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WEAKLY PERIPHERALLY MULTIPLICATIVE
SURJECTIONS OF POINTED LIPSCHITZ ALGEBRAS

A. JIMENEZ-VARGAS, AARON LUTTMAN
AND MOISES VILLEGAS-VALLECILLOS

ABSTRACT. Let (X,d) be a compact metric space with a
distinguished base point ex, and let Lipg(X) be the Banach
algebra of all scalar-valued Lipschitz functions f on X such
that f(ex) =0, with the norm

L(f) = sup{|f(2) — f(y)| /d(z,y):x,y € X, = # y}.

Let Rany(f) = {f(z):z € X, |f(z)| = ||f|lcc} denote the pe-
ripheral range of f. We prove that if ®: Lipo(X) — Lipo(Y) is
a surjective map, not assumed to be linear, with the property
that Ranr(fg) NRany(®(f)®(g)) # < for all f, g € Lipo(X),
then ® is a weighted composition operator of the form

®(f)(y) = 7(y)f(¢(y)), for all f € Lipp(X), forall y € Y,

where 7 is a function from Y into {—1,1} and ¢ is a Lipschitz
homeomorphism from Y onto X such that p(ey) =ex.

1. Introduction. Given two function algebras A(X) and B(Y)
on the compact Hausdorff spaces X and Y, respectively, a map ® :
A(X) — B(Y) is said to be multiplicatively range-preserving provided
that

(@(f)2(9)(Y) = (f9)(X), for all f,g € A(X).

Several papers on multiplicatively range-preserving surjective maps
between function algebras have appeared in recent years [3, 8, 9].

If C(X) is the Banach algebra of all complex-valued continuous func-
tions on a compact Hausdorfl space X, equipped with the supre-
mum norm, and X is a first-countable space, Molnér [8, Theorem
5] proved that every multiplicatively range-preserving surjective map
®:C(X) — C(X) is a weighted composition operator of the form

@(f)(z) = 7(z)f(e()), for all f e C(X), forall z € X,
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where 7 : X — {—1,1} is a continuous function and ¢: X — X is a
homeomorphism. Molnar’s theorem was extended by Rao and Roy for
mappings from a uniform algebra to itself [9, Main Theorem], and by
Hatori, Miura and Takagi for mappings between uniform algebras on
arbitrary compact Hausdorff spaces [3, Theorem 1.1].

Hatori, Miura and Takagi generalized all the known results on multi-
plicatively range-preserving surjective maps by showing that every mul-
tiplicatively spectrum-preserving surjective map between unital semi-
simple commutative Banach algebras ® : A — B has the form

(f)y) =7(v)f(p(y)), forall f € A, for all y € Mg,

where 7 is an element in B with spectrum o(7) C {—1,1} and ¢ is a
homeomorphism from the maximal ideal space Mp of B onto M4 [4,
Theorem 3.2]. Moreover, they pointed out that the technique of proof
of their result depends essentially of the existence of the units of the
Banach algebras, and it cannot be adopted directly to prove a similar
result for non-unital commutative Banach algebras.

The peripheral range of a function f € A(X),
Rang(f) = {f(z):z € X, |f(z)] = [|fllec}

is the subset of values of f(X) of maximum modulus. Luttman
and Tonev [7] introduced a new point of view on this matter by
describing the structure of peripherally multiplicative surjective maps
between uniform algebras, i.e., maps that multiplicatively preserve
only peripheral ranges, or equivalently the peripheral spectra, rather
than the entire ranges of products. Most recently, the peripheral
multiplicativity of maps on uniformly closed algebras of complex-
valued continuous functions which vanish at infinity and on algebras of
scalar-valued Lipschitz functions has been analyzed in [2] and in [5],
respectively.

According to [6], a map ®: A(X) — B(Y) is said to be weakly
peripherally multiplicative if

Ran,(fg) NRan,(®(f)®(g9)) # @, for all f,g € A(X).

This weaker condition was studied in [6], where it is proved that any
weakly peripherally multiplicative map ®: A(X) — B(X) between uni-
form algebras, not assumed to be surjective, under the additional as-
sumption that ® preserves a special class of functions known as the
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peaking functions, must be a weighted composition operator of a form
similar to those above. Surjective weakly peripherally multiplicative
maps without the assumption on the peaking functions were not stud-
ied. Moreover, general results in unital semi-simple commutative Ba-
nach algebras do not exist in the literature for weakly peripherally
multiplicative maps.

Motivated by this and also because, as it is mentioned in [4], it is
interesting to study for which Banach algebras a theorem of Molnar
holds; in this paper, we study weakly peripherally multiplicative surjec-
tive maps ®: Lipo(X) — Lipg(Y’), where Lipg(X) is a pointed Lipschitz
algebra, a type of non-unital commutative algebra.

Our approach follows closely that of Rao and Roy in [10], which con-
tains a version of Molnar’s theorem for closed, point-separating subal-
gebras A of the Banach algebra Cy(My) of complex-valued continuous
functions which vanish at infinity on M4, endowed with the supremum
norm.

To present our main result, we first explain briefly the notations and
terminology that we shall use. Let X = (X,d) be a metric space
with a distinguished base point ex € X; X is called a pointed metric
space. Then Lipg(X) is the Banach space of all scalar-valued Lipschitz
functions f on X which vanish at ex, with the norm

L(f) = sup{|f(2) = f(y)| /d(z,y) : 2,y € X, & # y}.

If f,g € Lipg(X) are bounded, then (fg)(ex) = f(ex)g(ex) =0, and
the straightforward inequality

[(F9)(x) = (f9) (W) < (L(f) 9/l + L(9) [ fll) d(=,y),
for all z,y € X,

implies that fg is Lipschitz, so that fg € Lipg(X). If X has finite
diameter, every scalar-valued Lipschitz function f on X is bounded
with ||f]|, < diam (X)L(f), where diam (X) denotes the diameter of
X, and therefore Lipg(X) is an algebra. If X has infinite diameter, the
function on X given by f(z) = d(z,ex) is in Lipg(X), but f? is not
Lipschitz, so that Lipy(X) is not an algebra. The algebras Lipg(X),
with X a finite-diameter, pointed metric space have been the subject
of considerable study (see, for example, [11] and its references).
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Let X and Y be metric spaces. Recall that a map ¢ : X — Y is
a Lipschitz homeomorphism if ¢ is bijective and both ¢ and ¢! are
Lipschitz. When X and Y are both pointed, we say that ¢ preserves

base point if p(ex) = ey. Our main result reads as follows:

Theorem 1.1. Let X and Y be pointed compact metric spaces, and
let @: Lipo(X) — Lipy(Y) be a surjective map, not assumed to be linear,
that is weakly peripherally multiplicative, i.e. that satisfies

(1) Rang(fg) N Rang (®(f)®(9)) # @

for all f,g € Lipg(X). Then there exists a unique function 7 : Y —
{-1,1} with 7(ey) = 1 and a unique base point-preserving Lipschitz
homeomorphism ¢ : Y — X such that ® is of the form

(f)(y) = () f(e(y))
for all f € Lipg(X) andy €Y.

Under the condition of compactness on the pointed metric spaces
X and Y, Theorem 1.1 determines all surjections from Lipg(X) onto
Lipg(Y) that satisfy (1), since every map ® of the form ®(f) = 7-(foyp)
for all f € Lipp(X), with 7, being as in the statement above,
automatically satisfies (1).

Moreover, we prove that @ is a topological isomorphism and that ®2
is multiplicative (Propositions 2.10 and 2.11).

According to [11, Corollary 4.2.9], any algebra isomorphism & :
Lipg(X) — Lipg(Y) is a composition operator ®(f)(y) = f(¢(y)) for
all f € Lipg(X) and y € Y, where ¢ : Y — X is a base point-preserving
Lipschitz homeomorphism. We provide sufficient conditions for a
weakly peripherally multiplicative surjective map between algebras
Lipy(X) to be an algebra isomorphism (Corollaries 3.1 and 3.2).

Finally, given a metric space (X, d), let Lip (X) denote the Banach
space of all bounded scalar-valued Lipschitz functions f on X, with
I 71l = max{|| fllcos L(f)}. Every space Lip (X) can be naturally identi-
fied with a space Lipg(Xg) for a suitable pointed metric space Xy (see
Lemma 3.3). Using this fact, we characterize weakly peripherally mul-
tiplicative surjections between algebras of the type Lip (X) (Corollary
3.4) and give an extension of [5, Theorem 3.1].
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2. A proof of Theorem 1.1. The key point of the proof of
Theorem 1.1 is the fact that the spaces Lipy(X) are, similar to uniform
algebras, rich enough in peaking functions.

Definition 2.1. Let X be a pointed metric space. A function
f in Lipo(X) is said to be a peaking function if Ran,(f) = {1}.
We denote by P(X) the set of all peaking functions of Lipg(X) and
P.(X)={feP(X):f(z)=1} forz € X.

Lemma 2.1. Let X be a pointed metric space.
i) For each x € X, the function f, defined by

fz(2) =d(z,2) — d(ex,x), fordll z € X,
is in Lipo(X) with L(f,;) = 1. The family {f, : © € X} separates the

points of X.
ii) For x € X and 6 > 0, the function hy5: X — [0,1] given by

hzs(z) = max {0,1 — d(z,z)/d}

is Lipschitz with L(hys) < 1/8, hys(x) = 1 and hy5(z) < 1 for all
z # © with hy 5(z) = 0 if d(z,x) > 0. Moreover, h,s(ex) = 0 if and
only if d(z,ex) > 4.

iii) For any x € X and f € Lipo(X) with f(z) # 0, there exists a
function h € Py(X) such that |h(2)| <1 and |f(2)h(z)| < |f(z)| for all
z # . In particular, Ran,(fh) = {f(x)}.

Proof. The proofs of i) and ii) are straightforward. To prove iii)
we may assume that |f(x)| = 1 for, if not, we replace f by f/\ with
A =|f(z)|- Let g be the function from X into [0, 1] given by

1 if [f(2)] <1,
9(z) =q 2-|f(z)] H1<|f(2)] <2,
0 if [£(2)] > 2.

It is easily seen that g is Lipschitz with g(z) = 1 and |fg| < 1. Choose
§ € (0,d(z,ex)], and put h = gh, 5. A trivial verification shows that h
satisfies the properties required in the statement. ]
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Assertion ii) shows that the spaces Lipg(X) are endowed with an
abundance of peaking functions.

Following an argument similar to that of [7, Lemma 2], we prove the
following:

Lemma 2.2. Let X be a pointed metric space and, let f,g € Lipo(X).
If fhllso < llghllso for all h € P(X), then |f] < |g|.

Proof. Suppose that |f(x)| > |g(z)| for some point z € X. Observe
that © # ex. Take ¢ > 0 such that |f(z)| > ¢ > |g(z)|. Since g
is continuous at z, there is a 6 € (0,d(z,ex)] such that |g(z)| < €
when d(z,z) < §. It is easily seen that |gh,s| < € and ||fhs sllcc >
|f(z)hgs(x)] = |f(x)| > e. Then ||ghssllec < € < ||fha,6]|c0, Which
proves the lemma. a

Definition 2.2. A map ® : Lipy(X) — Lipo(Y) is said to be

a) uniform norm-multiplicative if ||®(f)®(g9)||cc = ||f9lloc for any
f59 € Lipo(X);
b) uniform norm-preserving if || ®(f)||co = || f||oo for any f € Lipg(X);

c) monotone increasing in modulus if | f| < |g| implies |®(f)| < |®(g)]
for any f, g € Lipo(X) (see [1]);

d) monotone increasing in modulus in both directions if for any

f,9 € Lipo(X), |f| < |g| if and only if |®(f) < [®(g)]-

Given the preliminaries above, we prove Theorem 1.1 through a
sequence of propositions that follow closely the steps in the proof of
the corresponding result in [6].

From now on, we shall assume that ®:Lipg(X) — Lipo(Y) is a
surjective map satisfying (1) for all f, g € Lipg(X).

Proposition 2.3. @ is uniform norm-multiplicative and, as a
consequence, it is uniform norm-preserving.

Proof. Let f,g € Lipg(X). Then (1) implies ||fg|lco = [|2(f)P(g)]] co-
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Moreover, taking g = f,
171136 = 117%llc0 = 12()[loc = [12(f)]1Z-
Thus, [[fllc = 12(f)lle- T

Proposition 2.4. & is monotone increasing in modulus in both
directions.

Proof. If | f| < |g|, then ||fh|lco < |lgh||e for all b € Lipg(X). By the
surjectivity of ®, for each k € P(Y) there is an h € Lipg(X) such that
k = ®(h). Since ® is uniform norm-multiplicative, we obtain

[2(H)2() e = Al < llghlloe = 12(9)2(A)]l »

and thus [|®(f)k|lcc < ||®(9)k||co- Since k is arbitrary in P(Y), we
infer that |®(f)| < |®(g)| by Lemma 2.2.

Similarly, i [8(f)] < [B(g)], then [B(f)k]lac < [[B(g)k]oo for all
k € Lipg(Y). For each h € P(X), then we have

£kl = [12(F)2(A)]lo < [2(9)2(R)]s0 = llghlloo,

which implies |f| < |g]. O

For each z € X \ {ex}, consider the set
Fp(X) = {f € Lipo(X) : [f(2)| = [ flloo = 1} -
Analogously, for any y € Y \ {ey }, let

Fy(Y)={g €Lipo(Y) : |g(y)| = llgll.. =1}

These sets are nonempty by Lemma 2.1 ii).

Proposition 2.5. For each x € X \ {ex}, there exists a unique
y €Y \ {ey} such that ®(F,(X)) = F,(Y).

Proof. Fix xy € X \ {ex}. For any f € F,,(X), define

P(f)={yeY \{ev}:|2(N)®)] = 2(f)ll. =1}
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First we observe that P(f) is nonempty, since ® is uniform norm-
preserving and Y is compact. We claim that there exists a yy €
Y \ {ey} such that ®(F,,(X)) C F,(Y). Note that this holds if
mfero(X)P(f) # @. In order to verify this, it is sufficient to show that
the family {P(f) : f € F,,(X)} has the finite intersection property,
since each P(f) is a closed subset of the compact Hausdorff space
Y. Pick fi,...,fn € Fyo(X). Clearly g = f1-+- fn € Fy,(X) and
lgl < |fi| for all 4 € {1,...,n}. Since ® is uniform norm-preserving,
we have ||®(fi)||co = 1 for all i € {1,... ,n} and ||®(g)|lcc = 1. Then
|®(9)(yo)| = 1 for some yo € Y \ {ev}. By Proposition 2.4, it follows
that |®(g)| < |®(f;)| for all ¢ € {1,... ,n}, hence |®(f;)(yo)| = 1 for all
i €{1,...,n}, and so we have that yp € N, P(f;).

Similarly, we prove now that F, (Y) C ®(F,, (X)) for some z; €
X \{ex}. For any g € F,,,(Y), define
P(g)={z e X \{ex}:|h(z)| =1, forall he @ *({g})}.

Let g1,...,9n € Fy(Y), and choose hq,... ,h, € Lipg(X) such that
®(h;) = gj. Let g = g1---gn, and choose h € Lipy(X) such that
®(h) = g. Then ||g|lo = |lgjllc = 1 for all j € {1,...,n}. Since

® is uniform norm-preserving, ||hjllc = [|®(hj)llo = llgjllc = 1.
Similarly, |||l = |l9llcc = 1. By Proposition 2.4, |®(h)| < |®(h;)]
implies |h| < |hj|. Since ||h||oc = 1, it follows that there exists an

z € X \ {ex} such that |hj(z)] =1 for all j € {1,...,n}. Therefore,
{P(9):9 € F,,(Y)} has the finite intersection property, and there
exists an 1 € Nyep, (v)P(9). Thus, ® 1(Fy,(Y)) C Fy,(X), and
Fy, (Y) C @(F, (X))

The preceding paragraphs show that there exist yo € Y \ {ey} and
z1 € X \ {ex} such that ®(F,, (X)) C Fy,(Y) C ®(F,,(X)). To see
that ®(F,,(X)) = F,,(Y), we prove that zy = x1. Suppose zg # x1
and choose fy € Lipg(X) such that fo(zg) = 1 and |fo(z)| < 1 for
all z # xg. Since @(fy) € P(Fy, (X)), there exists an f; € F,, (X)
such that ®(f1) = ®(fo). Thus, |2(fo)(y)| = |®(f1)(y)| for all y € YV
but |fo(z1)| < |fi(z1)] = 1, which contradicts Proposition 2.4. Thus,
xy = x1, and ®(F,, (X)) = F,,(Y). To see that yo is unique, note that,
if ®(F,, (X)) = F,,(Y) for some y; € Y\ {ey}, then F,(Y) = F,,(Y),
which immediately implies that yo = y;. ]

Proposition 2.5 justifies the following:
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Definition 2.3. Let 9: X — Y be the map which sends each
point z € X \ {ex} to the unique point ¥(z) € Y \ {ey} such that
O(Fp(X)) = Fy(s)(Y), and 9(ex) = ey.

Proposition 2.6. i is bijective.

Proof. If z € X\ {ex}, then ¢(x) # ey = ¢(ex). lfz1,z2 € X\{ex}
are such that ¥(z1) = ¢(z2), then ®(Fy, (X)) = ®(Fy, (X)), which was
shown above to imply that x; = x2. Hence, 1 is injective. To see that
¥ is surjective, let yo € Y \ {ey } be given. We must show that there
exists an z9p € X \{ex} such that ®(F, (X)) = Fy,(Y). The arguments
above imply that there exist p € X \{ex} and y; € Y\ {ey} such that
Fyo(Y) C ®(Fg, (X)) C Fy, (Y), which immediately yields yo = y1, and
therefore Fy, (Y) = ®(Fy, (X)). ]

Proposition 2.7. For all f € Lipo(X) and z € X, |f(z)| =
[2(f) (¥ ()]

Proof. If © = ex, then f(z) = 0 and ®(f)(¥(x)) = ®(f)(ey) =0, so
[f(@)] = 0= |2(f)(%(z))].

Fix = # ex, and assume f(z) # 0. Then, by Lemma 2.1 iii), there
exists an h € P,(X) such that ||fh|le = |f(2)]. Since ||®(f)P(h)||co =
Ifh]lo by Proposition 2.3, it follows that |®(f)(v¥(x))®(h)(¥(z))] <
|/ (z)|. Since h € Fp(X), [®(h)(¢(2))| = 1, so [2(f)(¢(z))| < |f(z)].

The reverse inequality is proven similarly.

Now suppose f(z) = 0, and let ¢ > 0 be given. Then there is
a d € (0,d(z,ex)] such that |f(z)] < €/2 if d(z,2) < §. Consider
hys € Lipo(X). Given z € X, we have

d(z,7) <& = |f(2)he,s(2)| < [f(2)] <e/2,
d(z,2) > 6 = |f(2)has5(2)| =0 < e/2.
Hence, || fhy s]|oc <e. Therefore, just as above, since || ®(f)®(hy6)|lco =
|| fhz slloo by Proposition 2.3, it follows that
[2()(®(2)] = [2(f)(¢(2)) @ (ha,5) (¢ (2))] < e.

Since ¢ was arbitrary, ®(f)(¢(z)) = 0. Thus, |®(f)(¥(z))| = 0 =
|f(z)|, which proves the result. o
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Proposition 2.8. For each z € X \ {ex}, ®(h)(¢(x)) =1 for all
h € Py(X), or ®(h)(¢(z)) = —1 for all h € P,(X).

Proof. Let y € X \ {ex} and h € P(X) be such that h(xo) = 1.
We claim that ®(h)((x0)) = 1 or ®(h)(¢¥(z9)) = —1. First observe
that [®(h)(¢¥(zo))| = 1 by Proposition 2.7. By Lemma 2.1 iii) there
exists a k € P(Y) such that k(¢(x0)) = 1, |k(y)] < 1 for all
y # ¥ (x0), and Rang (®(h)k) = {®(h)(¢(z0))}. If f € ®~1({k}), then
®(h)(¥(x0)) € Ran,(fh) by (1). Given z € X, taking into account
that |k(¢(2))| = |®(f)(¥(x))| = |f(x)], it is clear that |f(z)| = 1 if and
only if = 9. Thus @(h)($(xo)) € Rany(fh) = {f(z0)} = Rany (f).
Therefore, {f(z0)?} = Ran,(f?) and {1} = Ranw(k2) together imply
that f(aco) = 1by (1). Thus, ®(h)(¢(zy))* = f(z0)? = 1, which is the

claim.

To see that ®(h)(¢(xo)) is independent of the chosen function h,
let hi,he € P(X) be such that hi(rg) = ha(rg) = 1. Let g =
®(hy)®(h2). Then it must be shown that g(¥(zp)) = 1. Now
lg(¥(z0))] = 1 by Proposition 2.7, so Lemma 2.1 iii) provides k €
P(Y) such that k(¢¥(zo)) = 1, |k(y)] < 1 for all y # (zp) and
Ran,(gk) = {g(¥(x0))}. Choose fi € ®~'({k®(h1)}) and f» €

“'({k®(h2)}). Then g(¢(z0)) € Ran(hif2) N Rang(hafi) by (1).
Using Proposition 2.7, we have that |fi(z)| = |f2(z)] = 1 if and only
if z = xy. Therefore, g(¢(zo)) = hi(xo)f2(z0) = ha(zo) f1(x0), which
implies that g(¢(z0)) = fi(zo) = fa(2o). Therefore, {g(¢(z0))*} =
Ran, (f1f2) C Ran, (®(f1)®(f2)) = Ran,(gk?). Since |k?(y)| < 1 for
y # Y(zo), 1t follows that g(1(z0))* € Ran (gk?) = {g(t(zo))}, which
proves that g(¢(z)) = 1. O

In view of Proposition 2.8, we can consider:

Definition 2.4. Let p: X — {—1,1} be the function defined by
plex) =1 and p(x) = ®(h)(¢(z)) if x # ex, where h is any function
of P,(X

Proposition 2.9. For all f € Lipg(X) and z € X, (f)(¢(x)) =
p(x)f(z).
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Proof. Let g € X. If f(xzg) = 0, then ®(f)(¢(zp)) = 0 by
Proposition 2.7, and thus f(z¢) = p(z0)®(f) (¢ (z0)).

If f(zo) # 0, by Lemma 2.1 iii) there exists an h € P(X)
such that h(zg) = 1, |h(z)] < 1 for  # =x9, and Ran,(fh) =
{f(zo)}.- By (1), f(z0) € Ran,(®(f)®(h)). Using that ® is uni-
form norm-multiplicative and Proposition 2.7, given x € X we have

that |f(z)h(z)| = [|fhlle if and only if [®(f)(¢(z))®(h)((2))| =
|2(f)®(h)||co- Since |f(z)h(x)| = ||fh|s only when z = zg, we have

Ranx (®(f)®(h)) = {2(f)(¢(x0)) @ () (¢(0))}-
Thus, f(z0) = (f)(¢(0))2(h) (¢ (o)) = p(z0)2(f)(¢(20)). D

Proposition 2.10. @ is a topological isomorphism from Lipy(X)
onto Lipo(Y).

Proof. Let f,g € Lipo(X). Then ®(f)(v(z)) = ®(g9)(¢(z)) for all
xz € X implies p(z)f(z) = p(x)g(z) for all z € X by Proposition 2.9,
which implies that f = g. Thus, ® is injective.

Similarly, if @ € K, where K is either the real or complex field, then
since v is surjective by Proposition 2.6,

(f +9)(W(x)) = p(x)(f + 9)(z) = p(z)f(x) + p(x)g(x)
= 2(f)(¢(2)) + 2(9) (¢ (2)),

and

o(af)(¥(2) = p(z)(af)(z) = ap(z) f(z) = a®(f)(d(2))

together show that ® is additive and homogeneous, respectively. Since
®: Lipg(X) — Lipo(Y) is bijective, we can consider its inverse ® ! of
Lipy(Y") onto Lipy(X), which clearly satisfies

Ran, (® !(9)® !(k)) NRan,(gk) # @ (g,k € Lipo(Y)).

Since @ is a linear bijection between Banach spaces, if ® is con-
tinuous, then it is a topological isomorphism by the inverse mapping
theorem. To prove the continuity of ®, observe that the formula
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Ifllo = L(®(f))diam (X) for all f € Lipg(Y) defines a complete
norm on Lipy(Y) satisfying

1flloe = 27Dl < L(@H(f)) diam (X) = [|fly »
for all f € Lipo(Y).

In the above inequality we have used that ||f||.c < L(f)diam (X) for
all f € Lipg(X), which is deduced immediately from

|7 (2)] =1f(2) = f(ex)] < L(f)d(z,ex) < L(f) diam (X), for all z € X.

First we show that the identity I on Lipg(Y) is continuous from
(Lipo(Y), || - |lo) onto Lipg(Y). Let {f.} be a sequence in Lipy(Y)
such that lim,_, ||fr|lo = 0, and suppose that lim,, o, L(f, — f) =0
for some function f € Lipg(Y'). It follows that

[fllse I1f = Fullo + [1fnlloe < L(fn = f) diam (V) + ([ fully ,
for all n € N,

and, taking limits, it follows that f = 0. Thus, I has a closed graph
and is therefore continuous by the closed graph theorem.

On the other hand, ® is continuous from Lipg (X) onto (Lipo(Y), ||-]l0)
since

[2(F)llg = L(f)diam (X), for all f € Lipo(X).

From the above we conclude that ® is a continuous map from Lipg(X)
onto Lipy(Y). O

Let X and Y be pointed metric spaces and ® a map from Lipy(X)
into Lipg(Y'). Then ® is called multiplicative if ®(fg) = ®(f)®(g) for
every f,g € Lipo(X).

Proposition 2.11. &2 : Lipg(X) — Lipo(Y) is multiplicative.

Proof. Let f,g € Lipg(X). For every z € X, since p(z) = 1 or
p(z) = —1, we have ®2(f)(v(z f2(z) by Propos1t10n 2.9. It follows

) =
that ®(fg)(¢(x)) = ®2(f)(¢(x))®*(g)(¥(2)) for all z € X. Since ¢
is surjective by Proposition 2.6, we infer that ®*(fg) = ®(f)®%(g). O
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Proposition 2.12. There exists a unique function 7:Y — {-1,1}
with T(ey) = 1 and a unique Lipschitz homeomorphism ¢ : Y — X
with p(ey) = ex such that

(f)(y) =7(y)f(e(y)), for all f € Lipy(X), for ally €Y.

Proof. Let ¢p : X — Y and p: X — {—1,1} be the maps given in
Definitions 2.3 and 2.4, respectively. By Proposition 2.6, we can define
¢ =1v"1and 7 = poy~!. According to Proposition 2.9, we have

®(f)(y) =7(y)f(e(y)), for all f € Lipo(X), for all y € Y.

Clearly ¢ is bijective, p(ey) = ex and 7(ey) = 1. Next we show that
¢ is Lipschitz. For each y € Y, consider

fow)(2) = d(z,0(y)) — d(ex, ¢(y)), for all z € X.

By Lemma 2.1 1), f,(,) € Lipo(X) with L(f,(,)) = 1. Let y,z € Y. If
7(y) # 7(2), we have

7 (¥) fex (P(y)) = 7(2) fex (#(2))]
—fex(w( ) + fex (0(2))
= d(e(y), ex) + d(p(2), ex) = d(e(y), ¥(2)),

and therefore

d(p(y), #(2)) < [@(fex )(y) — B(fex ) (2)]
L(®(fex)) dly, 2)
< [ @I L(fex) dy, 2) = [|@]] d(y, ).

If 7(y) = 7(2), in the same manner we can see that

d(e(y), ¢(2)) = |- (6X,<P(y)) [d(¢(2), ¢(y)) — d(ex, v (y))]l
|f§p y) o(y)) — fw(y ((p(z))|
= 7)o (#(¥)) = 7(2) for) ((2))]
= |2(£o()(¥) — 2(fo()) (2)] < [[@]] d(y, 2)-

Thus, ¢ is Lipschitz.
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Since ! is a linear bijection from Lipg(Y) onto Lipg(X) satisfying
Ran, (® '(g)® '(k)) NRan,(gk) # @
for all g,k € Lipg(Y), the argument above gives a function 7/ : X —
{-1,1} with 7'(ex) = 1, and a Lipschitz bijection ¢’ : X — Y with
¢'(ex) = ey such that

() (z) =7 (x)f(¢'(z)), for all f € Lipp(Y), for all z € X.

Clearly ¢¥(ex) = ey = ¢'(ex) and, given z € X \ {ex}, we have
F@W (@) = 2(@ () (¥(2)) = p(x)2 " (f)(z) = p(2)7' () f (¢'(2))
for all f € Lipg(Y). Hence, (f(¥(z)))? = (f(¢'(z ))) for all f €

Lipg(Y'), which implies 9(z) = ¢'(z). Henc ¢, so 9 is also
Lipschitz.

(v
Y
Finally, we prove the uniqueness of 7 and ¢. Let us suppose that

®(f)(y)=1"(y)f(¥'(y)), for all f € Lipg(X), for ally €,

where 7' is a function of Y into {—1,1} such that 7'(ey) = 1 and
¢":Y — X is a Lipschitz homeomorphism satisfying that ¢'(ey) = ex.
Then

() f(¢' (y) = 7(y) f(¢(y)), for all f € Lipg(X), for all y € Y.

Fix y € Y \ {ey}. Since p(y) # ex # ¢'(y) by the injectivity of ¢ and
¢', we can define the function

f(2) =d(z,ex)/(d(z,{¢(Y), ¢ (y)}) + d(z,ex)), for all 2 € X.
Clearly, f € Lipo(X) and f(p(y)) = f(¢'(y)) = 1. Hence, (y) = 7(y)

and, since 7'(ey) = 1 = 7(ey), we conclude that 7/ = 7. It follows that

F(@'(y) = f(p(y)) for all f € Lipg(X), which implies ¢'(y) = ¢(y)
and ¢'(ey) = ex = p(ey), so ¢’ = . O

This concludes the proof of Theorem 1.1.
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Remark 2.1. The function 7 in Proposition 2.12 is Lipschitz if ex is
an isolated point of X (or equivalently if ey is an isolated point of Y).
Indeed, let y,y’ € Y \ {ey}. Define

f(2) = d(z,ex)/(d(z,{e ), ¢(¥)}) + d(z,ex)), for all z € X.

Notice that d(ex,X \ {ex}) > 0 since ex is isolated in X. Clearly
ével?iPO(X)’ L(f) < 1/d(ex, X \ {ex}) and f(¢(y)) = fe(y)) = 1.
I7(y) = (W) = 17 () f(e(¥) = T(¥") f (2(y)]
=[2(f)y) - ()W)
< L(2(f)d(y, y')
< @Il L(f)d(y, ')
< |[@] (1/d(ex, X \ {ex}))d(y,y"),

and moreover |7(y) — 7(ey)| < 2(1/d(ey,Y \ {ey})d(y,ey). So 7 is
Lipschitz.

The next example shows that function 7 in Proposition 2.12 is not
necessarily continuous.

Example 2.1. Equip [0,2] with the usual metric and with base
point 1. Define the function 7 : [0,2] — {—1,1} by 7 = X[0,1] — Xj1,2]
where X[o,1] and X];,2) are characteristic functions of the sets [0, 1] and
|1, 2], respectively. For any f € Lipo([0,2]), define ®(f) = 7f. For any
a,b € [0,1] or a,b €]1,2], we have

[@(f)(a) — 2(f)®)] = [f(a) — FO)] < L(f) |a — b],
and for any a € [0,1] and b € ]1, 2],

[2(f)(a) — 2(f)(0)] < |2(f)(a)l + |2(f)(D)]
= [f(a) = F[ +1F(1) = f(0)]
< L(f)la— 1+ L(f) 1 = b = L(f) la — b] .

— &

Thus, ®(f) is Lipschitz. Moreover, ®(f)(1) = 7(1)f(1) = 0, and so
®(f) € Lipo([0,2]). Hence, the map & : Lipg([0,2]) — Lipo([0,2]) is



1918 JIMENEZ, LUTTMAN AND VILLEGAS

well defined. An easy verification shows that @ is surjective and weakly
peripherally multiplicative.

3. Some consequences. Recall that any algebra isomorphism
®: Lipg(X) — Lipo(Y') is a composition operator ®(f)(y) = f(¢(y)) for
all f € Lipp(X) and y € Y, where ¢: Y — X is a base point-preserving
Lipschitz homeomorphism. First we apply Theorem 1.1 to study when
a weakly peripherally multiplicative surjective map between algebras
Lipp(X) is an algebra isomorphism.

Corollary 3.1. Let X and Y be pointed compact metric spaces.
A surjective map ®: Lipy(X) — Lipo(Y) is multiplicative and weakly
peripherally multiplicative if and only if there exists a base point-
preserving Lipschitz homeomorphism ¢:Y — X such that ®(f)(y) =

f(e(y)) for all f € Lipy(X) andy € Y.

Proof. 1t is straightforward to check that every map ® of the form

®(f)(y) = f(e(y)), for all f € Lipy(X), for all y €,
where ¢ : Y — X is a base point-preserving homeomorphism, is a
multiplicative surjection of Lipo(X) onto Lipg(Y') satisfying (1).

Now, suppose that ®:Lipg(X) — Lipg(Y) is surjective and multi-
plicative and satisfies (1). Then, by Theorem 1.1, there exist a func-
tion :Y — {—1,1} with 7(ey) = 1 and a base point-preserving Lip-
schitz homeomorphism ¢ : ¥ — X such that the equation ®(f)(y) =
7(y)f(¢(y)) holds for all f € Lipg(X) and all y € Y. The multiplica-
tivity of @ implies

T(y)(F9) () = T(¥)* fe(¥)9(o(y))
for every f,g € Lipg(X) and y € Y. Hence,
7(y)(r(y) — 1) f(¢(y))? =0, for all f € Lipy(X), for all y € Y.

For each y € Y \ {ev}, let f € Lipo(X) with f(¢(y)) = 1. Then
7(y)(7(y) — 1) = 0 and so 7(y) = 1. Therefore,

@(f)(y) = f(e(y)), for all f € Lipg(X), forally € Y \ {ey}.
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Moreover, p(ey) = ex implies ®(f)(ey) = 0 = f(p(ey)), which
completes the proof. i

Next we see another condition under which any weakly peripherally
multiplicative surjection between algebras of type Lipg(X) is an algebra
isomorphism. The following corollary is a version for algebras Lipy(X)
of the main theorem in [6].

Corollary 3.2. Let X and Y be pointed compact metric spaces. A
surjective map ® : Lipg(X) — Lipg(Y) is weakly peripherally multi-
plicative and maps peaking functions of Lipo(X) to peaking functions
of Lipg(Y) if and only if there exists a base point-preserving Lips-
chitz homeomorphism ¢ : Y — X such that ®(f)(y) = f(e(y)) for
all f € Lipp(X) andy €Y.

Proof. We only prove the “only if” part. By Theorem 1.1, we have

®(f)(y) = 7(y)f(¢(y)), for all f € Lipg(X), for all y €Y,

where 7 is a signum function on Y and ¢ : ¥ — X is a base point-
preserving Lipschitz homeomorphism. Fix y € Y and let h € P(X)
such that h(¢(y)) = 1. Then 7(y) = ®(h)(y). Since ®(h) € P(Y)
and |®(h)(y)| = |7(y)| = 1, it follows that ®(h)(y) = 1, and thus
T(y)=1. 0O

Finally, we shall apply Theorem 1.1 to describe the form of all weakly
peripherally multiplicative surjective maps between algebras of type
Lip(X). For it we shall need the following lemma:

Lemma 3.3. Let (X,dx) be a metric space, let ex ¢ X and let Xy
be the set X U {ex} with the metric dx, defined by

ng(:U7y)
min{2,dx(z,y)} ifz,y€ X,
=40 fr=ex =y,

1 ifreX andy=ex, orr=ex andy € X.
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Then Lip (X) is isometrically isomorphic to Lipg(Xy). Namely, the
map Tx : Lip (X) — Lipg(Xo) given by

flz) ifzeX,
0 ifr=ex,

(1)) = {
is an isometric isomorphism.

Proof. Clearly Tx is bijective and linear. Let z,y € X, then

ITx (@) = Tx(Nex) _ 1@ =00 _ e s

dXO(CE,ex) 1

Moreover, if dx (z,y) < 2, we have

Tx(f)(z) — Tx ()] _ [f(=) ~ f(y)l

dXo(xv y) B dX(mvy) = L(f),
and if dx (z,y) > 2,
Tx () (=) = Tx (N @) _ |f(=) = ()l
ng(xay) - 2 S ||fHoo
Therefore,
L(Tx(f)) < max{L(f), [ flloc}-
To obtain the converse inequality observe that
|f(=) = f)| _ |Tx(f)(@) — Tx(f)(y)|
Ky S gy o)
and

1 dXO (LE, €X)
for all z,y € X. o
Corollary 3.4. Let X andY be compact metric spaces. A surjective

map @ : Lip(X) — Lip(Y') is weakly peripherally multiplicative if and
only if there exist a Lipschitz function 7 : Y — {—1,1} and a Lipschitz
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homeomorphism ¢ :' Y — X such that ®(f)(y) = 7(y)f(p(y)) for all
feLip(X) andy €Y.

Proof. Suppose that ®:Lip(X) — Lip(Y) is a weakly peripher-
ally multiplicative surjection. Following the notation of Lemma 3.3,
it is clear that ®; = Ty@T)}l is a surjective map from Lipg(Xp)
onto Lipy(Yp) such that Ran,(fg) N Ran,(®o(f)Po(g)) # @ for all
f,g9 € Lipg(Xp). By Theorem 1.1 and Remark 2.1, there exists a Lip-
schitz function 79:Yy — {—1,1} with 79(ey) = 1, and a Lipschitz
homeomorphism ¢g: Yy — Xo with ¢g(ey) = ex satisfying

Po(f)(y) = 10(y) f(vo(y)),
for all f € Lipy(Xy), for all y € Yj.

Let 7 = 79ly and ¢ = @o|y. Then 7 is a Lipschitz function from Y
into {—1,1} and ¢ is a Lipschitz homeomorphism from Y onto X such

B DHeW) = 1w )
— (@) Tx (F)(0(s)) = Bo(Tx ()W)
— (Ty TN (Tx () ()
— Ty (@) ) = 2(1)y)

for all f € Lip(X) and y €Y. u]
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