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SOME REMARKS ON
THE GENERALIZED TANAKA-WEBSTER CONNECTION
OF A CONTACT METRIC MANIFOLD

BENIAMINO CAPPELLETTI MONTANO

ABSTRACT. We find necessary and sufficient conditions for
the bi-Legendrian connection V associated to a bi-Legendrian
structure (F,G) on a contact metric manifold (M, ¢,&,7,9)
being a metric connection with respect to the associated met-
ric g, and then we give conditions ensuring that V coin-
cides with the (generalized) Tanaka-Webster connection of
(M, #,€,m,9). Using these results, we give some interpreta-
tions of the Tanaka-Webster connection and we study the in-
terplays between the Tanaka-Webster, the bi-Legendrian and
the Levi Civita connection in a Sasakian manifold.

1. Introduction. In this paper we study some properties of the
(generalized) Tanaka-Webster connection of a contact metric manifold
(M?"*Y ¢ & n,g). This connection has been introduced by Tanno, cf.
[15] as a generalization of the well-known connection defined at the end
of the 1970’s by Tanaka in [14] and, independently, by Webster in [17],
in the context of CR-geometry. We put in relation the (generalized)
Tanaka-Webster connection with the theory of Legendrian foliations
on contact metric manifolds, cf. [10, 11, 13]. In particular, in
[4] the author has attached to any Legendrian foliation a canonical
connection, called bi-Legendrian connection, and in [5] he has found
many applications of this connection in the theory of Legendrian
foliations. In this paper we find conditions for which the Tanaka-
Webster connection and the bi-Legendrian connection associated to a
given Legendrian foliation coincide. We discuss some consequences of
these results and give new interpretations both of Tanaka-Webster and
of bi-Legendrian connections. For the latter, more precisely, we prove
that the bi-Legendrian connection associated to a given Legendrian
foliation on a contact manifold (M?" !, ) can be viewed as the Tanaka-
Webster connection of a suitable Sasakian structure (¢,&,7n,g9) on
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M?" 1 and they are contact metric connections in the sense of [12].
By virtue of this and other theorems which we will prove in Sections 3
and 4, compared with the analogous results in even dimension, we see
that the Tanaka-Webster connection of a Sasakian manifold plays the
role of the Levi Civita connection on a Kahlerian manifold. Finally, in
Section 5, we present some examples and counterexamples; for instance,
we construct a Sasakian structure on S, endowed with a nonflat bi-
Legendrian structure, for which the Tanaka-Webster connection and
the bi-Legendrian connection do not coincide.

The framework of this paper are contact metric manifolds. Recall
that a contact structure on an odd-dimensional smooth manifold /2™ +!
is given by a 1-form 7 satisfying n A (dn)™ # 0 everywhere on M?>"*1,
It is well known that, given 7, there exists a unique vector field &,
called Reeb wvector field, such that dn(€,-) = 0 and n(§) = 1. The
distribution defined by ker(n) is called the contact distribution and is
denoted by D. Then the tangent bundle of M?"*! splits as the direct
sum TM?*"*H = D@RE. A Riemannian metric g is an associated metric
for a contact form 7 if the following two conditions hold:

(i) g(V,€) = n(V) for all V € T(TM?"*1), that is, £ is orthogonal
to D;

(i) there exists a tensor field ¢ of type (1,1) on M?"*! such that
$?> = —I +n®¢& and dn(V,W) = g(V,¢W) for all V,W € ['(T M>*"*1).

Moreover, from (i) and (ii), one can prove the following well-known
relations (cf. [1]):

¢ =0, no¢=0, g(@V,oW)=g(V,W)—n(V)n(W),
g(@V, W) = —g(V,oW)

for all VW € T(TM?**t1). We refer to (4,£,n,9) as a contact
metric structure and to M?*"+! with such a structure as a contact
metric manifold. A contact metric manifold (M?2"+1 ¢, ¢, 7, g) is called
a Sasakian manifold if it is mormal, i.e., if the tensor field N :=
[, #] + 2dn ® £ vanishes identically. In terms of the covariant derivative
of ¢ the Sasakian condition is

(1) (Vo)W =g(V,W)E—n(W)V,

where ¥ denotes, and will denote in all this paper, the Levi Civita
connection. In the study of contact metric manifolds it is useful to
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define a tensor field h by h = (1/2)L¢¢. The operator h is symmetric,
anti-commutes with ¢, satisfies h€ = 0 and it vanishes if and only if
¢ is a Killing vector field (in this case the contact metric manifold in
question is said to be K-contact; it is easy to show that a Sasakian
manifold is also K-contact). Moreover,

(2) Vvé = —¢V — ghV

holds for all V € ['(TM?"*!). For the proofs of all these properties
and more details on contact metric manifolds, we refer the reader to
[1].

Given a contact metric manifold (M?2"*! ¢, € n,g), there is de-
fined on M?"+! a canonical connection, called the generalized Tanaka-
Webster connection or, simply, the Tanaka-Webster connection of the
contact metric manifold (M?"*1 ¢, ¢, n,g). This connection is defined
by the following formula:

VW =Yy W+ (V) W + (W) (8V + ¢hV)

(3)
+dn (V+hV,W)E,

for all V,W € ['(TM?"*!). The torsion tensor of this connection has
the following expression:

(4) TV, W) =n(W)ohV —n (V) phW +2g (V, W) .

Tanno ([15]) found a characterization of this connection. He proved
that the Tanaka-Webster connection *V is the unique linear connection
on M?"*1 such that

(i) *"Vg =0, *Vnp =0, *"VE=0,

("Vve ) = (Vvo)W — g(V +hV, W) +n(W)(V + hV),
T V) = —¢"T(E, V),

(iv) *T(Z,Z") = 2dn(Z,Z")¢  for all Z,Z' € T'(D).

(iii

)

(i)

(5) )
)

This connection agrees with the connection of Tanaka in [14] when
the contact metric manifold is a strongly pseudo-convex (integrable)
CR-manifold.



1012 BENIAMINO CAPPELLETTI MONTANO

All manifolds considered here are assumed to be smooth, i.e., of the
class C*°, and connected; we denote by I'(-) the set of all sections of a
corresponding bundle. We use the convention that 2uAv = uQUv—vQu.

2. Bi-Legendrian connections. The contact condition nA(dn)™ #
0 can be interpreted geometrically saying that the contact distribution
is as far from being integrable as possible. One can prove that the
maximal dimension of an integrable subbundle L of D is n. In this case
L necessarily satisfies the condition dn(X, X') = 0 for all X, X’ € T'(L),
since 2d5(X, X') = X (n(X')) — X'(n(X)) - n([X, X"]) = 0, L being
integrable. This motivates the following definition.

Definition 2.1. A Legendrian distribution on a contact manifold
(M?"*1 n) is an n-dimensional subbundle L of the contact distribution
such that dn(X,X’) = 0 for all X, X’ € I'(L). When L is integrable,
it defines a Legendrian foliation of (M?"*1 n). Equivalently, a Legen-
drian foliation of (M?"*+1 n) is a foliation of M?"*! whose leaves are
n-dimensional C-totally real submanifolds of (M?"+1! p).

Legendrian foliations have been extensively investigated in recent
years from various points of views, cf. [10, 11, 12]. In particular,
Pang provided a classification of Legendrian foliations by means of a
bilinear symmetric form IT# on the tangent bundle of the foliation, de-
fined by IIx(X, X') = —(LxLx'n)(§). He called a Legendrian foliation
F nondegenerate, degenerate or flat according to the circumstance that
the bilinear form IIx is nondegenerate, degenerate or vanishes identi-
cally, respectively. A geometrical interpretation of this classification is
given in the following lemma.

Lemma 2.2 [10]. Let (M"Y ¢, £ n,9) be a contact metric manifold
foliated by a Legendrian foliation F. Then

(a) F is flat if and only if [£, X] € T(TF) for all X € T(TF),

(b) F is degenerate if and only if there exist X € I'(TF) such that
£, X] € D(T'F),

(c) F is nondegenerate if and only if [£,X] ¢ T(TF) for all X €
I(TF).
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Lemma 2.2 also allows us to extend the notion nondegenerateness,
degenerateness and flatness to Legendrian distributions. Thus, we
say that a Legendrian distribution L is flat if [, X] € T'(L) for all
X € T(L), degenerate if there exist X € I'(L) such that [¢, X] € T'(L),
and nondegenerate if [, X] ¢ T'(L) for all X € I'(L).

By an almost bi-Legendrian manifold we mean a contact manifold
(M?"+1 n) endowed with two transversal Legendrian distributions L;
and L,. Thus, in particular, the tangent bundle of M?2"+! splits up
as the direct sum TM?"*t! = L, ¢ L, @ R¢. When both L; and Lo
are integrable we speak of bi-Legendrian manifold ([4]). An (almost)
bi-Legendrian manifold is said to be flat, degenerate or nondegenerate
if and only if both the Legendrian distributions are flat, degenerate or
nondegenerate, respectively.

In [4] it has been attached to any almost bi-Legendrian manifold a
canonical connection which plays an important role in the study of
almost bi-Legendrian manifolds.

Theorem 2.3 [4]. Let (M?"*! n, Ly, Ly) be an almost bi-Legendrian
manifold. There exists a unique linear connection V on M?*"T1 such
that

(i) VLy C Ly, VL, C Ly, V(RE) CRE
(ii) Vdn = 0;
(iii) T (X,Y) = 2dn (X, Y)¢, forall X € T (Ly),Y €T (Ly),
T (Vv, 6) = [67 VL1]L2 + [57 VL2]L1 ’ fO’I’ alV e F(TM2H+1)’

where T denotes the torsion tensor of V and X, and X, the projec-
tions of X onto the subbundles L, and Lo of TM?™*1, respectively.

Such a connection is called the bi-Legendrian connection of the al-
most bi-Legendrian manifold (M?"*1 n, L1, Ly). We recall the explicit
construction of this connection. First, for any two vector fields V' and
W on M?"+1 let H(V,W) be the unique section of D such that

(7) ig(v,w)dnlp = (Lviwdn) |p,

that is, for every Z € I(D), dn(H(V,W),Z) = V(dn(W,Z2)) —
dn(W, [V, Z]). The existence and uniqueness of this section depend on
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the fact that the 2-form dn is nondegenerate on D. The main properties
of operator H are collected in the following lemma.

Lemma 2.4 [4]. For every f € C®(M?"*) and V,V',W,W' €
[(TM?™ 1), we have:

1. HV+V' W) = H(V,W)+H(V',W), HV,W+W') = H(V, W)+
H(V, W),

2 H(V, fW) = fH(V,W) + V(f)Wp,
3. H(fV,W) = fH(V,W), if dn(V,W) =0,

where Wp denotes the projection of W onto the subbundle D of
TM2n+1.

Using Lemma 2.4, one can define a connection VX on bundle L;
and a connection V2 on bundle Ly setting, for all W € T'(TM?*"+1),
X e F(Ll), Y € F(Lg),

VLV/[}X = H(WL17X)L1 + [WszX]lq + [WR§7X]L1’
VII/IVZY = H(WL27Y)L2 + [WLUY]Lz + [WR§7Y]L2'

Moreover, we define a connection V®¢ on the line bundle R¢ requiring
that VREE = 0, thus setting

Vi Z = W(n(Z))E

for all Z € T(R€). Then, from VL1, VL2 and VB¢, one can define a
global connection on M?"*! by putting for any V, W € T(TM?"+1),

VwV = Vi Vi, + VRV, + Vi Vie.

In particular it follows that, for all W € T(TM?**!), VW =
&, Wi, L, + [, Wi, + £(m(W))E. The above connection is called
the bi-Legendrian connection associated to the almost bi-Legendrian
manifold (M?>"*! n, Ly, L), and it can be characterized as the unique
linear connection on M?"*! satisfying (6). Further properties of this
connection are collected in the following propositions.
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Proposition 2.5 [4]. The torsion tensor field of the bi-Legendrian
connection of an almost bi-Legendrian manifold (M?"*1,n, Ly, Ly) is
given by

(i) T(X, X") = —[X, X'|z, for X, X' € T(L1),
(ii) T(Y,Y') = =[Y, Y]z, for YY" € I'(L2),
(iii) T(X,Y) = 2dn(X,Y)¢ for X € T(Ly), Y € T(Ly),
(iv) T(W, &) = [€, Wi, 1, + [, Wi,]1, for W € T(TM2"+1).

In particular, if Ly and Lo are flat, then the terms T(W, ) vanish, and
if L1 and Lo are integrable then V 1is torsion free along the leaves of
the Legendrian foliations defined by Ly and Ls.

Proposition 2.6 [5]. Let (M?"*',n,Li,Ly) be an almost bi-
Legendrian manifold, and let V denote the corresponding bi-Legendrian
connection. Then the 1-form n is V-parallel, the parallel transport
along curves preserves the distributions L1 and Lo and, if Ly, Lo are

integrable and flat, the curvature tensor field of V wvanishes along the
leaves of the foliations defined by L1, L1 ® RE, Ly and Lo & RE.

Proposition 2.6 gives a further geometrical interpretation of the
flatness of a bi-Legendrian structure. It implies that the leaves of the
Legendrian foliations in question admit a canonical flat affine structure.
This always holds in symplectic geometry: for a symplectic manifold
foliated by a Lagrangian foliation, Weinstein proved that each leaf
possesses a natural flat connection; moreover, in case the symplectic
manifold in question admits two transversal Lagrangian foliations, Hess
proved that this connection extends to a symplectic connection on the
tangent bundle called bi-Lagrangian connection (see the Appendix for
more details).

Thus, the flatness of a bi-Legendrian structure, and more in general
of a Legendrian distribution, seems to be a quite natural condition for
comparing Legendrian and Lagrangian foliations. This can also be seen
in the following results.

Proposition 2.7. Every contact manifold (M?"*1,n) endowed
with a Legendrian distribution L embeds into a symplectic manifold
(C,w) endowed with a Lagrangian distribution LC. Furthermore, LY
is integrable if and only if L is integrable and flat.
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Proof. Let C = M?"*! x RT be the cone on M?"t! and let w
be the symplectic form on C defined by w = ef(dn — n A dt) = dX,
A = etny. We set L¢ := L @ RE, considered as a distribution on C.
Then for all X, X’ € T'(L) we have w(X,X’) = e’dn(X,X’) = 0 and
w(X, &) = etdn(X,€) = 0, from which it follows that LC is Lagrangian.
The final part of the statement is then a direct consequence of the
definition of LC. O

Theorem 2.8 [5]. Let (M*"*1 n) be a regular contact manifold
endowed with a Lagrangian distribution L. Then L projects onto a
Lagrangian distribution on the space of leaves of M?*"+1 by the 1-
dimensional foliation defined by & if and only if L is flat. Furthermore,
if M*"*1 is endowed with a flat almost bi-Legendrian structure (Ly, L),
the bi-Legendrian connection associated to (L, Ls) projects to the bi-
Lagrangian connection associated to the projection of (Ly, La) on the
space of leaves of M?"+1,

On the other hand, the flatness of Legendrian foliations implies also
some strong topological obstructions, such as a vanishing phenomenon
for the characteristic classes ([5]). Moreover, we remark that there are
also several examples of nonflat Legendrian foliations (see for instance
the following Example 2.10).

Any contact manifold (M?"*+1 n) endowed with a Legendrian distri-
bution L admits a canonical almost bi-Legendrian structure. Indeed,
let (¢,€,m,9) be a compatible contact metric structure. Then, from
the relation dn(¢V,¢W) = dn(V, W), it easily follows that @ := ¢L
is a Legendrian distribution on M?"*! which is orthogonal to L.
Thus, the tangent bundle of M?2"*+! splits as the orthogonal sum
TM?*+H = Lo Q@RE. Q is called the conjugate Legendrian distribu-
tion of L, and in general is not integrable even if L is. Some conditions
ensuring the integrability of the conjugate Legendrian distribution of a
Legendrian foliation of a contact metric manifold are given in [10].

In this article we mainly study the bi-Legendrian connection V
associated to the almost bi-Legendrian structure (L, Q), with Q = L,
on a contact metric manifold (M?2"*1 ¢, ¢ n,g). We start by finding
conditions which ensure that V is a metric connection with respect to
the associated metric g.
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Proposition 2.9. Let (M** ¢,£,m,9) be a contact metric mani-
fold endowed with a Legendrian distribution L. Let Q) := ¢L be the con-
jugate Legendrian distribution of L and V the bi-Legendrian connection
associated to (L, Q). Then the following statements are equivalent:

(i) Vg =05
(i) Vo = 0;
(iil) VxX' = —(¢[X,8X)) for all X,X' € T(L), VyY' =

— (@Y, 9Y"))q for all Y,Y' € T'(Q) and the tensor h maps the sub-
bundle L onto L and the subbundle Q) onto Q;

(iv) g is a bundle-like metric with respect both to the distribution
L & RE and to the distribution Q@ ® RE.

Furthermore, assuming L and Q) integrable, (1)—(iv) are equivalent to
the total geodesicity of the Legendrian foliations defined by L and Q.

Proof. In order to prove the equivalence of (i), (ii), (iii) and (iv), it is
sufficient to prove the following implications: (i) = (ii) = (iil) = (iv)
= (i).

(i) = (ii). Since dn is V-parallel and dn(-,-) = g¢(-, ¢-), under the
assumption that the bi-Legendrian connection is metric, we have easily
that

0= (Vvdn)(W,W') = (Vyg)(W,¢W') + g(W, (Vv )W)
= g(W, (Vve)W')

for all V, W, W' € T(TM?**1), from which (ii) holds.

(if) = (iii). Assuming V¢ = 0, it follows that, for all X, X' € I'(L),
0= (Vx¢)X' = VxopX' — ¢V x X', from which, applying ¢ and taking
into account that Vi = 0, we get Vx X' = n(VxX')§ — ¢VxoX' =
X(N(X"NE-o([X,0X'|q) = —(8[X, $X']) . In the same way one finds
VyY' = —(¢[Y,¢pY'])q for all YY"’ € T'(Q)). Next, for all X € I'(L),
we have
(8)

2(hX)g = [, 6X]o — ¢ (1€ X],) = VedX — 6VeX = (Veg) X =0,

and, analogously, 2(hY ), = (Ve¢)Y =0 for all Y € T'(Q).



1018 BENIAMINO CAPPELLETTI MONTANO

(iii) = (iv). Let us suppose that (iii) holds. Then for all X, X', X" €
(L), we have

(Exg)(¢X’ PX")
X(g(oX',6X")
X(g(oX', 6X")
X(g(oX',6X")

= X(dn(¢X', X")
= (Vxdn)(¢X',

) = 9([X, 9X'],0X") — g(6X", [X, 9 X"])

) = 9([X, X ']q, ¢X") + g(X', (¢[X, 0 X"])1)
) —9(Vx¢X',0X") — g(X',Vx X")

) —dn(VxoX', X") —dn(¢X', VxX")

H) :0’

since dn is V-parallel. Next, note that by (8) we get (Vep)X =
2(hX)g =0 for all X € I'(L) and, analogously, (V¢¢)Y =2(hY)r =0
for all Y € I'(Q). Using this, we have for all X', X" € I'(L),

(Leg) (X', 0X")
=£(9(pX",6X")) — g([¢, 6Xq, 9X") — 9(¢X', (€, 0 X"]q)
={(9(¢X",0X")) = g(Vedp X', ¢X") — g(¢X', Ve X")
= £(9(X",0X")) — g(Vep X', 6X") — g(¢X', 9V X")
= (Vedn)(¢X', X") = 0.
Arguing in a similar way, one can prove that (Lyg)(X’,X") = 0 and
(Leg)(X', X")=0for all Y € I'(Q) and X', X" € I'(L).

(iv) = (i). Since the bi-Legendrian connection V preserves the
orthogonal decomposition TM?**! = L @ Q @ R, in order to prove
that V is metric, it is enough to check that (Vyg¢)(X', X") = 0 and
(Vyg)(Y',Y") = 0 for all V € D(TM?"*Y), X' X" € T(L) and
YY" € T'(Q). Using (iv) we get
(9)

(Vxg)(X', X")
= X(g9(X", X")) —g(Vx X', X") — g(X', Vx X")
= X(g(X/,X”)) - g(H(Xa Xl)LaX”) - g(XlaH(Xa X”)L)
= —X(dn(X',¢X")) +dn(H(X,X"),$X")
+dn(H(X, X"),¢X")
*X(dﬁ( L ¢X")) + X (dn(X',¢X")) — dn(X', [X, $X"])
X(dn(X",¢X")) — dn(X", [X, ¢X'])
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= —X(9(X', X")) — g(X', 9| X, 6 X"]) — g(X", 4 X, pX"])
= —X(g(6X", X)) + g([X, pX'], 9 X")

+9(6X, [X, 6X"])
= —(Lx9)(¢X",¢X") =0,

(Vyg)(X', X") =Y (9(X", X)) — g([Y, X"], X")
—9(X',[¥, X"]1)
=Y(9(X", X)) = g([v, X'], X") — g(X", [\, X"])
= (Lyg)(X",X") =0

and

(Vgg)(X/, X”) = f(g(Xla X”)) - g([fa Xl]ln X”) - g(le [E’ X”]L)
= &(9(X", X")) — g([&, X'], X) — g(X", [£, X"])
= (Leg)(X', X") =0
for all X, X' X" € T'(L) and Y € I'(Q). Analogously, one can prove
that (Vyg)(Y',Y"”) =0 for all V € T(TM?"*!) and Y',Y" € I'(Q).
Now we prove the last part of the theorem. We prove that, under the
assumption of the integrability of L and @, (i) is equivalent to the total
geodesicity of the foliations defined by L and Q. Let X, X’ be sections
of L. Then, for any Y € I'(Q), the Koszul formula for the Levi Civita
connection yields

(10) 2¢(VxX',Y)
= X(g(X",Y)) + X'(9(X,Y)) - Y(9(X, X)) + g([X, X'],Y)
+9([v, X], X") — g([X', Y], X)
= =Y (9(X, X)) + g([Y, X]z, X) + g([Y, X'], X)
=-Y(g(X,X")+9(Vy X, X') + g(X,Vy X')
= —(Vyg)(X,X')

and, in the same way,
(11) 29(VxX',€) = ~(Veg) (X, X),

from which it follows that, if the bi-Legendrian connection is metric,
then the foliation defined by L is totally geodesic. A similar argument
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also works for ). Conversely, if L and @ define two totally geodesic
foliations, by (10)—(11), one has (Vyg)(X,X') = (Vxg)(Y,Y') =
(Veg)(X, X') = (Veg)(Y,Y') = 0 for any X, X" € T'(L), Y,Y' € T(Q).
Moreover, for all X, X', X" € T'(L), using the same computations in
(9),
(Vxg)(X', X")

= —X(9(X", X")) — g(X", 9[X, ¢X"]) — g(X", ¢[ X, $X]
X'(9(6X", X)) + 6 X" (9(0 X", X)) — X(9(o X", 6X")
+9([pX", 6X"], X) + g([X, ¢X'], 6X") — g([6 X" X], pX")

= 2g(§¢XI¢XII7X) - 0

)
)

because of the total geodesicity of the foliation defined by @. Analo-
gously one can prove that (Vyg)(Y',Y")=0for all YY" Y" € T(Q).
Hence, Vg = 0. i

Example 2.10. A class of examples of bi-Legendrian structures
verifying one of the equivalent conditions stated in Proposition 2.9 is
given by contact (k, )-manifolds, i.e., contact metric manifolds such
that the Reeb vector field satisfies

R(V,W)é=r(n(W)V =0 (V)W) + p(n(W)hV — (V) hW)

for some constants k, u € R. This class of contact metric manifolds has
been introduced in [2] and then extensively studied by several authors.
It is well known that k£ < 1, and when k < 1 the contact metric manifold
in question admits two mutually orthogonal and integrable Legendrian
distributions D(X) and D(—A) determined by the eigenspaces of the
operator h, where A\ = /1 — k. Moreover, these Legendrian foliations
are totally geodesic, hence they verify (i)—(iv) of Proposition 2.9. This
bi-Legendrian structure and the corresponding bi-Legendrian connec-
tion have been studied in detail in [6] where in particular it is proved
that D(A) and D(—A) are never both flat.

3. The bi-Legendrian and the Tanaka-Webster connection.
In this section we consider a contact metric manifold (M?"+1 ¢, & 1, g)
endowed with a Legendrian distribution L. We denote, as usual, by @
the conjugate Legendrian distribution of L and by V the bi-Legendrian



THE GENERALIZED TANAKA-WEBSTER CONNECTION 1021

connection corresponding to (L, Q). We assume that the pair (L, Q)
is flat, that is, both L and @ are flat Legendrian distributions, and
satisfies one of the equivalent four properties of Proposition 2.9. Un-
der these assumptions we study the relationship between V and the
Tanaka-Webster connection *V of (M?"+1 ¢ £ n, g).

Theorem 3.1. Under the notation and the assumptions above, the
bi-Legendrian connection V coincides with the Tanaka- Webster connec-
tion *V if and only if L and Q are integrable and (M?"*1 ¢,£,n,9) is
a Sasakian manifold.

Proof. Suppose that V = *V. Then the torsion tensor field 1" of
the bi-Legendrian connection must satisfy (iv) of (5). In particular,
[X,X')g = —T(X, X') = —2dn(X, X')¢ = 0 for all X, X’ € T(L) and
Y)Y = -T(Y,Y') = =2dn(Y,Y’){ = 0 for all Y)Y’ € I'(Q), from
which we deduce the integrability of L and ). Moreover, from (4) it
follows that [¢, X]o = T(X,€) = *T(X,€) = n(€)$hX — n(X)ghe +
29(X, $€)€ = —h¢X. So, for all X € (L),

(12) €, X]g = —h¢X
and, in the same way,
(13) £, Y], = —h¢Y

for all Y € T'(Q). By (12) and (13) we see that the flatness of L
and @ is equivalent to the vanishing of h. With this remark we can
prove that (M?"+1 ¢ £ n,g) is Sasakian. Indeed, since Vg = 0, by
Proposition 2.9 we have V¢ = 0. Moreover, V satisfies (ii) of (5), so
for al VW e T'(T'M)

~

(Vo)W =g (V +hV,W)E—n (W) (V +hV)
=g(V,\W)E—n(W)V,

since h = 0. Now we prove the converse, showing that V satisfies
(5). We already know that V satisfies V€ = 0, Vi = 0 and, by
hypothesis, Vg = 0. Moreover, V also satisfies T'(X,Y) = 2dn(X,Y)¢
for all X € I'(L) and ¥ € T'(Q), so in order to check (iv) it is
sufficient to prove that T(X,X') = T(Y,Y’) = 0 for all X, X' € I'(L),
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Y,Y' € T'(Q). But this is true because, by the assumption of the
integrability of L and @, we have T'(X,X') = —[X,X']o = 0 and
T(Y,Y') = —[Y,Y']y = 0. Moreover, since (M?"*t1 ¢,£,1n,9) is a
Sasakian manifold and, in particular, a K-contact manifold, we have,
for al V,W € T'(TM),

(Vv o)W — g(V +RV,W)E+n(W)(V +hV)
= (Vv@)W —g(V,W)E+n(W)V =0= (Vyo) W

because of Proposition 2.9. So V also satisfies (ii). Finally, since h =0
and L,Q are flat, we have, for all X € I'(L), T(¢,¢X) = [¢X,€]L =
0 = —¢([X,€o) = —¢T(£,X), and, similarly, for all Y € I'(Q),
T, ¢Y) = 0 = —¢T(£,Y), hence (iii) is also satisfied. Thus, by
the uniqueness of the Tanaka-Webster connection, we conclude that
V =*V. O

Remark 3.2. In the proof of Theorem 3.1, we have found the following
expression for the tensor field h:

hX =6 ¢X], = - (0[6, X)), WY =[€,0Y], = - (4[5, Y])g

for all X € I'(L) and Y € I'(Q). In particular, as we already know by
Proposition 2.9, h preserves the distributions L and Q.

As immediate consequences of Theorem 3.1 and Proposition 2.9, we
have:

Corollary 3.3. Under the assumptions of Theorem 3.1, the Tanaka-
Webster connection of (M*"T1 ¢,€,n,g) satisfies

*VxX' = —(8[X,0X'])L forall X,X' € T(L)
and

*VyY' = —(¢lY,9Y'])q for all Y,Y' € T(Q).

Corollary 3.4. Let (M*"*1 ¢ &,1,9) be a Sasakian manifold foli-
ated by a flat Legendrian foliation F such that the conjugate Legendrian
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distribution is integrable. Let V be the corresponding bi-Legendrian
connection, and suppose that Vg = 0. Let S be the tensor field
of type (1,2) defined by S(V,W) = VyW — VyW. Then we have
S(V,&) =S(&,V) =9V forallV eT(TM) and S(Z,Z") = dn(Z,Z")€
for all Z,Z' € T(D). In particular, for all X, X' € T'(L) and for all
Y,Y' e I'(Q), we have

(14) VxX' =VxX', VyY' =¥yY'.

Proof. Indeed, by Theorem 3.1, V coincides with the Tanaka-Webster
connection of (M1 ¢ ¢ n,g). Then, by (3) we deduce the following
relations:

VxX' —VxX' =0, VxY'—VxY =dn(X,Y)¢, Vx&—Vxé=o¢X,
VyX —VyX =dn(Y,X)¢, VyY' = VyY =0, Vyt— Vy€ = oY,
VeX —VeX = X, VeY —VeY = ¢Y, Vel =V =0

forall X, X' € T'(L), Y, Y’ € I'(Q), from which the assertion follows. O

Remark 3.5. Let (M?"*1 ¢,£,1m,9) be a Sasakian manifold, and let
S be the set of all flat Legendrian foliations on M?2"*! such that the
conjugate Legendrian distribution is integrable and Vg = 0. Take two
elements F; and F» of &yy. Fi and F; are flat Legendrian foliations on
M?n+1 such that Vg = 0 and V2g = 0, where V! and V? denote the
bi-Legendrian connections associated to F; and Fz, respectively. Then,
by Theorem 3.1, V! = V2 because they both coincide with the Tanaka-
Webster connection *V. In particular, we have that V1F, C F, and
V2F, C Fi. Moreover, we deduce that the Tanaka-Webster connection
preserves all the Legendrian foliations belonging to Spy.

A variation of Theorem 3.1 is the following Theorem 3.7. But, before
proving it, we need a preliminary lemma.

Lemma 3.6. Let (M*"*1 ¢,&,n,9) be a K-contact manifold en-
dowed with a flat Legendrian distribution L. Then its conjugate Legen-
drian distribution Q = @L is also flat.
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Proof. Indeed, as ¢ is Killing, we have h = 0, so that, for all X € I'(L),
0 =2rX = [£7¢X] - ¢[§7X]7 from which [§7¢X] = ¢[§7X] € F(Q)a
because L is flat. O

Theorem 3.7. Let (M*"*1,4,&,n,9) be a Sasakian manifold en-
dowed with a flat Legendrian distribution L. Let Q = ¢L be its con-
jugate Legendrian distribution. If the Tanaka-Webster connection *V
preserves the distribution L, then L and Q are integrable and *V co-
incides with the bi-Legendrian connection V associated to the almost
bi-Legendrian structure (L, Q).

Proof. First of all, we prove that *VL C L implies the integrability
of L. Let X,X' € T(L). Then [X,X'] = *VxX' — *Vyx X —
2dn(X, X" =*VxX' —*Vx.X € I'(L). Now we show that *VQ C Q.
Let Y € T'(Q). Then, by *Vg = 0 and *VL C L, we get for all
V € D(TM?"*+1) and X € I'(L)

0=(Vvg) (X,Y)=V(g(X,Y)) —g(VvX)Y) - g(X,"VvY)
=—g(X,"VyY),

so that *VyY € I'(Q & RE). Moreover, since *V¢ = 0, 0 =
(*va) (ga Y) = V(g(f, Y))_g(*vVga Y) _g(ga *VVY) = _g(£7 *VVY)a
from which *V'Y € I'(Q). Then, arguing in the same way as for L,
one can prove that Q is integrable. Note also that, since M?"*! is
Sasakian and in particular K-contact, by Lemma 3.6, also @ is flat.
Finally, we prove that *V coincides with the bi-Legendrian connec-
tion corresponding to (L, (), that is, *V verifies (ii) and (iii) in (6).
The relations *T'(X,§) = [¢, X]q for X € ['(L) and *T'(Y,§) = [§,Y]L
for Y € T'(Q) hold because L and @ are flat and, on the other hand,
*T(X,8) = phX =0, *T(Y,€) = ¢hY = 0. In order to prove *Vdn = 0,
we firstly show that *V¢ = 0. Indeed, since M?"*! is Sasakian,

(“Vvg) W = (Vo)W —g(V,W)E+n(W)V =0

for all V,W € ['(TM?™*1), so that *V¢ = 0. Now we can prove that
(*Vydn)(W,W’') = 0 for all V,W,W' € T(TM?"*1). This equality
holds immediately for W, W’ € I'(L) and for W,W' € I'(Q) because
L and Q are preserved by *V. Also the case W’ = £ is obvious since
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*V¢& = 0. So it remains to show that (*Vydn)(X,Y) =0for X € I'(L)
and Y € T'(Q). In fact, using *V¢ = 0,

(*Vydn) (X,Y) =V (9(X,9Y)) —g(*VvX,9Y) — g(X,¢"VyY)
=V (9(X,9Y))—g(*"VvX,9Y) —g(X,"VyoY)
= ("Vvg) (X,¢Y) =0,

since *Vg = 0. Thus, *V satisfies all the properties which characterize
the bi-Legendrian connection associated to (L, Q). O

4. An interpretation of the Tanaka-Webster connection. In
Section 3 we have found that, under certain assumptions, the Tanaka-
Webster connection of a Sasakian manifold foliated by a Legendrian
foliation F coincides with the bi-Legendrian connection associated to
F (Theorem 3.7). This result has an analogue in even dimension: Etayo
and Santamaria proved in [7] that, under suitable assumptions, the Levi
Civita connection of a Kéahlerian manifold foliated by a Lagrangian
foliation F' coincides with the bi-Lagrangian connection associated to
F'. Therefore, it seems that the Tanaka-Webster connection plays
the same role in contact Riemannian geometry of that one played
by the Levi Civita connection for symplectic or K&hlerian manifolds.
This is not surprising since it is a well-known fact that the Tanaka-
Webster connection of a Sasakian manifold which is a circle bundle
over a Kéhlerian manifold can be viewed as the lift of the Levi Civita
connection of the Kihlerian base manifold. Now we prove this property
for any, in general nonregular, Sasakian manifold.

Let (M?"*! ¢,£,m,9) be a Sasakian manifold. It is well known
that the Reeb vector field £ defines a transversely Kahlerian foliation,
that is, this foliation, which we denote by F¢, can be defined by
local submersions f; : U; — M’'?" from an open set U; of M?"*1,
with {U;}icr an open covering of M?"*! onto a Kihlerian manifold
(M"", J,w,G), where J, w and G are the projection of ¢, dn and g,
respectively. Moreover, any two of these submersions f; and f;, with
U;NU; # @, are connected by local diffeomorphisms v;; : f;(U;NU;) —
[:(U;NU;) satistying, on U;NU;, the relation ;0 f; = f;, and preserving
the Kihlerian structure. Let V' be the Levi Civita connection of
(M'n @) and define a connection V*, locally on each U;, as the lift
of V' under the submersion fi- More precisely, for any basic vector
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fields Zy,Z,, we define V¢, ,Z2 as the unique basic vector field on
Ui such that fi.(Vy Z2) = V .(z1)fix(Z2). Moreover, we put, by
definition, V*¢ = 0 and, for any vector field V on U, VEV = [ V]
Note that these last definitions imply that, for any basic vector field
Z, fie(Vig€) = 0 = VY 7 fin(€) and fie(ViZ) = fir([€,2]) = 0 =
S £ fix(Z). Note also that V' preserves the “horizontal” distribution

e have the following result:

Proposition 4.1. The above connection V' coincides with the
Tanaka- Webster connection of (M?"*1,¢,&,n, g) restricted to U;.

Proof. Tt is sufficient to show that V¢ satisfies all the properties which
characterize the Tanaka-Webster connection of (M?"+1 ¢ £ n,g). First
of all, by definition, V¢ = 0. Next, from Vi€ =0 and V'D C D, we
deduce Vin = 0. Furthermore, since V'G =0 and fi is a Riemannian
submersion, we get (VY )(Zl,Zz) = 0 for all Z, Z;, Z, basic vector
fields on U;, and, since ViD C D, also (Vi,9)(Z1,€) = 0. So it remains
to prove that (Vig)(Z1, Z2) = 0 for Zy, Z» basic vector fields. Indeed,

(Veg) (21, Z2) = €(9(Z1, 2Z2)) — g (€, Z1], Z2) — g (21, [€, Z5))
= (Le¢g) (Z1,22) =0

because £ is Killing. In the same way, since V'J =0and fixod = Jo fix,
we get (VY ¢)Z2 = 0 for all Zy, Z; basic vector fields on U;. Next, for
any basic vector field Z on U; we have (Vi¢)Z = [€,¢Z] — ¢[¢, Z] =
2hZ = 0 because h = 0, M?"*! being Sasakian. Thus, in order
to conclude the proof, it remains to check the properties involving
the torsion. Let Z be a basic vector field defined on U;. Then
Ti(§,67) = VibZ — Vi€ — [€,67] = [6,6Z) - [€,67] = 0 and
Tl(é.a ) §Z v E [EaZ]:[EaZ]f[&Z]:O’ so that TZ(£,¢Z):
0 = —¢T%¢,Z). Finally, for any Zy, Z, basic vector fields, we have
fixs(TH(Z1, Z2)) = T'(fix(Z1), fix(Z2)) = 0 and so T%(Z1, Z2) is vertical.
Hence, 7”'(Z17 ZQ) = H(Ti(Zl, ZQ))£ = —T]([Z]_, Zg])é- = 2dT](Z1, Z2)£ O

Now we prove that this family of connections gives rise to a well-
defined global connection on M?2m+1,
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Proposition 4.2. Let (M*"1, $,£,1,9) be a Sasakian manifold, and
let {U;, fi,vij} be a cocycle defining the foliation F¢. Then the family
of connections (V%);cr defined above gives rise to a global connection
on M?* 1 which coincides with the Tanaka-Webster connection of

(M2 $,€,m, g).

Proof. We have to prove that, for any ¢,j € I such that U; NU; # 9,
Vi = Vi, Firstly note that Yij fj(Ui N U]) — fi(Ui N U]) is a
(local) affine transformation with respect to the Levi Civita connection,
because it is a (local) isometry. Now let Zj and Z; be vector fields
on M'* and let Z{, Z] and Zi, Z3 be the basic vector fields f;-
related and fj-related, respectively, to Z; and Z). Note that Z} is
also the basic vector field f;-related to v;;, (Z]) because it is horizontal
also for f;, as ker(fi,) = RE = ker(fj.), and, for all p € M2+,
f3.(21,) = (i) 10 (21, ,)» since fi(p) = 7i(f;(p)) and 7i; = Vi
Then we get fi, (Vi:23) = i (f1.(V5:23)) = fi.(V5:Z5), which

1 ) ] 1 H
implies that V¢, Z% — iji Zy is vertical. Since it is also horizontal,
1 R . 1 . .
we get VU, Z5 = iji Z5. Moreover, clearly, V*¢ = 0 = VI¢ and, on
1 1 )
U; nU;, VEV = [§, V] = V{V. Finally, the last part of the statement
follows from Proposition 4.1. ]

More in general, for any contact metric manifolds (M?"*1 ¢ & n, g),
we can define a connection on M?"*! setting, for all Z € (D),

(15) V2Z' = (N3Z')p, VeZ=1¢272], VE=0.

That V is a connection on M?" ! preserving the contact distribution D
is easy to check. Moreover, we can give an interesting characterization
of this connection:

Theorem 4.3. Let (M*" 1 ¢ & n,g) be a contact metric manifold,

and let V be the connection on M2"+1 defined by (15). Then V is the
unique connection on M?" 1 satisfying the following properties:

(i) Ve =0,
(i) T(V, W) = 2dn(V, W)¢ for all V, W € T'(TM),
(iii) (Vz29)(Z',2") =0 for all Z,Z',Z" € (D).
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Furthermore, M?"+1 is K-contact if and only if Vg =0, and M*"+!
is Sasakian if and only if V¢ = 0 and in this case V coincides with the
Tanaka- Webster connection of (M?"*1,¢,£,1m,9).

Proof. Firstly we prove that V satisfies (i), (i) and (iii). By definition
we have V¢ = 0. Next, for all 2,2’ € [(D), T(%,2') = (V42')p —
(VzZ)p = [2,2'] = (T(Z,Z)p - [2,Z]re = —n0([2,Z2'])¢ =
2d0(2,2')¢, and T(2,§) = =VeZ = [Z,¢] = [2,£] - [2,¢] = 0 =
2dn(Z,£)€. Then, since on the contact distribution V coincides with the
projection on D of the Levi Civita connection, we get (iii). Now let V be
any connection on M?"*1! satisfying (i), (ii) and (iii). Then by (i) and
(i) we have V¢ Z = VzE+ €, Z|+T(§, Z) = [€, Z)+2dn(§, Z2)€ = [€, Z]
for all Z € I'(D). So it remains to prove that VzZ' = (V4 Z')p for all
Z,7Z" € T'(D). For this purpose, let V be the connection given by

v\/W =Vy,Wp + (§VDWD)R£ + %VREW + %VWRg.

Then, if we prove that V coincides with the Levi Civita connection of
M**1 we would have that VzZ' = (VzZ')p for all Z,Z' € T'(D). 1t
is enough to verify that V is metric and torsion free on the subbundle
D. That V is metric on D is ensured by (iii); then, T(Z,Z') =
T(2,2') +0(V 2 2')€ — n(V 1 2)& = 2dn(Z, Z')& + (|2, Z'))€ = 0. For
proving the second part of the theorem, note that

(Vea)(2,7') = €(9(2, 2") = 9([§, 2), Z') = 9(2, €, Z')) = (Leg) (2, Z),

from which we deduce that M?"*! is a K-contact manifold if and only
if V is a metric connection with respect to the associated metric g.
Finally, if V¢ = 0 we have, first of all,

(16) 0= (Ve)Z = [¢,0Z] — ¢ [€, Z] = (Leo) Z = 2hZ,

from which M***! is K-contact and by (2) ¢Z = ~Vz¢. Then, for all
2,7' € T(D), (V29)Z' = (V29)Z')p + (V26)Z')re = (V29)Z' +

n((V20)2)¢ = 9(V262',€)¢ = —9(92',V28)¢ = 9(¢Z,02")§ =
9(Z,7Z")¢, and (1) is satisfied. Moreover, (Ve¢)Z = Vyz& + [€, ¢Z] —

OV 2E—9l¢, 7] = ~$*Z + $*Z + (Led) Z = 0 and (V29)¢ = —¢V 56 =
$?Z = —Z, so that (1) holds in any case. Conversely, if M?"+1
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is Sasakian, then it is K-contact; hence, (egqﬁ)Z = (Lep)Z = 0.
Moreover, for any Z, Z' € T(D), (Vz¢)Z' = (9(Z,Z")¢ —n(Z')Z)p =
0. Finally, Proposition 4.2 implies that V is the Tanaka-Webster
connection of the Sasakian manifold (M?"*1 ¢,£,n,9). O

In the context of symplectic geometry, in the Appendix we shall prove
the following result.

Theorem 4.4. Let (M*",w) be a symplectic manifold endowed with
a bi-Lagrangian structure (F,G) such that TG is an affine transversal
distribution for F. Then there exists a Kihlerian structure on (M*", w)
whose Levi Civita connection coincides with the bi-Lagrangian connec-
tion of (M*™, w,F,G).

Now we prove the analogue of Theorem 4.4 in odd dimension. As is
expected, the role played in Theorem 4.4 by the Levi Civita connection
is played now by the Tanaka-Webster connection:

Theorem 4.5. Let (M?"! ) be a contact manifold endowed
with a flat bi-Legendrian structure (F,G) such that TG is an affine
transversal distribution for F. Then there exists a Sasakian structure
on (M*"+1 1) whose Tanaka-Webster connection coincides with the bi-
Legendrian connection of (M*"1 0, F,G).

Proof. The assumption of T'G being an affine transversal distribu-
tion for F means that the curvature tensor field of the correspond-
ing bi-Legendrian connection satisfies R(X,Y) = 0 for X € I'(TF),
Y € I'(TG), cf. [5]. So this assumption and the flatness of the bi-
Lengendrian structure imply that the curvature R of the bi-Legendrian
connection V associated to (F,G) vanishes identically, cf. Proposi-
tion 2.6. Now let p be a point of M?"*!. Since dn, is a symplectic
form on the subspace D, C T,M?" ! it follows that there exists a
basis {€1,... ,€n,nilys--. s €2, &} of T, M?™ 1 such that {e1,...,e,}
is a basis of T, F, {en+1,...,€2,} is a basis of T,G and

=

(17) dnp (es, ej) = dnp (entis en+j) =0, dnp (eis en+j) = D)
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foralli,5 € {1,...,n}. Foreach k € {1,...,2n} we define vector fields
E}. on M?"*! by the V-parallel transport along curves of the vector e.
More precisely, for any ¢ € M?"*! we consider a curve 7 : [0,1] — M
such that y(0) = p, v(1) = ¢, and we define Ex(q) = 7,(ex),
7yt T,M?*"*t — T, M*"*! being the parallel transport along 7. Note
that Ej(q) does not depend on the curve joining p and ¢, since R = 0.
Setting X; := F,; and Y; := E;, we obtain 2n vector fields on M?"+1
such that, for each i € {1,...,n}, ¥; € I'(I'F) and X; € I'(TG),
since the parallel transport preserves the distributions TF and TG.
Moreover, (17) holds at any point of M?"*1, that is, for any ¢ € M2 +1
and i,5 € {1,...,n},

dng (Y (q),Yj (9)) = dng (Xi (9), X; (q)) =0,
(18) 1

dng (Yi (0), X; (2)) = —50is-

Indeed, since dn is parallel with respect to V, for all h, k € {1,...,2n},

d
218 (Bn (v(0), B (7 (2)))
= dny(t) (Vy En, Ex) + dipy 1) (Ep, Vy Er) =0

so that dny,(ex,ex) = dng(En(q), Ex(q)), for all ¢ € M?"*1. Note
that, by construction, we have Vg, E, = 0 and V¢E, = 0 for all
h,k € {1,...,2n}. From this and the expression of the torsion of the
bi-Legendrian connection, cf. Section 2, we get

(19) Vi, Y] = [Xi, Xj] = [Vi, ] = [X;,€] = 0
(20) Vi, Xj] = =T (Yi, X;) = —2dn (i, X;) € = 045¢,

for all i,5 € {1,...,n}. Equations (19)—(20) imply that there exist
local coordinates {zi,...,Zn,¥1,...,Yn, 2} such that Y; = 0/0y;,
X; = (0/0x;) + y;(0/0z), & = 0/0z, for any i € {1,...,n}. Note
that, from (18) it follows that, with respect to these coordinates,
dn = >, dz; A dy; from which we have d(n+ >, y;dz;) = 0 and
son =df — Y., yidz;, for some f € C°(M?*"*). But n(Y;) = 0,
n(X;) =0andn(§) = 1imply 0f/0y; =0, 0f/0x; =0and 0f/0z =1,
respectively. So df = dz, and in this coordinate system we have that
TF is spanned by Y; = 9/0y;, TG by X; = (0/0x;) + y:(9/0z),
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i € {1,...,n}, and the 1-form n is given by n = dz — > ., yidz;.
Now we define a tensor field ¢ and a Riemannian metric g on M?"+1,
putting ¢ = 0, ¢Y; = X;, ¢X; = =Y and ¢(Z,2') = —dn(Z,¢Z')
for all Z,Z' € T'(D), g(V,€) = n(V) for all V. € T(TM?*"*1). A
straightforward computation shows that (¢, £, 7, g) is indeed a Sasakian
structure. Finally, since, by construction, Vx, X; = Vy, X; = V¢ X; =
0 and Vx,Y; = Vy,Y; = V¢Y; =0, we deduce easily that V¢ = 0, and
by Theorem 3.1 we get that V = *V. a

Remark 4.6. Assuming in Theorems 4.4 and 4.5 that the manifold is
also simply connected, we have that (M?"*! n) and (M?",w) coincide
with R?"*! and R?" with their usual contact and symplectic structure,
respectively.

Removing the initial hypothesis of TG being an affine transversal
distribution for F, we have the following result, from a theorem of
Jayne [9].

Theorem 4.7. Let (M?"*1 n) be a contact manifold foliated by
a flat Legendrian foliation F. Then there exists a Sasakian struc-
ture (¢,€,m,9) on (M*" 1 ) whose Tanaka-Webster connection co-
incides with the bi-Legendrian connection associated to the almost bi-
Legendrian structure (L, Q), where L =TF and Q = ¢L.

Proof. In [9] it has been proved that, given a flat Legendrian foliation
F of a contact manifold (M2"*1 n), there exists a canonical contact
metric structure (¢,&,n,g) such that (M2?"*1 ¢,£,7,9) is a Sasakian
manifold. This Sasakian structure is defined in the following way. By
the Darboux theorem for Legendrian foliations, cf. [13], for any point
of M?"*! there exists an open neighborhood with local coordinates
{Z1,-.. Tn,Y1,-- ,Yn, 2} such that n = dz — Y | yidz;, € = 8/0z,
and F is locally spanned by the vector fields Y; := 0/0y;, i € {1,... ,n}.
Now consider the contact metric structure (¢y, &, n, gu) on U given by

0 I, 0 dij tyiy; 0 -y
pv=|-1. 0 0], gu = 0 di;j 0 ],
0 Y 0 —Yi 0 1

where Y is the (1 x n)-matrix given by Y = (y1,... ,yn). It is known,
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cf. [19], that (¢y,€&,n,gu) is a Sasakian structure on U. Next, we
consider an open covering of M?"*1 by Darboux neighborhoods as
above and, using the fact that the leaves of F have a natural flat affine
structure, it can be proved (cf. [9]) that these Sasakian structures
fit together to give rise to a global Sasakian structure (¢,&,7,g) on
M?n+1, Now consider the conjugate Legendrian distribution @ of F,
which by Lemma 3.6 is also flat and which is generated by the vector
fields X; := ¢Y; = (0/0x;) + y:(8/0z), i € {1,...,n}. Applying
[6, Proposition 5.1], we get Vx,X; = Vy,X; = V¢X; = 0 and
Vx,Y; = Vy,Y; = V¢Y; = 0, from which V¢ = 0. Then, again
applying Theorem 3.1, we conclude that V coincides with the Tanaka-
Webster connection of (M?2"*1 ¢ & n,g). ]

Remark 4.8. Note that the Legendrian distribution @ of Theorem 4.7
is, a posteriori, integrable because of Theorem 3.7.

Remark 4.9. It should be noted that, by Corollary 3.4, in Theorems
4.5 and 4.7 the connections induced on the leaves of F and G by the Levi
Civita, the Tanaka-Webster and the bi-Legendrian connection coincide.

5. Examples and remarks.

Example 5.1. Consider R?"*! with its standard Sasakian structure
(¢,€,m, g) where

0

= dz — d S
n=dz ;yk Ty, ¢ 55’

g=n®n+ %z": ((dﬂrﬁk)2 + (dyk)z)
k=1

and ¢ is represented by the (2n + 1) X (2n + 1) matrix
0 I, 0

I, 0 0

0 y1--yn O

The standard bi-Legendrian structure (L,Q) on (R***1 ¢ ¢ n,g) is
given by L = span{Xy,...,X,} and Q = span{Yi,...,Y,} where,
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for all ¢ € {1,...,n}, X; := 0/0y; and Y; := (0/0x;) + y:(0/0=).
It is easy to check that ¢X; = Y; for all ¢ € {1,...,n} and that
L and Q define two orthogonal flat Legendrian foliations on R2?*!,
Let V be the corresponding bi-Legendrian connection. A straightfor-
ward computation shows that Vx,X; = Vy, X; = V¢X; = 0 and
Vx,Y; = Vy,Y; = VY; = 0. Using these relations, we have V¢ = 0
and so, by Proposition 2.9, Vg = 0. Then, by Theorem 3.1, the
bi-Legendrian connection V coincides with the Tanaka-Webster con-
nection on (R*"*1 ¢ & n,g). In particular, with the notation of Re-
mark 3.5, L € SRren+1. Another consequence is that the Tanaka-
Webster connection on R?"*! is everywhere flat since V is flat, cf.
[4].

Corollary 5.2. Let F' be any Legendrian foliation on RZ*"H!
belonging to Sgrzn+1. Then the curvature of the corresponding bi-
Legendrian connection vanishes identically.

Proof. F' is a flat Legendrian foliation on R?"*! such that its
conjugate Legendrian distribution is integrable and V’'g = 0, where
V' denotes the bi-Legendrian connection associated to F'. So, by
Remark 3.5 we have V = V', V denoting the bi-Legendrian connection
associated to the standard bi-Legendrian structure on R2?*t!, In
particular, the curvature tensor fields of the two connections must
coincide and the result follows from the flatness of V. o

Now we give an example of a Sasakian manifold endowed with a non-
flat bi-Legendrian structure for which the corresponding bi-Legendrian
connection is metric but does not coincide with the Tanaka-Webster
connection.

Example 5.3. Consider the sphere S® = {(z1,z2,23,74) € R* :
22 + 22 + 22 + 23 = 1} with the following Sasakian structure:

1N = x3dry + Tv4dxe — T1dT3 — T2dXy,

iy g0 00
B 36371 485[;2 16:173

T2
6374 ’
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1000 00 -1 0
o100 oo o -1
9=loo10]" ?|10 0 o

000 1 01 0 0

Set X := 220/0x1 — 1(0/0xz2) — x4(0/0x3) + 23(0/0x4) and YV :=
¢X = x4(0/0x1) — x3(0/0x2) + x2(0/0x3) — x1(0/0x4), and consider
the one-dimensional distributions L and @ on S® generated by X
and Y, respectively. An easy computation shows that [X,¢] = —2Y,
[Y,¢] = 2X, [X,Y] = 2§. Thus, L and Q define two Legendrian
foliations on the Sasakian manifold (S®, ¢, £, 7, g) which are orthogonal
and not flat. For the bi-Legendrian connection corresponding to this
bi-Legendrian structure, we have, after a straightforward computation,
VxX = VxY = Vxé = VyX = VyY = Vy€& = 0. Therefore,
V¢ =0. But T(§,9V) = —¢T(€,V) for all V € T'(T'S?) is not satisfied;
indeed T'(§,9Y) = —T(§,X) = [§,X] = 2Y and, on the other hand,
OT(E,Y) = —l¢,Y] = 26X = 2V, so that T(E,¢Y) = —¢T|(¢, X)
holds if and only if Y = 0.

We conclude with an example of a bi-Legendrian structure on a non-
Sasakian manifold.

Example 5.4. Let g be a (2n+1)-dimensional Lie algebra with basis
{X1,...,Xn,Y1,...,Y,,&}. The Lie bracket is defined in the following
way:

[Xi, X;] =0 for any i,5 € {1,...,n}, [V;,Y;] =0 for any i # 2,
[Y2,Y;] =2Y; for any j # 2, [X1,Y1] =2 —2X,, [X1,Y;]=0
for any 5 > 2,

[Xn, Yi] = Onk (26 — 2X5) for any h,k > 3, [X2,Y;] = 2X;
for any j # 2,

(X2, Ya] = 2¢, [Xi,Y1] = [Xi,Y2] =0 for any k > 3,
€, X;]=0and [{Y;]=2X, forany j € {1,...,n}.

Let G be a Lie group whose Lie algebra is g. On G one can define a
contact metric structure by defining ¢ = 0, ¢X; = Y; and ¢Y; = — X,
for all i € {1,...,n}, considering the left invariant Riemannian metric
g such that {Xy,...,X,,Y1,...,Y,, &} is an orthonormal frame and,
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finally, defining the 1-form 7 as the dual 1-form of the vector field &
with respect to the metric g. It can be proved, cf. [3], that (G, ¢,&,7,9)
is a contact (k,p)-manifold with k = 0 and g = 4 and so it is
certainly non-Sasakian. Let L and @ be the n-dimensional distributions
generated, respectively, by Xy,...,X,, and Y7,...,Y,,. They can also
be viewed as the eigenspaces of the eigenvectors A and —\ of the
operator h, where A = /1 —k = 1. As remarked in Example 2.10,
L and @ define two orthogonal Legendrian foliations of the contact
metric manifold (G, ¢,&,7,g), and the corresponding bi-Legendrian
connection satisfies Vg = 0, V¢ = 0. Nevertheless it does not
coincide with the Tanaka-Webster connection of (G, ¢,&,7,g). Indeed,
T, 0X1) = —T(Y1,€) = —[§,Y1]r = —2X; and, on the other hand,
T(€,X1) = ~T(X1,€) = ~[6, Xilg = 0, so T'(E,§X1) # —¢T (€, X1).

APPENDIX

Recall that a Lagrangian foliation of a symplectic manifold (M?",w)
is an n-dimensional foliation F of M?" such that w(X,X’) = 0 for
any X, X’ € I'(TF). A bi-Lagrangian structure on (M?",w) is nothing
but a pair of transversal Lagrangian foliations (F,G) on (M?",w). In
[8] Hess proved that, given two transversal Lagrangian distributions L
and Q) on M?>", there exists a unique symplectic connection V on M?"
preserving the distributions L and @ and whose torsion tensor field
satisfies

(21) T(X,Y)=0

for all X € T'(L) and Y € T'(Q). This connection is called the
bi-Lagrangian connection associated to (L,Q), and if L and @ are
integrable, i.e., if they define a bi-Lagrangian structure on M?", V is
torsion free and it is flat along the leaves of the foliations. In this
Appendix we prove the already stated Theorem 4.4, which, to the
knowledge of the author, has not yet been proved elsewhere.

Lemma 5.5 [7]. Let (F,G) be a bi-Lagrangian structure on the
symplectic manifold (M?",w). Let (J,w,g) be a Hermitian structure on
(M?",w). Then, for the bi-Lagrangian connection associated to (F,G),
we have Vg = 0 if and only if VJ = 0.
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Proof of Theorem 4.4. First of all note that, as in Theorem 4.5, the
assumption of 7'G being an affine transversal distribution implies that
V is everywhere flat. Fixing a point z of M?", there exists a basis
{e1,---s€n,ni1,---,e2,} of T,M?" such that {eq,...,e,} is a basis
of T,F, {en+1,---, €2} is a basis of T,,G and

1

(22) wz (e, ej) = Wy (entis en+j) =0, we (€3, en+j) = )

for all ¢,j € {1,...,n}. For each k € {1,...,2n}, we define a vector
field Ej, on M?" by the V-parallel transport along curves of the vector
er. Note that, for all y € M?", Ej(y) does not depend on the curve
joining = and y, since R = 0. Setting X; := E,4; and Y; := E,
we obtain 2n vector fields on M?" such that, for each i € {1,...,n},
Y; e I'(TF) and X; € T'(TG), because the parallel transport preserves
the distributions TF and T'G. Moreover, since Vw = 0 and (22) hold
at any point of M2, that is,

wy (Yi (¥), Y5 (9)) = wy (Xi (y), X; (y)) = 0,
(23) 1y

for any y € M and 7,5 € {1,... ,n}. Note that, by construction, we
have Vg, E, =0 for all h,k € {1,...,2n}. From this and (21), we get

(24) Vi, Y] = (X0, X)) = [Vi, X = 0

for all 3,5 € {1,...,n}, and (24) implies the existence of coordinates
{z1,... ,&n,Y1,.-. ,Yn} such that, foreachi € {1,... ,n}, Y; = (0/0y;)
and X; = (0/0z;). So in this coordinate system we have that T'F
is spanned by Y; = (8/0y:), TG by X; = (0/0z;), i € {1,...,n},
and, moreover, by (23), w = Y.  dz; A dy;. Now we define a
tensor field J and a Riemannian metric g on M2" putting, for each
ie{l...,n}, JY; = X, JX; = —Y; and g(V,W) = —w(V,JW)
for all VW € I'(TM?>"). A straightforward computation shows that
(J,w, g) is indeed a K&hlerian structure. Finally, since, by construction,
Vx,Xi=Vy;X; =Vx,Y; = Vy,Y; = 0, we deduce easily that VJ = 0,
which, by Lemma 5.5, imply that Vg = 0. Thus, V coincides with the
Levi Civita connection of (M?", J,w, g). |
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