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BOUNDARY VALUE PROBLEMS FOR
SINGULAR ELLIPTIC EQUATIONS

NGUYEN HOANG LOC AND KLAUS SCHMITT
To the memory of Lloyd K. Jackson

ABSTRACT. We study the existence of positive solutions
to singular elliptic boundary value problems involving the p-
Laplace operator. We establish a sub-supersolution theorem
and use an eigenfunction of the p-Laplacian to construct sub-
and super-solutions. Our assumptions on the singular term
are more relaxed than in some previous papers, even for the
case p = 2, as we allow for non-monotone singular terms with
blowup controlled by a power. We also allow for a parameter
dependent term and study how its growth affects our existence
result.

1. Introduction. Let © be a smooth bounded domain in RY,
N > 1, and p > 1. We are interested in the following singular elliptic
problem

—Apu = ag(uw) + Ah(u) in Q,
(1.1) u>0 in Q,
u=20 on 02,

where
Ayu = div (|[VulP~2Vu)

is the p-Laplace operator; )\ is a nonnegative parameter;
a:Q—[1,00)

is in L% (Q2);
g:(0,00) — R

is continuous and satisfies

li = o0;
lim g(s) = oo;
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and,
h:]0,00) — R

is continuous.

Lazer and McKenna [10] have proved that (1.1) has a unique classical
solution when A = 0, g(s) = s 7, s € (0,00), v > 0 and  is in class
C?**# B > 0. Lair and Shaker [9] and Zhang and Cheng [21] have
obtained the results of Lazer and McKenna (in the case 0 < vy < 1)
deducing the existence of solutions of

—Au=ag(u) inQ,
u>0 in Q,
u=0 on 02,

where g is nonincreasing and satisfies

[ strae <

Although Q in [9] is either a bounded domain or the whole space
RY, (while © in [21] is bounded) and the conditions on a in [9] are
weaker than those in [21], the results of [21] cannot be deduced from
those of [9]. An additional significant paper is the paper by Crandall,
Rabinowitz and Tartar [3], where the existence of solutions to the more
general problem

Lu = g(z,u) in Q, u =0 on 09,

is studied, with L a linear second order elliptic operator which satisfies
the maximum principle and g is positive and becomes singular as

u — 0 uniformly in z.

Their techniques are also based on the use of sub-supersolution theo-
rems.

In the case that the problem depends on the parameter, several papers
[2, 17, 18, 20] studied (1.1) when g and h are of particular forms. In
particular, Coclite and Palmieri have proved in [2] that if o > 1, then

(1.2) { —Au=u""+ (Au)* in Q,

u=20 on 0f),
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has at least one solution when X is small and (1.2) has no solution
when X is large. Using iteration techniques, the problem has also been
studied by Sun and Wu [17] when 0 < a < 1, 0 < v < N~L. Cirstea,
Gherghu and R&dulescu [1] have considered (1.1) for g nonincreasing,
h nondecreasing and p = 2 and have proved (with some additional
technical assumptions on g and h) that the problem

—Au = ag(u) + Ah(u) in Q,
(1.3) u>0 in €,
u=20 on 0N

has a unique solution uy for all A > 0 and wu) is increasing with respect
to A (i.e.,, 0 < Ay < Ag implies uy, < uy, in Q), provided that

h
lim h(s) =0 (see [1, Theorem 1]),
s—o0 8§
and if "
lim ﬂ >0,
s—oo0 8

then there exists A* > 0 such that (1.3) has a solution when X € (0, A*)
and has no solution when A > A\* (see [1, Theorem 2]). We also draw
the reader’s attention to the papers [4, 6] in which the existence and
nonexistence of solutions to singular elliptic problems depending on two
parameters were studied.

When p € (1,00), by using a sub-supersolution approach and a
mountain pass theorem, Giacomoni, Schindler and Tak4é¢ [5] have
proved that

{ ~Apu = u"?+u? inQ,
u=0 on 09,

where § € (0,1), ¢ € (p—1,p* — 1) (p* is the critical Sobolev exponent
defined by p), has multiple weak solutions (depending on the certain
value of the parameter \).

All of the papers mentioned above needed a monotonicity condition
on the singular term g. Thus the question arises whether or not the
existence of solutions for (1.1) is still true when the monotonicity
property is removed. Hai, [7, 8], has given affirmative answers to
this question in the case that 2 is an annulus, by establishing existence
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results for radial solutions which are solutions of associated ordinary
differential equations.

We approach to solve (1.1) by proving a version of a sub-supersolution
theorem for singular elliptic problems and then finding such a well-
ordered pair of sub-supersolutions for the specific singular problem
under consideration. With this method, we can remove not only
the monotonicity condition but also some technical conditions on the
singular terms in the papers above.

There are many sub-supersolution results available and we refer
to [11-13] for some recent results for nonsingular nonlinear elliptic
problems. Such results, however, are not directly applicable to singular
elliptic problems. We hence establish a sub-supersolution theorem
which is suitable to study the existence of solutions for

—Apu = f(z,u) inQ,
u=0 on 012,

in the case f(-,0) is undefined. This is done in the next section.

2. A sub-supersolution theorem. The aim of this section is to
establish a sub-supersolution theorem for

(2.1) —Apu = f(z,u) inQ,
where ) is a smooth bounded domain in RY and f is a Carathéodory

function defined on Q2 x (0,00); i.e., f(z,-) is continuous on (0, c0) for
almost every z € Q and f(-, s) is measurable for all s > 0.

Definition 2.1. A function » in I/Vlf)’cp(Q) is called a subsolution
(supersolution) to (2.1) in the sense of distributions, if, and only if:

(2.2) u(zr) >0, zeQ,
f(vu()) € Llloc(Q)a

and for all nonnegative functions ¢ € C§°(1),

(2.4) /Q|Vu\p72Vu -Vepdz < (Z)/ﬂf(x,u)(pdm.
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Note that the definition of subsolution and supersolution here is
different from that in [11-13]. In fact, the function u in this definition
might not necessarily be an element of W1?(£2) and, therefore, its trace
on 002 need not be well-defined.

Remark 2.2. If u is a subsolution or a supersolution of (2.1) and if
belongs to W1?(Q) and f(-,u(-)) € (WyP(2))*, then u is a subsolution
or supersolution respectively of (2.1) in the classical sense (see, e.g.,
[11-13]).

Definition 2.3. A function u € I/Vﬁ)cp (€), is called a solution to (2.1)
in the sense of distributions, if, and only if:
(2.5) u(z) >0, ze€q,

and for all functions ¢ € C§°(Q)

(2.6) /Q\Vu|p_2Vu-V<pd:U = /Qf(:v,u)gpd:v.

The following is the main result in this section.

Theorem 2.4. Assume that problem (2.1) has a subsolution u and

a supersolution T € L. (Q) in the sense of distributions such that

0 < u(z) <u(z), ae zec

Assume further, there ezists a function c € L{S () such that

(2.7) |f(z,s)| <c(z), ae ze€Q, forallse [u(z),u(z).

Then problem (2.1) has a solution u in the sense of distributions and
u satisfies

(2.8) u<u<u, a.e inf.

Proof. Let {Q,}nen be a sequence of smooth subdomains of © such
that _
Qn C g1, n=12,... UpenQn = Q.
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We proceed with the proof by establishing some auxiliary results.

Lemma 2.5. There exists a sequence {v,}nen C Wy (Q) N C(Q)
such that:

(1) 0 < wy(z) S wva(x) < -+ <u(z) —u(z), almost everywhere x €
and

(ii) for each n € N, the restriction of v, to Qy is a weak solution of

—Ap(vn +u) = f(z,v, +u) inQy,
U =0 on 09),,.

Proof. Fix n € N. Note that v := 0 and v := w — u > 0 are,

respectively, a subsolution and a supersolution (in the classical sense,
see [11-13]) of

(2.9) { ~Ap(vn +u) = f(z,v, +u) inQy,
vn =0 on 0%,.

Since, for almost every = € Q,, all s € (v(z),v(z)),
(2,5 +u)| < c(z),

we may apply Remark 1.5 in [13] to find a minimal solution v, with
respect to the pair (v,7), of problem (2.9) satisfying

v(z) <wv,(z) <v(z), a.e. z€Qy,.
This means any other solution v}, of (2.9), such that
v(z) <ol (z) <v(z), ae z€Q,,

must satisfy
vn(z) < vl (x), ae. z€Q,.

Since v € L>®(Q2y,), so is v,. This, together with the regularity results
in [14], implies that v, is Holder continuous. We may therefore consider
v, as a function in W* () N C(Q) by defining v, = 0 in Q\ Q,,.



BVPS FOR SINGULAR ELLIPTIC EQUATIONS 561

Next, we show
vn(m)ganrl(m)’ reQ, n=12--.

This inequality is clearly true when x € Q\ Q,. Assume then that
there exists n € N such that the Lebesgue measure of the set

{v € U vnly) > vnta(y)}
is positive. We note that
Un+t1 |09, > 0,

and

| G + 0P 2V (o + ) Vedo

n

=/f(r,vn+1 + u)p de,
Q

for all o € W"P(,). Hence, v,,; is a supersolution to (2.9) in the
classical sense. We may apply Remark 1.5 in [13] again to find a
solution w,, satisfying

0 < wy(z) < min{v, (z), vp41(z)} ae. € Q.
Consequently,
wp(z) <vp(z), z€{y€Qy:v,(y) > vat1(y)}

This, on the other hand, may not happen, because v,, is the minimal
solution of (2.9). O

Let u,, denote v, +u for all n € N. The monotonicity of the sequence
{vy,} shows that {u, } converges to a function u at every point in 2. We
need to show that u is a solution of (2.1) in the sense of distributions.

Lemma 2.6. For all domains U C (), there exists a subsequence
{tun, } € {un} such that

Up,, — u in WHP(U).
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Proof. Let ¢ € C§°(2) be such that 0 < ¢ < 1in Q and ¢ = 11in
U. Let K denote the support of ¢. Without loss of generality, assume
that K C §, for all n € N. Since v, is a solution of (2.9), applying
Holder’s inequality and the product rule of differentiation, we obtain
forn=1,2,...,

1 (p—1)/p
- / IV (gun)P d < Cy + C / IV (oun) P de + Cs ,
K K

where

01:/ \EV(¢)|”dm+/ cpPude,
K K

1/p
Co = 2”(/ lpaVelP dw) ,
K

Cs :/ [aVo|P dz.
K

Therefore, {¢uy,} is bounded in W;?(K) and hence {u,} is bounded
in WLP(U). This implies that there exists a subsequence {u,, } C {u,}
such that

— u in WHP(U),

Up,,

because {u,} converges to u pointwise in §2. The process above may be
applied again to find a subsequence of {u,, }, still called {u,,}, such
that
i 1,p
Up, — win WHP(K).

Next, we show
Up, — u in WHP(U).

It is sufficient to show that
|V, | — [Vu| in LP(U),
because it follows then from Lebesgue’s convergence theorem, that
Up, — w in LP(U).
Since vy, is a solution of

*Ap(vnk +H) = f(xavnk +H) in ana
Up, =0 on 0Q,, ,
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we have
/K Vttn P2Vt - V(g — ) d
- / F (&t )9ty — ) dz.
K

It follows from Lebesgue’s convergence theorem and condition (2.7),
that

lim /K f(zyun, ) p(un, —u)dz =0.

k— oo

Thus,
lim / Vi, [P 2V, - V(o(un, —u))dz = 0.
K

k— oo

On the other hand, applying Holder’s inequality, we obtain

‘ / (unk - u)|vunk |p_2vunk ) VQD dz
K

< Cyl|tn, — ullLe k),
where
Ci = [Vl oy 50D {IVtn, [0, }
keN

This, together with Lebesgue’s convergence theorem, implies

lim |V, [P 2Vup, - V(un, —u)dz = 0.
K

k— o0

Hence,

klim O(|Vtn, P2V, — |VulP~2Vu) - V(up, — u)dz = 0.

—00 J K

Since the integrand is nonnegative and ¢ =1 in U,

im [ (|Vn, [P72Vu,, — |VuP72Vay) - V(up, — u)dz = 0.
k— o0 U

It follows that

Up, — U

in W(U). o
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Let £ € C§°(2) and

V={ze:{x)#0}.

Since, for n > 1, V C ,, we have

/\Vunv’—?vun-vgdm:/f(m,un)gdm.
Q Q

By Lemma 2.6, we may assume that {u,} converges to u in W?(V).
Letting n — oo, we obtain the assertion of Theorem 2.4. O

Remark 2.7. If both u and @ are in C(f2) and their value on 92
is identically zero, then inequality (2.8) holds for all z € Q and u,
therefore, solves (2.1) and satisfies the boundary condition

u=0 on 0N.

3. Hopf’s lemma. In this section, we shall recall Hopf’s lemma
which is needed to prove some properties of eigenfunctions associated
to the first eigenvalue \; of —A,. Let ¢ € C1(2) be a solution of

—A,p=X¢P"t inQ,
(3.1) >0 in Q,
=0 on 0N

(cf. [14, 15]). The following lemma is well-known when p = 2 and is a
corollary of Lemma A.3 in [16].

Lemma 3.1. For all z € Q)

06(z)
o 0

where v is the outward unit normal vector to 0X) at x.

Note that the maximum principle of Vazquez [19] is not applicable,
since it requires A,¢ € LZ ().

loc
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The following lemma gives a property of the eigenfunction in Lemma 3.1,
which we will need to prove Remark 5.2.

Lemma 3.2. Let ¢ € C1(Q). Assume that for all z € 09,

9¢p(z)
ov

/gorda:<oo,
Q

<0.

Then

if and only if r > —1.

Lazer and McKenna [10] have proved this lemma for the eigenfunc-
tion ¢ = ¢ when p = 2. The general case may be proved in a similar
way. (Note that this result is a general result implied by the behavior
of the function at 0f2.)

4. The singular elliptic problem. In this section, we shall
present the main result of this paper, Theorem 4.1, and its proof. As
mentioned in the first section, we shall employ arguments using the
sub-supersolution theorem proved above. Thus, the main point here is
the construction of a well-ordered pair of sub-supersolutions of (1.1).

Theorem 4.1. Assume g satisfies:
(4.1) Iy >0, C > 0 such that g(s) < Cs™7, Vs € (0,00).
Then:

(i) of limsup, o+ h(s)/s?~! < oo, there exists A > 0 such that for
all A € [0, A], problem (1.1) has a solution,

(ii) if there exists & < p — 1 such that
0 < h(s) <s%, Vs € [l,00),

then for all A > 0, problem (1.1) has a solution.

Proof. For each b > 0, define the function ¥, on {2 as follows

Uy = b¢t7
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where ¢t € (0,1) is such that
(4.2) tp—14+7)<p, tp—t+yt—p<0.

Note that equalities in (4.2) can be satisfied when v > 1. A direct
calculation shows that ¢ is a weak solution of

=3, (09'(0)) = 0P ), + MG,
or equivalently,
(4.3) CALUy(2) = (b7 P (2) {q(t,x) N A1¢;’(x)]’
where
alt.) = (1 - o~ DIVe@ + 222,

It follows from Lemma 3.1 that V¢ # 0 on 9Q. So, there exists 8 > 0,
depending on ¢, such that ¢(¢t,z) > 3, z € Q.

Lemma 4.2. Assume that limsup, o+ h(s)/s?~! < oo. Then
there exists A > 0, such that for all A € [0, )], problem (1.1) has a
supersolution w € L>(£2).

Proof. When b is large, with the help of (4.1) and (4.2), we conclude
that

Bot)P 1P TIP — ag(Wy)
> BBt — Cllall g (o) T,
= Bbt)" ¢ 7P — Cllal| oe () (b0") 7

C||a||L<x>(Q)

e

>0,
where the constant C in the above calculation is given by (4.1). Thus,

(4.4) (bt)P Lo P (2)q(t, ) — a(z)g(Pp(x)) >0, =z € Q.
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Now, choose X small enough, so that

3 Mt ¢
Ah(s) < sP Vs € (0, max ¥;(z)].

)
2 z€Q

For all \ € [0, \],

A B B A -~ _ AtPL _
S BPTIET < AR(Ry) > SL(bt gD - S
A A (bt)P1
= Mpyrgron - MO o
=0.

This, (4.3) and (4.4) imply that @ = ¥, is a supersolution of (1.1). O

Lemma 4.3. Assume that there exists a < p — 1 such that
0 < h(s) <s% forallse][l,o0).

Then for all X > 0, (1.1) has a supersolution w € L™ ().

Proof. We first choose b large, such that

(4‘5) %Bbp—1+vtp—1 irleig{¢tp_t_p+yt(m)} > CHa”Loo(Q)
and

(1.6) FA0 " 2 AM max{g(a)}
where

o\ Y1)
M:sren[g:}/{\]h(s), A:max{(m> ,].}

Define @ := ¥;,. The choice of b in (4.5) implies

(4.7 %Bbp_ltp_lgbtp_t_p > ag(u), in Q.
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Using (4.3), (4.6) and (4.7), we obtain

B(bt)r—Lgtr—t-p N AptPigpt
2 2
AP~ tgrt
2

—Apu > ag(w) +

> ag(u) + A\h(T) +
> ag(u) + Ah(u),

on the set {z € Q:0 < u(xz) < A}. On the complementary set, ©w > 1,

and
Altpilﬂp_l Altpilﬂp_l_a_

2 B 2
AltpflApflfa
e —
- 2
> \h(@).
Hence, by (4.3), (4.6) and (4.7)

(67

h(a)

Blbty gt

—Ayu > ag(w) + 5

> ag(u) + Ah(w),

+ A\h(7)

whenever w > A. So, @ is a supersolution of (1.1). O

Next, we find a subsolution for (1.1). Since

lim (g(e¢(x)) + Ah(eg(2))) = o0

e—0t

and
lim (eg(x))P~' =0,

e—0t

uniformly with respect to € €2, we can find ¢ > 0 and M > 0 such
that
M(ed(x))Pt < M < g(ed(x)) + Mh(eo(z)), z € Q.

Thus, for all p € C§°(2), ¢ >0
[ 19 Cor 290 Vods = [ neop e ds
Q Q

< /Q (9(6) + h(ed)) @ da.
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It follows that u = £¢ is a subsolution of (1.1).

Since the supersolution %, obtained in Lemma 4.2 and Lemma 4.3 is
of the form

u = be',
for some b > 0 and 0 < t < 1, we can find € small enough that
u(z) < (@), z e

It follows from Theorem 2.4 and Remark 2.7 that there exists a

solution u of (1.1) satisfying
ep(z) < u(z) < bg'(z), x€Q

forsome 0 <e<1l,b>1,and 0 <t < 1. O

5. Concluding remarks.

Remark 5.1. It follows from Theorem 4.1 that there exist b > 0 and
t € (0,1) such that

0 <wu(z) <bp'(z), =€,
where u is a solution of (1.1) obtained by Theorem 4.1.
When v > (2p—1)/(p— 1), welet t =p/(p — 1+ ) € (0,1) so that
the inequalities in condition (4.2) hold. In this case, under an additional

condition on g, the solution u in Theorem 4.1 is not a weak solution of
(1.1). This is shown by the following remark.

Remark 5.2. Assume in addition to (4.1) that g satisfies
(5.1) g(s) >C~ s, forall s >0,

where C and v are defined in (4.1). Then if v > (2p — 1)/(p — 1), the
solution u obtained in Theorem 4.1 is not in W, " (£2).

Proof. Let u be the solution obtained from Theorem 4.1. It follows
from Remark 5.1 that there exists a b > 0 such that

w(z) < bg?/ P14 (), ae. z e Q.
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Thus
(5.2) / au'~™" dz > / a(bg?/ PN Gy = oo,
Q Q

which follows from Lemma 3.2.
Suppose, contrary to the assertion of the remark, that u € Wol’p(Q).
Then, there exists a sequence {w,} C C§° () such that
w, — u in WP ().
Define
w) = max{w,,0} € WyP(Q), n=12,....

Since u > 0,
w} — w in WyP(Q).

Without loss of generality, assume that w; converges to u almost
everywhere in Q. Using Fatou’s lemma and inequality (5.2), we obtain

+

lim | w au™" dz = oco.

n— oo Q

Since w;i € Wy () and condition (5.1) holds, we have
ul”" “Vu-Vw, dr = aw, g(u) + u)w T
VulP~2Vu - Vw,d iy Mh(u)w;) d
Q Q

> / (Crawtu™ + Ah(u)w)) de.
Q

Hence
/ |VulPdz = lim / |VulP~2Vu - Vw,dz = oo,
which contradicts the assumption that u € W, (). O

The following example illustrates this remark.

Example 5.3. In the case N = 1 and Q = (0, 1), the function u
defined by
z— +/22(1 — )
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does not belong to WD1 ’2(0, 1) and is the unique solution of the boundary
value problem

—u" =u"3in (0,1), wu(0)=1u(1)=0.

The uniqueness of the solution can be deduced from the fact that the
function

s—> 52

is nonincreasing and its smoothness in (0,1).

When p = 2, we may use regularity techniques from [10] to show that
the solution obtained in Theorem 2.4 is a classical solution, provided
that the function f is Lipschitz continuous and u € C?(2) N C(Q).
Thus, if a,9 and h are Lipschitz continuous, then the solution u
obtained in Theorem 4.1 is a classical solution.
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