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papers, and the bibliographic material together make Logical Methods a
very useful source of RET information.
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“This conviction of the solvability of every mathematical
problem is a powerful incentive to the worker. We hear within
us the perpetual call: There is the problem. Seek its solution.
You can find it by pure reason, for in mathematics there is no
ignorabimus.” — David Hilbert, 1900




346 Volume 5, no. 3 (July 1995)

Hilbert’s Tenth Problem is an interesting and beautiful book about
Hilbert’s. tenth problem. In 1900, at the Second International Congress of
Mathematicians, assembled in Paris, the eminent German mathemati-
cian David Hilbert (1862--1943) presented in his address “Mathe-
matische Probleme” twenty-three unsolved problems, which would
challenge the mathematicians of the twentieth century. The tenth
problem was the shortest problem and the only decision problem.
(Actually, in order to “shorten his talk as Minkowski and Hurwitz had
urged,” Hilbert covered only ten of the twenty-three problems in his fa-
mous lecture. The other thirteen, including the tenth, are stated exclu-
sively in the published version (Reid [1970, 81-82]).)

Hilbert’s Tenth Problem unifies, in a strikingly beautiful way, two
different areas of mathematics: number theory and computability theory.
Stated simply, Hilbert’s tenth problem is this: Is there an algorithm that
determines whether any given Diophantine equation has a solution in
the integers? A Diophantine equation is an equation of the form

D(x1, s xpp) =0,

where D is a polynomial in the variables x1, ..., x,, with integer coeffi-
cients. Diophantine equations are named after Diophantus of Alexandria,
who wrote Arithmetica in thirteen Books around the third century A.D., a
milestone in the development of number theory. Only six Books have
survived (Heath [1964, 2-3]). The treatise Arithmetica is a peculiar
blend of Greek and Oriental mathematics with systematic use of alge-
braic symbolism, which initiated the study of equations with positive ra-
tional solutions. An algorithm (or decision procedure) is a general and
systematic method for solving a problem. The rigorous mathematical
theory of algorithms, recursion (or computability) theory, was not estab-
lished until three and a half decades after Hilbert posed the problem.
Hilbert’s Tenth Problem is written by Yuri Matiyasevich, a gifted
logician and number theorist and the chairman of the Laboratory of
Mathematical Logic at the St. Petersburg branch of the Steklov Institute
of Mathematics of the Russian Academy of Sciences. When the book
appeared in 1993, its author was twenty-three years older than the
“clever young Russian” who found the ingenious solution to Hilbert’s
tenth problem. On January 4, 1970, the twenty-two-year-old Yuri Matiya-
sevich added the final link to a proof chain forged over many years by
several well-known mathematicians, including Martin Davis, Hilary
Putnam, and Julia Robinson. By establishing the existence of the so-
called Julia Robinson predicate, Yuri Matiyasevich proved that nobody
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could devise an algorithm which determines whether a Diophantine
equation has a solution in the integers.

In the first half of the book (the first five chapters), Matiyasevich
presents a self-contained and quite detailed solution to Hilbert’s tenth
problem. He has greatly simplified the original solution. The author
builds all necessary logical machinery from scratch, and even presents
well-known number-theoretic facts (Lagrange’s four-squares.theorem,
the Chinese remainder theorem, Kummer’s theorem, and a summation
formula for a generalized geometric series) in the Appendix. In order to
be accessible to a broader audience, the book does not require any pre-
vious knowledge of recursion theory. Chapter 5 presents all necessary
notions and facts, and shows how recursion theory, combined with the
number-theoretic results of the first four chapters, ultimately resolves the
mystery of our intrinsic inability to “devise a process according to which
it can be determined by a finite number of operations whether the equation
is solvable in rational integers” (Hilbert, 1900).

The main result, due to Matiyasevich (Sections 5.4 and 5.5), which
implies the unsolvability of Hilbert’s tenth problem, is that the class of
Diophantine sets (to be defined below) of natural numbers coincides
with the class of recursively enumerable sets of natural numbers.
Recursively enumerable sets are sets whose elements can be listed, not
necessarily in any predictable order, by some algorithm. (In his book,
Matiyasevich chooses to call recusrsively enumerable sets semidecid-
able. This is unfortunate, because it may be confused with the term
semirecursive, introduced in 1966 by Carl Jockusch (Reducibilities in
recursive function theory, Ph.D. Dissertation, MIT).)

In the first few sections of Chapter 1, Matiyasevich shows how in-
creasingly complicated problems can be reduced to Hilbert’s tenth prob-
lem. If Hilbert’s tenth problem were algorithmically solvable, then these
problems would also be algorithmically solvable. The author first shows
how a system of Diophantine equations can be easily reduced to a sin-
gle Diophantine equation. He then shows that since, by Lagrange’s four-
squares theorem of 1772 (i.e., that every natural number can be ex-
pressed as the sum of the squares of four integers), the algorithmic solv-
ability of a Diophantine equation in the integers is equivalent to the al-
gorithmic solvability of a Diophantine equation in the natural numbers.
The author also demonstrates Thoralf Skolem’s result of 1934 that, in
the case of Hilbert’s tenth problem, it is sufficient to consider only Dio-
phantine equations of total degree four.

Chapter 1 introduces the main concept of a Diophantine set. Let @
be the set of all natural numbers (including zero). A set A C o is
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Diophantine if there is a polynomial D(y, x1, ..., X;;) in the variables y,
X1, - X With integer coefficients such that, for every @ € w, A contains
a if and only if there are by, ..., by, €  such that

y=a, x{=by, .., Xy =by
is a solution of the Diophantine equation
Dy, x1, ey X)) =0.
The formula
(3x1 € 0) ... Axpy € ©) DB, X1, - 5 Xm) = 0]

is called a Diophantine representation of A. In a similar fashion, Dio-
phantine relations on w of any length are defined. A function is Dio-
phantine if its graph is a Diophantine relation. In 1953, Martin Davis
established the obvious facts that both the union and the intersection of
two Diophantine sets are Diophantine, and the not-so-obvious fact that
the complement of a Diophantine set does not have to be Diophantine.
Chapter 1 shows that several important sets and relations on ®, such as
the inequality relation, the ordering relation, the divisibility relation, the
set of numbers which are not powers of two, the set of all composite
numbers, the set of all even numbers, and the set of all odd numbers,
are Diophantine.

One of the key events in the history of Hilbert’s tenth problem was
the resolution of the question: Is the binary exponential function f on the
natural numbers (f(0, 0) = def 1, and f(b, c) = b® otherwise) Dio-
phantine? In 1948, Alfred Tarski conjectured that the set of all powers of
two is not Diophantine. After failing to prove Tarski’s conjecture, Julia
Robinson started to work on refuting it. She established, first in 1952 and
later in 1969, several sufficient conditions for the exponential function
to be Diophantine. One of these conditions was the existence of a rela-
tion of exponential growth, now also called a Julia Robinson predicate,
which is Diophantine. A binary relation J on w is a Julia Robinson pred-
icate if the following two conditions are satisfied:

(Yu)(Vv) [J(u, v) = v <u¥];
(VK€ 0) (Fu)(3v) [J(u, v) A v > uk].
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Matiyasevich [1970] proved the existence of a Diophantine Julia Robin-
son predicate. His relation M is

M(u,v) <>def V=924 »

where @Q , 91, 92, ... are Fibonacci numbers. That is, g =0, @1 =1,
and Qn+2 = P + Pr+1.

In his book, Matiyasevich does not follow the historical path in
establishing that the exponential function is Diophantine. Rather, he
proves this theorem directly. Although the proof, which is rather techni-
cal, requires almost all of Chapter 2, it is simpler than the original proof.
The historical line of reasoning which established that the exponential
function is Diophantine is outlined in the Exercises of Chapter 2.

Chapter 3 establishes that certain important relations and functions
associated with various codings of finite sequences of natural numbers
(Cantor coding, Go6del coding, which uses Chinese remainder theorem,
and positional or b-adic coding) are Diophantine. A corollary of these
results together with the fact that exponentiation is Diophantine is that
the factorial function and the binomial-coefficient function are Dio-
phantine. Hence, the set of all prime numbers is Diophantine.

Chapter 4 is devoted to a purely number-theoretic construction of
universal Diophantine equations. Let n € m. A universal Diophantine
equation corresponding to n has, in addition to n element parameters,
some other, so-called code parameters which code all n-ary Diophantine
relations. Universal Diophantine equations allow the construction of
Diophantine sets with non-Diophantine complements. Historically, the
first construction of a universal Diophantine equation was based on the
idea of “universal objects” in recursion theory.

While the first four chapters present results and techniques that are
exclusively of a number-theoretic nature, Chapter 5 presents the founda-
tions of recursion theory and its interplay with number theory. Matiyase-
vich chooses the most natural formalization of the intuitive concept of
an algorithm: a Turing machine. In 1936, by devising a conceptual
machine that carried out algorithms, Alan Turing captured the essence
of this notion and provided the necessary tools for negative solutions to
decision questions — in other words, for results on the inherent
limitation on the ability of algorithms to solve problems. Such problems
are called undecidable, noncomputable or nonrecursive. In Section 5.5,
Matiyasevich gives a new, direct proof that all recursively enumerable
sets are Diophantine. His Diophantine simulation of Turing machines is
presented in the book for the first time. Chapter 5 culminates with the
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proof that Hilbert’s tenth problem is undecidable. The undecidability
follows from the facts (F1-F3). (The first one is easily established, as
shown in Section 5.6. We have already discussed the other two.)

F1. Decidable sets are exactly those recursively enumerable sets
whose complements are also recursively enumerable.

F2. Being a recursively enumerable set is equivalent to being a
Diophantine set.

F3. Diophantine sets are not closed under complementation.

It should be mentioned that, historically, a modified version of
Hilbert’s tenth problem, which uses exponential Diophantine, rather than
Diophantine, equations was first solved. An exponential Diophantine
equation is an equation of the form

E1(x1, «s X)) = E2(x1, ooy X)) »

where E1 and E are algebraic expressions obtained from natural num-
bers and variables x1, ..., X, using addition, multiplication and exponen-
tiation. The definitions of exponential Diophantine relations and func-
tions, and their exponential Diophantine representations, are analogous
to the corresponding notions for ordinary Diophantine equations. Davis,
Putnam and Robinson [1961] obtained the undecidability result for the
exponential Diophantine equations. Their crucial theorem was that every
recursively enumerable set has an exponential Diophantine representa-
tion. Thus, in order to establish Davis’ daring hypothesis of 1953 that
every recursively enumerable set has a Diophantine representation, it
was enough to show that the exponential function is Diophantine. That
would establish the unsolvability of Hilbert’s tenth problem.

In both the first and the second part of the book, Matiyasevich
shows that some famous problems which at first glance have little to do
with Diophantine equations can be formulated as questions about
whether particular Diophantine equations have solutions. One of these
problems is Fermat’s Last Theorem, which is the statement that the ex-
ponential Diophantine equation

P+1t3+@+1yt3-(+1yt3=0
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has no solution in the natural numbers for variables p, g, r and s.
(Interestingly, Hilbert’s list of problems did not include Fermat’s Last
Theorem.) Using the key result that exponentiation is Diophantine,
Matiyasevich shows, in Chapter 2, that there is a Diophantine equation

F(p,q, 7,8, X1, s Xip) =0

which has a solution in x1, ..., xp, if and only if p, g, r, s satisfy the
above exponential Diophantine equation.

In the second part of the book, Matiyasevich covers various topics
related to Hilbert’s tenth problem. In the first three sections of Chapter
6, he proves (three times, each time differently) that the set of all
Diophantine relations is closed under bounded universal quantification.
The first proof gives a constructive method and can be based on
Church’s thesis from recursion theory, which states that every intuitively
decidable problem can be shown to be formally decidable. The second
proof uses Godel’s type of coding and follows, with minor simplifica-
tions, the original work of Davis, Putnam and Robinson [1961]. This
method was an essential step in solving Hilbert’s tenth problem because
it provided a powerful tool for establishing that certain sets are
Diophantine. In Chapter 5, Matiyasevich constructs Diophantine repre-
sentations of recursively enumerable sets without any use of bounded
universal quantification. His approach (Matiyasevich [1976]) is possible
because of the direct simulation of Turing computation by Diophantine
equations. The third proof described in Chapter 6 eliminates bounded
universal quantifiers by introducing summations with variable upper
limit. This method is new, and is presented for the first time in the book.

Later in Chapter 6, Matiyasevich uses the elimination of bounded
universal quantifiers to show how each of two other famous problems,
Goldbach’s conjecture and Riemann’s hypothesis, can be restated as a
problem about a particular Diophantine equation having no solution.
Goldbach’s conjecture claims that every even number greater than two
is the sum of two prime numbers. Riemann’s hypothesis is the statement
that the nontrivial zeroes of Riemann’s zeta function all have the real
part equal to 1/2. Riemann’s zeta function C is defined by

) =1+2%+3"%+ ...

for Re(z) >1 and extended, using analytic continuation, to all z = 1.
Both of these problems were included as parts of Hilbert’s eighth prob-
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lem and are still unsolved. On the other hand, Matiyasevich does not
see an obvious way to similarly restate the twin-prime conjecture, which
was also included in Hilbert’s eighth problem. One of the exercises in
Chapter 6 provides another example of a famous problem, the four-color
theorem, which can be formulated as a statement that a particular
Diophantine equation does not have a solution.

At the end of Chapter 6, Matiyasevich uses the elimination of
bounded universal quantifiers to easily construct another universal Dio-
phantine equation. He then constructs a Diophantine set whose comple-
ment is not just non-Diophantine but also does not contain any infinite
recursively enumerable (equivalently, infinite Diophantine) set. Such
sets are called simple and were first constructed in recursion theory by
Emil Post.

Because Diophantine equations are simple mathematical objects,
Hilbert’s tenth problem has often been used to establish undecidability
of other problems in number theory, algebra, mode! theory, proof theory,
theoretical computer science, linear programming, and analysis. Chapter
7 presents several undecidability results in number theory (including the
undecidability of the Gaussian integer counterpart of Hilbert’s tenth
problem), and Chapter 9 presents several undecidability results in anal-
ysis. Although Hilbert was concerned with integer solutions of Dio-
phantine equations, Diophantus himself considered rational solutions. In
Chapter 7, Matiyasevich .presents the proof that the still unresolved
problem of algorithmically determining the existence of a rational solu-
tion for a Diophantine equation is equivalent to the problem of algorith-
mically determining the existence of a nontrivial integer solution for a
homogeneous Diophantine equation.

Chapter 8 deals with quantitative aspects of Diophantine relations
and their Diophantine representations. From the very beginning, these
aspects have been of interest to researchers trying to prove the algorith-
mic unsolvability of Hilbert’s tenth problem. Several measures of com-
plexity are introduced for a Diophantine relation A. For example, the or-
der of A is the least possible degree of a corresponding Diophantine
equation, and the rank of A is the least possible number of existential
quantifiers in a corresponding Diophantine representation of A. Matiya-
sevich demonstrates that every Diophantine set has an exponential
Diophantine representation with at most three existential quantifiers.

The final, tenth chapter of the book consists of two sections. The
first section presents Diophantine games, invented by James P. Jones
[1974]. A Diophantine game is given by a Diophantine equation with an
even number of variables
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D (X1, vees X3 Y1 -2 Ym) =0.
The game is played according to the following rules:

On moves 1, ..., 2k-1, ... (for 2k —1 = m), player I chooses a value
for x1, <., Xky «ov 3
On moves 2, ..., 2, ... (for 2k = m), player II chooses a value for y1,

wees Vs won +

The game ends after 2m moves. Player II wins if the chosen values
satisfy the Diophantine equation; player I wins otherwise. Clearly,
player II has a winning strategy if and only if the following holds:

(Vx1)(3y1) (me)(a}’m) [D (xla e Xms Y1 oo }’m) =0 ] .

Matiyasevich shows that there is a Diophantine game in which the sec-
ond player has a winning strategy, but there is no algorithm which de-
termines a reply of the second player to every move of the first player.
In the final section he discusses another game, a generalized form of
chess that uses only knights but on a multidimensional chessboard.
Based on the undecidability of Hilbert’s tenth problem, Matiyasevich
proves that the problem of determining whether two knights have equal
“chess power,” and hence the problem of determining whether one
knight is “at least as strong as” another one, are undecidable. The au-
thor uses this intuitive description in terms of knights and their moves to
visualize so-called systems of vector addition and Petri nets invented in
the theory of parallel computation.

Each chapter of the book ends with a number of related exercises, a
few related unsolved problems, and a very interesting and informative
Commentary which explains development of the subject presented in the
chapter. The book ends with hints on the exercises. Since this book re-
quires no specialized knowledge, but only “mathematical maturity,” it
is suitable for a broad audience of mathematicians, including advanced
undergraduate and graduate students with little knowledge of recursion
theory. The whole book or only its first part can be used in a topics
course on mathematical logic. The first part of the book can serve as an
interesting and nontypical introduction to computability theory, with in-
tuitively computable functions rigorously formalized as Diophantine
functions.

The book was originally published in Russian. Its English translation
appeared the same year, and with a more extensive bibliography than
the original book. The first translated version was prepared by the author
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himself while he was still “rewriting the Russian original for the (n +1)—
st time.” All of this effort resulted in a very readable book, both in
Russian and in English. The translation was further polished by David
Jones of MIT Press and by Martin Davis, “neither of whom knows any
Russian.” However, the translation remains faithful to the original ver-
sion. Martin Davis, a well-known recursion theorist and a pioneer of the
subject of this book, gave its translated version a very touching histori-
cal and personal foreword, which includes his prophecy about the rise of
a “clever young Russian” who will complete the solution of the famous
old problem.

While the first part of the book presents a simplified proof of
Hilbert’s tenth problem, with several new and unpublished results, the
second part of the book presents related topics and applications which
have been scattered throughout various papers. This book is exceptional
in the sense that all its parts are interesting and important—not only its
text, but also its exercises, its commentaries, its appendix, and its fore-
word in the English translation. While the proofs in the chapters follow a
logical order and tend to simplify the material as much as possible, the
exercises often provide the history and the development of ideas and
proofs. I highly recommend the book to everyone who loves number the-
ory or logic.

Acknowledgment. 1 thank Georgia Martin for proofreading.
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