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NIKOL’SKII INEQUALITIES FOR LORENTZ SPACES
Z. DITZIAN AND A. PRYMAK

ABSTRACT. A general approach is given for establishing
Nikol’skii-type inequalities for various Lorentz spaces. The
key ingredient for the proof is either a Bernstein-type inequal-
ity or a Remez-type inequality. Applications of our results to
trigonometric polynomials on the torus T'¢, algebraic polyno-
mials oanl, 1], spherical harmonic polynomials on the unit
sphere S9=1 in R4, algebraic polynomials on R with Freud’s
weights and others will be presented.

1. Introduction. The Lorentz space L,, = L, ,(Q,pu), 0 <
p,q < 00, is the class of measurable functions on 2 with respect to
the nonnegative measure y satisfying || f|,,q < oo where

oo 1/q
q —1 px
wm@zwmmwzﬂgé lef@wﬁ ,

(1.1) 0<p, g<oo,
1£llpioo = Ifllzy i@ = sup  tYPf*(t), 0<p< oo,
0<t<p(Q2)

and f* is the nonincreasing rearrangement of f. Note that for p = co
the space Lo, 4 is defined only for ¢ = oc.

We recall that the distribution function ps(X) is given by

(1.2) 1N =l € Q3 |£(@)] > N),
and f*, the rearrangement of f, is given by
(1.3) F(t) =inf(X: pp(X) <t).

For the classes of functions {N, },er, for which N, C L, ,(, p) for
0 < p,q < oo, a Nikol’skii-type inequality is

(1'4) ”f”l)z,qz < C\I,(V)”fnphlh for f € N,,.
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Here, we will have ¥(v) = vA(/P)-(/P2))+ or W(v) = (log(v +
1))((1/a2)=(1/a))+ where a, = max(a,0). Both ¥(v) and the constant
C depend on p, p2, g1 and go. (C also depends on {N, } but not on v.)
We emphasize the fact that in this paper various classes of functions
{N,} will be described that will fit different domains and measures
for which different constants § will be appropriate. (The classes of
functions {N,} are not uniquely determined by the domain Q and the
measure p.) While in general we would not obtain the best possible
constants, we will attempt to differentiate between cases or ranges for
which an absolute constant exists and situations in which the constant
C is unbounded as p; — ps — 0 or as p; — 0.

For the case when N, is the class of trigonometric polynomials of
degree < v on Q = T (the circle [—m,7]) with u the Lebesgue measure
on T, Sherstneva [6] achieved (1.4). In most other cases, the Nikol’skii-
type inequality proved was restricted to p; = ¢ and py = ¢o, i.e., to
the case L =L

In Section 2 we establish the general framework of our treatment.
Inequalities will be proved for the class of functions A, (), where A, (7)
with o,y > 0, is the collection of all functions f € L, 4 satisfying

(1.5) v (@) = £7(0).

The condition f € Ay () (for various A, (7)) will later be related to
the classes {N,} in applications. Applications in case u(2) < oo are
given in Sections 3 and 4, where Remez and Bernstein-type inequalities
are used respectively to obtain (1.5). In Section 5, applications when
u(Q) = oo are dealt with. Further remarks conclude the paper in
Section 6.

Piqi pi*

2. Basic inequalities. Relations between ||f||p,.q, and ||f]p,,q, iR
general and under the restriction f € A, (), see (1.5), given in Theo-
rems 2.1 and 2.3 respectively form the framework for proving Nikol’skii-
type estimates in the present work. The results in Theorem 2.1, though
known or straightforward, will be given for completeness. Furthermore,
we state here explicitly the constants that stem from the exact defini-
tion in (1.1).

Theorem 2.1. Let ||flp,q be given by (1.1) with respect to some
and pu, and let 0 < p,p;,q,q; < 0o. Then:
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2.1) 1o < Iflpa for pra < oo
Q2 1/42

(2.2 s < (2) 1l

for p < oo and g1 < g2 < 00;

1/42

(23) e < (52) @) o0 g
P1 — P2

for p2 < p1 < 00 and g2 < qi;

1/q2 1/q: L .

(2.4 e < (2) 7 (2) " w@FH b
q1 D2

for pa < p1 < 00 and q1 < q2; and

(25) 1 Fllyaszs < 0% flloe for pa < oo.

Remark 2.2. In proving (2.3), (2.4) and (2.5) we assume that
1() < oo as otherwise these inequalities are meaningless. When
() < oo, f*(t) =0 for t > p(Q) and [~ = OH(Q) --+ in (1.1). The
condition gs < ¢ in (2.3) is redundant (not used), but when g2 > ¢,
the superior estimate (2.4) holds.

Note that when we write p (instead of p;), we use it for the case
b1 =p2 =p-.

Proof. For any 0 < t < u(Q2), we have

t 1/ t 1/
tl/pf*(t):f*(t){;%/o u(q/p)ldu} qg{g/o u(q/p)lf*(u)qdu} !

p
< [ fllp.q-

Taking the supremum on both sides, we derive (2.1). We use (2.1) to
obtain

s ={ 22 [ @0 o)t oy
qg1 P Jo

% 1/q2 ( y y 4 1/q2
S(a) nﬂmamqwﬂmgzs(a) If

1/q2

|qul’
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which is (2.2). For t < (), £*(t) < ||fllpr,cot /P, and hence

@ () 1/g2
T {p— / t@“”m)-“/m”—ldt} T

P\ W) 1/m)
< Q) (1/p2)—(1/p1 o
< (2) e 1l

which, using (2.1), implies (2.3). We obtain (2.4) using (2.2) in
combination with

P1 1/ 1 1
@26) (e < (p—) (@)=

which follows immediately from (1.1). For u(f2) < oo we have (2.5)
using

(2.7)
@ () 1/q2
1 llpnan < {p— / t@/m)-ldt} £10) = @Y7 fle. O

Theorem 2.3. Suppose that f € A, (%), i.e., satisfying (1.5), and
that 0 < p,p;,q,q; < 00. Then:

(2.8) 1£llse <70 ?(Ifllpq  when p < oo;

1/g2
b1 -
29 Wl < (274 ) o g, ,

when p1 < pa < 00 and gz < qq;

% 1/q2 m 1/q1
(2.10) Ifllpz,qzé(q—l> (vq1+p—2) o O/P)= /) fL

when p; < p2 < 00 and ¢ < gz < 00;

/g
p —
Q1) [l < (40 +2) om0 g,
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when p; < pa < 00 and g1 < oo;

(2.12) 1£[lps,00 < o /PO=CP2| f]|,, oo when py < pa < 003

(213)  [[fllpas < e(v, 1(92), 2, 41, g2) (o + 1)/ 9 =/a| ||, o,

when p() < 0o, p < 0o and g2 < q1.

Proof. Using (1.5), we obtain
(2.14)

1 £llpoo = sup  £72f*(t) > a7 Pf*(07") 2 v o7 VP|| f o,
0<t<p(2)

which, together with (2.1), implies (2.8). We now represent || f||,,,¢, by

-1

112, = kel w(92/P2) =1 ()22 gy
P2 Jo
. ()
(2 15) + 2 ! u(‘lz/Pz)*lf*(u)qz du
D2 Jo—1
= Il + IQ.

To estimate I;, we write

—1

nifie 22 [ et ome g,
N P2 Jo
and using (2.8), we have

q2
(2.16) I < {yo /e 0| g, .

To obtain (2.9), we estimate I by

(@)
IzS( sup tl/”lf*(t))qz-ﬂ/u #laz/p2)=(az/p1) =1 gy

o-1<t<pu(Q) P2 Jo-1
P1 _
< a2 21 ((A/p)-(1/p2))e2 < (by (2.1
<o < (by (2.1))
<|If)e ,, - —2—ol/e)-(/p2))a

P2 —p1
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which, combined with (2.16), implies (2.9). For o1 <t < u(Q2), we
have t(Q/p2)71 S 0.((1/171)7(1/p2))qt(q/p1)71 and hence

(@)
N "l gy

T P2 P1Jo—1
_ D1 _(a/p)-1
= p_za(( /p1)—( /pz))q”fugl,q’
which, combined with (2.16), implies
b1 1/a 1 1
@11 Sl < (774 2 ) gty

Setting ¢ = ¢1 < g2, and using (2.2) as well as (2.17), we obtain (2.10).
We now use (2.1) with p = p; and ¢ = ¢; and then (2.17) with ¢ = ¢;
to obtain (2.11). We split the supremum defining || f||p, 00, Writing

[l oo = max( sup /72 £(t), sup /72" (¢)) = max(Jy, Jo).
t<o-1 t>o-1
Using (2.8), we have
I (U e ) F
and as p; < p2,

Jy < o1/P1)=(1/p2) sup tl/plf*(t) < U(l/m)f(l/pz)Hprl s
o-l<t<pu() 7

which establishes (2.12). To establish (2.13), we estimate I; and Iy
given in (2.15) with p; = p. We follow (2.16) to estimate I; by
L < (| fl1Z o7 <% Il

Using the Holder inequality, we estimate I3 by

()
I, = qﬁ/u {t(fh/P)*lf*(t)lZl}q2/q1t*1+(Q2/¢11) dt
071

Q / Q 1-(q2/q1)
q_2 /N( )t(QI/P)—lf*(t)fh i@t q2/41 ‘ /M( ) ﬂ q92/491
p o1 o-1 t

{qgl/tn)q;(l/m)p(l/ql)—(l/qz)(IHH(Q) + Ino)t/a)=(1/a) Hprhql}

IN

q2

IN

which, together with the estimate of I, implies (2.14). O

)
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Remark 2.4. The condition ¢ < ¢; in (2.9) is not needed and is just
an indication that when ¢o > g1, better results hold and are given in
(2.10), (2.11) and (2.12).

3. Applications using Remez-type inequalities. The most
versatile and hence desirable way to achieve an inequality like (1.5) is
via a Remez-type inequality given by

B fllew < e B @y, fEN, =N (8),

for any measurable set B satisfying u(B) = | B| < M with some positive
M, A and . The Remez inequality (3.1) implies for oo > 0

B
62 e ((2) ) 2 Mleaw o eNs

that is, (1.5) holds with v = e=4% ¢ = (v/a)? and Awjayp =Ny In
Section 6 we will discuss the superiority of (3.1) over the other method
described in Sections 4 and 5 (when (3.1) is not available or not valid).

As an immediate corollary of Theorems 2.1 and 2.3 we have:

Theorem 3.1. Suppose that pu(2) < oo, 0 < p,pi,q; < 0o, and that
[ €N, =N, (B) satisfies (3.1). Then

(3:3) |1 fllpssgs < €1(A, ps, qi)vP V/PO=APD 4| 1L when py # po

and

B4 fllpar < c2(A,B,p,q)(In(w + 1)) /a2 =0/aD+ | ¢

P1 1/q2
cl(Aapia%) = O(< > )
P1— P2

as pa — p1 — 0+ when g2 < q1 and c1(4,p;,q;) = O(1) when ¢1 < g2
and/or ps < p1.

|P7‘12

where

Remark 3.2. The constant 8 of (3.1) influences the power in (3.3),
but only the constant ¢y in (3.4), see (2.13). The dependence of the
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constants ¢; on A, p; and ¢; and of ¢ on A, 3, p and ¢; stems from the
inequalities (2.1) to (2.13) with 0 = (v/a)?, v = e 4% and a good
choice of a (with @ = 1, the default choice).

We present three applications in this section.

A. Trigonometric polynomials on 7% of degree v in each variable.

Theorem 3.3. For f € N, (d), where N, (d) is the class of trigono-
metric polynomials of degree v in each of the d wvariables, (3.3) and
(3.4) hold with Q =T?, B =d and u the Lebesgue measure on T?.

To prove Theorem 3.3 we need only establish the following Remez-
type inequality which we could not locate in the literature and therefore
present here.

Theorem 3.4. Suppose that T,, is a trigonometric polynomial of
degree < v in each variable and that B C T% = [—m,w]¢ is any Lebesgque
measurable set satisfying u(B) = |B| < (n/2)?. Then

JIB|1/d
(3-5) 1T\ oo (ray < € BENT || (e ).

Proof. We prove (3.5) using induction on d. For d =1 (3.5) is well
known, see [1, Theorem 5.1.2, page 230]. We assume (3.5) for d — 1.
Using Xg(z1, ... ,24), the characteristic function of B, we define g(z1)
by

g(z1) ::/[ - Xp(x1,22,...,24)dry - - dzg.
We set By = {z; € [-m,7] : g(z1) < |B|® Y/} and B(z;,) =
{(z2,...,2q4) : (z1,...,24) € B} and observe that for ;1 € B; we
have |B(z1)| < |B|(4~1/4. The induction hypothesis implies now for
each =1 € B;
1T |2 o ({1} x [~ m,m)a-1)

4(d—1)v|B|Y 4
< e IBENT, | L (e =m0\ (L2} < Blan)))
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and as

U (a1} x [=m, 7"\ ({e1} x B(21)) € [-m, 7]\ B,

z1€B;

we have

_1yy|B|M/d
(3.6) 1T | Lo (B x [y < X DIBE T 1L (r v B)-

Using the definitions of g(z1) and of By, we have

Bl= [gednz [ gw)n

- [, 7]\ B1
> [ B e — ]\ Byl
[—m=]\B1
and hence |[—, 7]\ B1| < |B|'/¢ < 7 /2. For any fixed (z2,...,zq) we

now use (3.5) with d = 1 to obtain

LB/
1T |2y (= ity < € BV N[ (B x [ mfa-1),

which, combined with (3.6), implies (3.5). O

B. Spherical polynomials on the unit sphere S¢~1.

The Nikol’skii result for these spherical polynomials is given in the
following theorem:

Theorem 3.5. For f € N,, N, the class of polynomials of degree < v
on S41 (the unit sphere in RY), (3.3) and (3.4) hold with Q = S9!,
B=d—1 and pu the Lebesgue measure on S41.

Proof. To prove Theorem 3.5 we recall that under the conditions of
Theorem 3.5 and for a measurable set B C S9! satisfying u(B) =
|B| < 4/5, Dai proved (see [2, (6.1)]) that

el B/ =D
(3.7) 1P| (sa-1) < e 1P|z (s¢-1\B)

where ¢ > 0 is independent of P,, v and B. Using Theorem 3.1 with
2, 8 and Ng of our theorem, we complete the proof. ]
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C. Algebraic polynomials on [—1,1].

Theorem 3.6. For f € N,,, N, the class of algebraic polynomials of
degree < v on [—1,1], (3.3) and (3.4) hold with Q = [-1,1], 5 =2 and
w the Lebesgue measure on [—1,1].

Proof. We use the well-known Remez inequality (see [1, pages
228-230]), which establishes for B C [—1, 1] satisfying |B| < 1/2,

U1 B|1/2
(3.8) 1Pollzi=11y < PPN L (10 8)
(in a somewhat different form). Theorem 3.1 can now be used with
(3.8) taking the place of (3.1) to prove Theorem 3.6. o

4. Applications using Bernstein-type inequalities assuming
() < oo.

D. Algebraic polynomials on a class of domains in R%.

We define first the class of domains that will be dealt with.

Definition 4.1. For fixed 6,a and d satisfying 0 < § < 7/2,a >0
and d is an integer, a bounded closed domain 2, @ € R is in the class
C(0,a,d) if for any x € Q there exists a y € S9! (y depends on x) for
which

{x4+X2:0<A<a,z€ 81 z.y>cosf} CQ.

For Q € C(0, a,d) we now prove the following theorem:

Theorem 4.2. For P,, any polynomial of total degree < v, and )
in the class C(6,a,d)
c(0,a,d)

(4.1) 2P;( e )ng(o).

Proof. We choose xo € €2 such that |P,(xo)| = ||P, ||z, (o) and write
for z € S4-1

P,(xo+Az) = Pl,(xo)+)\%Py(x0+nz) for some 1 between 0 and .
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The Markov inequality yields

I/2
< — sup

212
< — 1Pz )-
@ 0<n<a a

P,(x0 + nz)

0
aPl, (x0 + nz)

sup
0<n<a

Hence, for S = {xo + Az : 0 < X < (a/4v?),z-y > cosf,z € S471},
where y is given in Definition 4.1 for x = X, one has

1 1
1Py (x0 +A2)| 2 |1P]| L (0) — 51PN Lwi) = 1Pl L @)
We now have |S| = ¢(8,a,d)r 2¢ and thus (4.1). O

Theorem 4.2 implies that P,, the polynomials of total degree < v on
Q, is in the class A,2a/.(2) (see (1.5)), and this implies the following
Nikol’skii-type inequality.

Theorem 4.3. For P,, any polynomial of total degree < v, and Q
in the class C(6,a,d), (3.3) and (3.4) hold with 8 = 2d.

Remark 4.4. In Theorem 4.3 we still have ¢;(A4,pi,¢:) = O((p1/
(p1 — p2))*/9) as py — py — 0+ when ¢» < q1, and ¢1 (4, p;, ¢;) = O(1)
in most other cases, but as p; — 0, ¢; may diverge.

E. Splines on [0, 1].

The class of spline functions S, x is given by 0 = 2o < z; < -+ <
zm =1, f(x) = Py(x) on (z;,z;4+1) = I; where P;(x) is a polynomial of
degree < k,for 1 <i<m—1land v ! = ming<;<m—1 Ti+1 — T;- We
note that here we did not assume anything about maxo<j<m—1 Ti+1—;
or the continuity of f in S, 1 as assumptions of this nature are imposed
for the sake of approximation by splines, not for the Nikol’skii-type
inequality for splines.

Theorem 4.4. For f € S, we have

(42) 21 () 2 1°O)
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Proof. For y € [0,1] satistying |f(5)| = ||fll1...0.) we write f(y+) =
f (@) +Af(y+n) for y+n between y and y + X where y,y+ A € I; and
where F/(y+m| < 1F ey < 2082 Fleiry < 20K%F o)
As y € I; for some i, we can choose Ao, |[A\g| = 1/(4vk?) such
that y + Ao € I;. For |[A| < |Ao| and A - Ay > 0 we now have

|y + M = [f ()] = (1/2)[f | Locjo,1) which implies (4.2). O

As a result of (4.2), which means that (1.5) holds with v = 2 and
o = 4vk? for any f € S,k, we have the following Nikol’skii-type
inequalities.

Theorem 4.5. For f € S, (3.3) and (3.4) hold with = 1.

5. Applications in case () = co. In this section we present two
applications when u(€2) = co. We use Bernstein-type inequalities, and
an estimate following (3.4) is not achieved (see also (2.13)).

F. Entire functions of exponential type.

Definition 5.1. The functions of exponential type R, on R%, Nk,
are those given by

(5.1) £ = / ),

where x = (.’1}'1,... 7md)7 y = (yla"' 7yd)7 |y|2 = y% + o +y¢21 and
dm(y) is a measure satisfying

/ dm(y)| < K
lyI<R

for some K.

For any ¢ € S9! and f satisfying (5.1),

0
(5.2) H3_£ / < eR|fl1me:

Lo (R%)
which follows for instance from
02 02

[AfllLemay < ClRZHfHLOO(Rd), A= 922 +ot 6—933
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given in [3, Theorem 2.1] and the Kolmogorov inequality (see [7])
0
v
23

We now choose xg, for which [|f[|,_ (re) = [f(%0)/, and as

1/2 1/2
<V2IAL w12 Ry
Lo (R%)

0
f(xo+ Ay) = f(x0) + A@f(xo +ny)
fory € St and 0 < =n(y,\) < A,
we have

o 1
Fxo 4+ M) 2 7l — o= = 2y g,

for A <1/(2R) and y € S%!. Therefore,
* M *
2f (ﬁ) > f*(0)

where M is the volume of the unit ball in R? divided by 2¢. As a
corollary of the above, we have:

Theorem 5.2. For f satisfying (5.1) and 0 < p; < pz < o0,
0< qi S 00,

(5.3) 1fllz,, o R < C1'%(1((1/”1)7(1/’02))||f\|Lp1,,,1(Rd)
where ¢ = ¢(pi, gi, d).

G. Polynomials on R with Freud weights.

We deal here with the most prominent of Freud weights, W, (z) =
e~ 1#1* with o > 1. For polynomials P, of degree < n, one has

(5.4) ||PnWa||Loo[faman} = HPnWaHLw(R)
and (see [5, Theorem 7.4])

(5.5) H(PaWa)' | Los [—amsan] < en' ™V PaWall Lo (r)
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where a,, are the Mhaskar-Rakhmanov-Saff numbers satisfying a,, ~
n'~(/®) In fact, a better estimate is given in [5] near +a,,. For z, for
which | P, (20)Wa(20)| = |PaWallL..[—a,,a.], We use the Taylor formula
(following earlier computations) to establish

(56) 2f* <%> Z f*(O) for f = Panu

2cnl-

which is (1.5) with v = 2 and ¢ = 1/(2cn!~(1/®)). Therefore, we have:

Theorem 5.3. For P, any polynomial of degree < n, and W, (z) =
e 171" with a > 1, one has

(5.7) ||ana||Lp2’q2(R) < Cln(l_(l/a))((l/Pl)_(l/pZ))||PnWaHLp1’q1(R)

for 0 < p1 < p2 < oo (where ¢; = ¢1(pi, i, @) following Theorem 2.3).
6. Further remarks.

Remark 6.1. The Remez inequality leads to v = 4% and o = (v/a)”
(see (3.2)) with our choice of a, and this usually leads to better results
via Theorem 2.3 than the method used in Sections 4 and 5 where the
possible 7 is in a much tighter range.

Remark 6.2. In particular, the constant ¢; in (3.3) tends to zero as
p1 — 0 and ps is fixed when we use the Remez inequality. This, how-
ever, does not always occur when using the Bernstein-type inequality
as in Sections 4 and 5. When p; = g¢;, the common method (see for
instance [4, Section 6]) sometimes yields the same consequence.

Remark 6.3. In the classic Nikol’skii inequality ||T%|z, () <
c(p)n*/P||Ty| ., (7)» c(p) < 1.032. To show that, we write without loss
of generality |1, |r(r) = T.(0) = 1, and as || T}/ L., < n?, we have
T, (z) > 1 — (n%z?)/2 for |z| < v/2/n. We now calculate the L, norm
of T, to obtain

c(p) < (ﬁ/ol(l_u)p%>—l/p_ <%>—w,
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which, using numerical computations, implies ¢(p) < 1.032. We note
that, while one is tempted to try and show c(p) < 1, this is not so.
Suppose ||T]lcoc =1 and ¢(p) < 1. Then

™

=T, <n [ Tue)P do

—T

and, as for T,, # £1, |T,(z)| < 1 for almost all z, and hence the right-
hand side of the last equation tends to zero as p — oo which contradicts
¢(p) < 1. We note that even the classical estimate

2n+1\ "7
Tl < (Z50) Il

for p < 2 implies ¢(p) = o(1) as p — 0.

Remark 6.4. In most classical cases the Nikol’skii classes are nested.
This condition was not necessary for the proofs here, and while in
most applications here the classes N, are nested, in the application E
(Theorems 4.5 and 4.6) which concerns splines on [0, 1], they are not.
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