Wolpert.
Even though I tend to agree with this, it cannot be
ruled out that in fact Lprofile here gives a correct
picture about the lack of information on N that the
data exhibits in the likelihood, as is also indicated
by the instability of the maximum likelihood esti-
mate (MLE). A nearly flat likelihood over a large
region may then be a proper illustration of this. It
is not clear that LU or some Lbeta is to be preferred
just because it gives sharper inference. It would
have been nice to see a graph of L�N;p� to be able
to judge this further. Also, it is worth noticing that
by looking at the shapes of LU and LJ, it is clear
that the mode can lead to serious underestimating
of N, even assuming that these likelihoods give a
nearly “correct” impression of how likely different
N-values are in light of the data.

Berger, Liseo and Wolpert seem to view refer-
ence priors as the most important noninformative
priors for λ. Reference priors are invariant under
reparametrizations of λ and they do seem to give an-
swers generally, always leading to finite integrated
likelihood. However they are not uniquely defined,
it seems, and can be rather complicated to deter-
mine. In general, the problem of choosing, and the
robustness in the choice of, a noninformative prior
for λ can be studied using a sensitivity analysis by
varying π�λ�θ� and see how L�θ; λ� varies. It is ar-
gued that this is a considerable strength of inte-
grated likelihood. To me, this rather illustrates the
problem with the nonuniqueness of integrated like-
lihood: that it is, in fact, necessary with such a sen-
sitivity analysis in order to trust the resulting like-

lihood. This can also make the integrated likelihood
method more complicated to use. So I don’t see this
as a strength of the integrated likelihood method,
but rather a necessity because of a weakness in the
method.

In Section 5.1, Berger, Liseo and Wolpert claim
that sometimes it is necessary to perform a
Bayesian analysis with L�θ� in order to make
inferences like error estimates and confidence sets.
A nice illustration of such a case is Example 7
on estimating the coefficient of variation where
frequentist confidence sets must be infinite with
positive probability. This is an example showing
the power of using reference priors. Another il-
lustration they use is Example 4—estimating the
binomial N. I do not think this is such a good ex-
ample, since the only justification for the choice of
prior on N seems to be to achieve a proper poste-
rior distribution. Also, the priors suggested seem
rather unreasonable to me. Say we decide to use a
beta-integrated likelihood with π�p� = π�1− p�,

Lbeta�N� = c
∫
L�N;p�pa�1− p�a dp:

Since little is known of the distribution of Lbeta�N�,
the question of finding a confidence interval for N
remains to be addressed. Standard noninformative
Bayes analysis with π�N� = 1 also fails, and it is
suggested that one has to use a default prior like
π�N� = 1/N or the Rissanen prior. The problem
with these priors is that they are strongly decreas-
ing in N and indeed very informative. For exam-
ple, π�N� = 1/N says that a priori one assumes
that N = 10 is three times as likely as N = 30. I’m
sure there are cases where this may be a reasonable
assumption, but it must be impossible to assume
this in general as a default assumption. I can’t help
thinking that these priors are bound to lead to se-
rious underestimation of N and are simply tools to
get a confidence interval. It cannot be enough that
a method is capable of producing a result. We must
have reason to believe that the resulting inference
is valid. Maybe the only reasonable way to solve this
problem is to study the distribution of Lbeta�N�.

Finally, let me just mention an alternative inte-
grating approach, borrowing an idea from predictive
likelihood by Harris (1989). Instead of integrating
L�θ; λ� with respect to a conditional noninforma-
tive π�λ�θ�, one can use a data-based weight func-
tion for λ, for example the distribution of the MLE
λ̂ at �θ; λ̂�,

Lest�θ� =
∫
L�θ; λ�fθ; λ̂�λ̂ = λ�dλ
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or

L∗est�θ� =
∫
L�θ; λ�fθ̂; λ̂�λ̂ = λ�dλ:

It could be worthwhile to study this type of inte-

grated likelihood. I would expect that, typically,
these likelihoods would not be in closed form.
Then probably only L∗est is obtainable by using a
simulation-based estimate of fθ̂; λ̂�λ̂ = λ�.

Comment
Edward Susko

The authors give a collection of thought-provoking
examples contrasting the use of likelihood meth-
ods with integrated likelihood methods when deal-
ing with nuisance parameters. Since profile like-
lihood methods may be the most frequently used
non-Bayesian method for dealing with nuisance pa-
rameters, comparison of the profile likelihoods and
integrated likelihoods are of primary interest. The
two methods are closely related in many of the situ-
ations of interest. When the number of observations
is large, the model is regular and the prior distribu-
tion is proper, integrated likelihood is, with a rela-
tive error of O�n−3/2�; proportional to

L�θ; λ̂θ�π�λ̂θ�θ�
/√

det�J22�θ; λ��;(1)

where J22�θ; λ� is the observed information ma-
trix corresponding to the information about λ (cf.
Leonard, 1982; Tierney and Kadane, 1986; Reid,
1996). Thus, in the case that h�θ� = c in (24),
π�λ̂θ�θ� and

√
det�I22�θ; λ�� are equal up to first or-

der and thus the integrated and profile likelihoods
are the same up to first order. Hence for the refer-
ence priors used here, one expects similar profile
and integrated likelihoods with large samples and
regular models. Appropriately, the examples con-
sidered involve small samples or irregular models.
The comments here will be restricted primarily to
Examples 3, 4 and 5 with some additional com-
ments about likelihood based methods in models
with large numbers of nuisance parameters.

Example 3 illustrates a general situation where
profile likelihood methods can be expected to
perform poorly. The problem with using profile
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likelihood methods arises because of the over-
parameterization in the contribution to the likeli-
hood given by

�2π exp�−nθ2��−1/2 exp
(
− �y− λ�2

2 exp�−nθ2�

)
:

However, even with additional information about
the value of θ; the problems created by the un-
certainty about λ are so severe that no sensible
answers can be directly obtained through auto-
matic use of the profile likelihood. In contrast
integrated likelihoods perform well. Whenever a
product of very different likelihoods is being consid-
ered, as might be the case in some meta-analyses,
a badly behaved contribution can lead to inappro-
priate conclusions.

In Example 4, if the true value of p is 0.00001, the
data are not inconsistent with large N ≥ 250, yet
the integrated likelihoods given suggest that such
values of N are not very plausible. Here, probabil-
ities obtained at a particular parameter of interest
are highly dependent upon the nuisance parameter
and there is very little information about the nui-
sance parameter. This would appear generally to be
the type of situation where the use of integrated
likelihoods might lead to conclusions not supported
by the data.

Example 2 illustrates that variations of inte-
grated likelihood methods are a part of conventional
likelihood methods. However, as the use of Greek
letters and the suggestion about the alternative of
maximizing over the µi indicates, the distinction
between unobservable variables and parameters is
often not very clear. Without the random effects
assumption, this is a model where the number of
nuisance parameters increases without bound as
the number of observations increase. Models with
large numbers of nuisance parameters arise fre-
quently in practice and often give profile likelihoods
with poor behavior. In many such models, random
effects assumptions are natural. However, as the
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integrated likelihood L�τ2� in Example 2 indicates,
the profile likelihoods that result from a random ef-
fects model can be viewed as integrated likelihoods,
where the definition in (3) is extended to allow data
dependent priors, without the initial random ef-
fects assumption as a part of the model. Random
effects integrated likelihoods incorporate informa-
tion about the nuisance parameters directly and
usually provide estimates of the parameter of inter-
est that are consistent for most (in the almost sure
sense) sequences of nuisance parameters that could
be generated from the random effects distribution
(Kiefer and Wolfowitz, 1956; for a dscussion about
efficiency issues see also Lindsay, 1980).

As a different example of the use of random ef-
fects integrated likelihoods, consider Example 5.
The problems associated with the use of profile like-
lihood methods appear to be due to the relatively
large number of nuisance parameters. A random
effects assumption seems natural here given the
parameter of interest. Consider the same random
effects model as in Example 2: the µi are i.i.d.
N�ζ; τ2�: In this case, λ = �ζ; τ�; and θ is a random
variable (θ∗ in the notation of Section 1.3.1). The
authors’ recommendation of (6) as a likelihood in
this setting is closely connected with the discussion
about empirical Bayes methods in Section 3.3. If (6)
is taken as the likelihood, the profile likelihood for
θ = ∑

µ2
i /p would be obtained by substituting an

estimate λ̃θ into (6). It is more common to substi-
tute an estimate of the λ based upon the likelihood
for λ: the function of λ obtained by integrating over
θ∗ in (6). In this case the estimate for λ is

ζ̂ = x̄; τ̂2 = max�0; s2 − 1�:
Substituting this estimate of λ̂ into (6) gives an inte-
grated likelihood that is proportional to an estimate

of the conditional density of θ given the observed
data. Since the µi�x are independently N�mi; v�;
where v = τ̂2/�1 + τ̂2� and mi = vxi + �1 − v�x̄; the
estimate of the conditional distribution for pθ/v is
a noncentral χ2 distribution with p degrees of free-
dom and noncentrality parameter v−1∑m2

i /2: The
additional random effects assumption is used in the
above derivation but, even with the the original as-
sumption that the µi are a fixed sequence, assuming
that θ converges to a limit, one can show that this
conditional distribution converges to a point mass
at this limit.

Statistical models with a large number of nui-
sance parameters arise frequently and profile like-
lihoods for these models often give unreasonable
parameter of interest inferences. Often a natural
alternative to a model with a large number of nui-
sance parameters is a random effects or mixture
model. The analysis arising from the use of a ran-
dom effects model can be viewed as an integrated
likelihood method and frequently gives reasonable
parameter of interest inferences that are robust to
the assumption of randomness about the nuisance
parameter. In many other statistical models, pro-
file and integrated likelihoods tend to be similar.
However, in models with badly behaved likelihood
contributions, as in Example 3, profile likelihoods
can give unreasonable parameter of interest infer-
ences where integrated likelihoods give reasonable
solutions. In models with a large amount of uncer-
tainty about the nuisance parameter, as in Exam-
ple 4, integrated likelihoods can give misleading re-
sults. Thus the differences between the results for
the two methods is informative in itself, which sug-
gests that in important and complex problems it
might be of value to integrate the two as a form
of sensitivity analysis.

Rejoinder
James O. Berger, Brunero Liseo and Robert L. Wolpert

We thank the discussants for their considerable
insights; if we don’t mention particular points from
their discussions, it is because we agree with those
points. We begin by discussion of an issue raised by
both discussants and then respond to their individ-
ual comments.

Dr. Bjørnstad and Dr. Susko both express con-
cerns about the integrated likelihood answers in

the situation of estimating a binomial N in Exam-
ple 4, wondering if the integrated likelihoods might
lead to conclusions not supported by the data. This
is a situation in which the answer does change
markedly depending upon one’s prior beliefs. For
instance, as Dr. Susko notes, when p is small the
likelihood is extremely flat out to very large values
of N; thus someone who viewed small p as being
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likely might well find the profile likelihood more
reasonable than the integrated likelihoods we fa-
vor. Conversely, someone who viewed large p as
being likely would find the likelihood for N con-
centrated on much smaller values of N than the
integrated likelihoods. Faced with this extreme de-
pendence on prior opinions about p (or, alternately,
about N) one could thus argue that there is no “ob-
jective” answer inherent in the data, and that the
profile likelihood properly reflects this whereas the
integrated likelihoods do not.

Our premise, however, is that inference con-
cerning N is to be done and that the (subjective
Bayesian) analysis suggested by the above reason-
ing is not going to be performed. We are simply
arguing that, under these circumstances, the an-
swers obtained via the integrated likelihood route
are the most reasonable default answers. This can,
indeed, be given some theoretical support, if one is
willing to view a default likelihood as a surrogate
for an (unknown) posterior density. In Example 4,
for instance, suppose we are willing to agree that
the prior, though unknown, is in the very large
class of priors for which p and N are a priori inde-
pendent, the prior density for N is nonincreasing
and the prior distribution for p is a Beta distri-
bution symmetric about 1/2. Liseo and Sun (1998)
have shown that the Jeffreys-integrated likelihood
is closer (in a Kullback–Leibler sense) to any pos-
terior arising from a prior in this class than is
the profile likelihood. In summary, while we have
no quarrel with those who “refuse to play the
game” (i.e., those who refuse to give a nonsubjective
answer to this problem), we do not see any better
alternatives for “players” than the recommended in-
tegrated likelihood (or, even better, noninformative
prior Bayesian) answers.

Reply to Dr. Bjørnstad. We seem to be basically in
agreement concerning the value of integrated likeli-
hood and, indeed, Dr. Bjørnstad emphasizes several
of the particularly valuable features of integrated
likelihood. We would add a slight qualification to his
comment that the integrated likelihood approach
has the desirable feature of following the likelihood
principle. This is certainly true if the prior distribu-
tion is chosen independently of the model, but we
recommend use of the (conditional) reference non-
informative prior which can depend on the model
(and not on only the observed likelihood function).
In practice, however, this is just a slight violation of
the likelihood principle.

Concerning the issue of choice of the prior, Dr.
Bjørnstad wonders if it might be worthwhile to de-
velop a complete theory of uniform integrated likeli-

hood, finding parameterizations in which a constant
prior is reasonable. In a sense, noninformative prior
theory began by following this path, but this path
led to what we view as more powerful modern the-
ories, such as the reference prior approach.

Dr. Bjørnstad expresses two related concerns over
the choice of the prior for integrated likelihood: the
nonuniqueness of the choice and the difficulty of
sophisticated choices, such as the conditional refer-
ence prior. One could define an essentially unique
choice, such as the Jeffreys prior, and we would ar-
gue that such a unique choice would generally give
better answers than any “unique” nonintegrated
likelihood method. One can do better, however, and
we see no reason not to utilize the more sophisti-
cated choices of priors if they are available (e.g.,
if the possibly difficult derivation of a conditional
reference prior has already been performed). We
hope that, for common problems, the statistical
community will eventually identify and recommend
specific sophisticated priors for “standardized” use.
Our comment about the possible value of having
several integrated likelihoods was simply that, if
one is in a new situation with no well- studied in-
tegrated likelihoods available, it can be comforting
if one obtains essentially the same answer from
application of several integrated likelihoods.

We do not have any definitive opinion about the
weighted likelihood derived by following Harris
(1989). We are somewhat concerned with the ap-
parent double use of the data in the definitions of
Lest�θ� and L∗est�θ� (using the data once in the like-
lihood function and again in the weight function for
integration). Indeed, these weighted likelihoods are
somewhat hard to compute. We were able to com-
pute L∗est�θ� for Example 3, and it turned out to
be the same as the (inadequate) profile likelihood,
which does not instill confidence in the method.

Reply to Dr. Susko. The asymptotic equivalence
between profile likelihood and integrated likelihood
is indeed interesting to contemplate. As the jus-
tification for use of profile likelihood is primarily
asymptotic, it might be tempting for a “likelihood
analyst” to view integrated likelihood as simply a
tool to extend the benefits of profile likelihood to
small sample situations. Interesting issues arise in
any attempt to formalize this, not the least of which
is the fact that (conditional) reference priors often
have nonconstant h�θ� in (29) and, having such, can
considerably improve the performance of the inte-
grated likelihood.

The “random effects” profile likelihood analysis
considered by Dr. Susko for Example 5 is interest-
ing. We note, first, that the actual profile likelihood
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is not computed but, rather, the likelihood based
on the “Type II maximum likelihood estimates” of
the nuisance parameters. Of course, as discussed
in Section 3.3, we certainly support this modifica-
tion. Dr. Susko mentions that the resulting “profile”
likelihood yields consistent estimates of θ, even if
the random effects assumption does not hold. The
uniform integrated likelihood in (19) also possesses
nice (frequentist) confidence properties; it would
be interesting to know if the same can be said for
the “profile” likelihood. Finally, deriving the “pro-
file” likelihood here required a strong additional
assumption (the random effects assumption) and
two uses of integrated likelihood (first to integrate
out the random effects parameters and then to ob-
tain the Type II maximum likelihood estimates
of the nuisance parameters). While the resulting
answer may well be sensible, the direct uniform in-
tegrated likelihood in (19) seems more attractive,
both in terms of the simplicity of the answer and
the simplicity of the derivation.

Dr. Susko finishes by suggesting that it might be
useful to compute both profile and integrated likeli-
hood answers in application, as a type of sensitivity
study. It is probably the case that, if the two an-
swers agree, then one can feel relatively assured in
the validity of the answer. It is less clear what to

think in the case of disagreement, however. If the
answers are relatively precise and quite different,
we would simply suspect that it is a situation with
a “bad” profile likelihood. On the other hand, it can
be useful to know when the profile likelihood is es-
sentially uninformative, as in Example 4. While one
could argue that the same insight (and more) can be
obtained by investigation of sensitivity of integrated
likelihood with respect to the noninformative prior,
it is certainly reasonable to look at the profile like-
lihood if it is available.
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