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DEGREE GRAPHS OF SIMPLE GROUPS
DONALD L. WHITE

ABSTRACT. Let G be a finite group, and let cd (G) be the
set of irreducible character degrees of G. The degree graph
A(Q) is the graph whose set of vertices is the set of primes
that divide degrees in cd (G), with an edge between p and g if
pq divides a for some degree a € cd (G). We compile here the
graphs A(G) for all finite simple groups G.

1. Introduction. The theory of characters is an important tool
in the study of finite groups. The irreducible complex characters of a
finite group G encode much information about the structure of G. For
example, using these characters it is possible to determine the normal
subgroups of G and therefore whether G is simple. It is also possible
to determine if G is abelian, nilpotent, or solvable.

Somewhat surprisingly, it is also possible to obtain some information
just from the set of degrees of the characters, that is, their (integer)
values on the identity element of G. There has recently been much
interest in studying the connections between the structure of a finite
group G and the structure of its set of character degrees. Of particular
interest is the connection between the structure of G and common
divisors among character degrees. A useful tool for studying this
connection is the character degree graph.

Let G be a finite group, and let Irr(G) be the set of ordinary
irreducible characters of G. Denote the set of irreducible character
degrees of G by cd(G) = {X(1) | X € Irr(G) }, and denote by p(G) the
set of primes that divide degrees in c¢d(G). The character degree graph
A(G) of G is the graph whose set of vertices is p(G), with primes p,
g in p(G) joined by an edge if pq divides a for some character degree
a € cd(G).

These graphs have been studied for some time, primarily for solvable
groups initially but more recently for nonsolvable groups as well. Some
of the earliest results on character degree graphs were obtained by
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Manz, Staszewski, and Willems [13] on the number of connected
components of the graph and by Manz, Willems, and Wolf [14] on
the diameter of the graph for solvable groups. More recently, Lewis
and the author have been able to classify nonsolvable groups G for
which A(G) is disconnected [10] and to bound the diameter of A(G)
when G is a nonsolvable group [11, 12]. See the article [9] by Lewis
for an overview of results concerning A(G) and related graphs.

To each finite group G corresponds a unique collection of simple
groups called the composition factors of G. In this sense, the finite
simple groups are the building blocks for finite groups. The composition
factors of a solvable group are all cyclic groups of prime order. A
nonsolvable group, however, has at least one nonabelian composition
factor.

The basic approach for studying degree graphs and attacking other
character degree problems for nonsolvable groups is to first obtain as
much information as possible about the situation for the nonabelian
finite simple groups. The results are then extended to general nonsolv-
able groups using the information about their composition factors.

Of course, more complete results for the simple groups lead to better
results for the nonsolvable groups. Using the partial results on degree
graphs of simple groups available at the time, Lewis and the author
proved in [11] that, for a nonsolvable group G, the diameter of A(G)
is at most 4. Later, using the complete results in [1, 18, 19, 20], we
were able to lower this bound to 3 in [12].

Our purpose in this survey is to describe the degree graphs for all
nonabelian finite simple groups. By the classification of finite simple
groups (see [7]) a nonabelian finite simple group must be an alternating
group Alt(n) with n > 5, a simple group of Lie type, or one of 26
sporadic simple groups. The groups of Lie type may be further divided
into the categories of groups of exceptional type and groups of classical

type.
The irreducible characters of the 26 sporadic groups are available

in the Atlas [3]. The degree graphs for these groups are therefore
known implicitly, but the graphs and proofs have not appeared in print
previously. The situation is similar for the alternating groups Alt (n)
for 5 < n < 14. The results of Barry and Ward in [1] determine
A(Alt (n)) for n > 15. The graphs for the groups of Lie type were
completely determined by the author in [18, 19, 20].
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We explicitly describe here the graphs for all nonabelian finite simple
groups and list the degrees used in the proofs. We give proofs in those
cases for which proofs have not previously appeared in print. For the
other cases, we outline the proofs and give references to the complete
published proofs. The sporadic groups are considered in Section 2,
the alternating groups in Section 3, exceptional groups of Lie type in
Section 4 and classical groups of Lie type in Section 5. Finally, in
Section 6, we summarize the results on connectedness and diameters of
the degree graphs of the simple groups.

We say that a graph is a complete graph if there is an edge between
every pair of vertices. Thus, A(G) is a complete graph if whenever p
and ¢ are any distinct primes dividing character degrees of G, there is
some X € Irr(G) such that pg | X(1). The graph A(G) tends to be a
complete graph for simple groups G. In fact, A(G) fails to be complete
only for certain “small” simple groups.

Moreover, many groups satisfy the stronger condition that there is a
character X € Irr(G) such that every prime in p(G) divides X(1). In
this case, we say G has covering number 1. (The covering number is
the smallest number of irreducible character degrees required to “cover”
the primes in p(G).) It is shown in [1] that Alt (n) has covering number
1 for all n > 15.

Notice that if A(G) is a complete graph but G does not have covering
number 1, then a proof that the graph is complete requires at least
three character degrees. In our proofs, particularly for the sporadic
and small alternating groups, we attempt to use the fewest possible
degrees in each case. Of course, if A(G) is not complete, all degrees
must be used in order to determine the graph.

Our notation is mostly standard. Notation for the sporadic simple
groups is as in the Atlas [3], as are the labels for the characters of the
small alternating groups. We refer the reader to [2] for notation and
results for the simple groups of Lie type. We will use m(n) to denote
the set of prime divisors of a positive integer n. If G is a nonabelian
finite simple group, then by the It6-Michler theorem (see [15, Remarks
13.13]), p(G) = 7(|G]). We will also denote by ®; = ®x(q) the value
of the kth cyclotomic polynomial evaluated at g.
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2. Sporadic simple groups. We first describe the graph A(G)
for a sporadic simple group G. As noted in the introduction, the
explicit character tables of the sporadic groups are known, so it is
straightforward to determine the graphs. The graphs were described
partially in [11, Lemma 2.3], but the graphs and proofs have not
appeared in print elsewhere. It was shown in [11] that the sporadic
simple group J; is the only simple group whose degree graph has
diameter greater than 2, and the diameter of A(J7) is 3.

Theorem 2.1. If G is a sporadic simple group other than Miy, Jy
or M3, then A(G) is a complete graph. The graphs of My, Ji, and
Mos are as follows.

1. A(Mn) S
2
/
3—5 |
T~
2. A(Jq) 1s
3 7
Ll>/2\1|9/11
3. A(M23) 8
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Proof. The character tables of the sporadic groups are found in the
Atlas [3].

We have
ed (My) = {1,2-5,11,2* 2*.11, 3% .5, 5 11}.

Hence, p(Mi1) = {2,3,5,11} and in A(G), the primes 2, 5, and 11 are
all adjacent to each other, but 3 is adjacent only to 5, so the graph is
as claimed.

Next,
ed(Jy) ={1,2%-7,22.19, 7-11,23-3-5, 7-19, 11 - 19}

and p(Ji) = {2,3,5,7,11,19}. The character degrees show that the
primes 3 and 5 are adjacent in A(Jy), as are all of 7, 11, and 19, but
neither of 3, 5 is adjacent to any of 7, 11, or 19. Also, 2 is adjacent to
all of 3, 5, 7, and 19, and the graph is as claimed.

We have

ed (Mys) ={1,2-11,3%.5,2-5-23,3-7-11,11-23,2-5-7-11,
27.7,2.3%.5.11,3%.5.23,2%.11- 23}

and p(Mas) = {2,3,5,7,11,23}. Tt is easily verified that the complete
graph on {2,3,5,7, 11} is a subgraph of A(Maz3) and that 23 is adjacent
to each of 2, 3, 5, and 11, but not to 7.

The orders of the remaining sporadic groups are listed in Table 1.
It is easily verified that A(G) is a complete graph by considering the
character degrees in Table 2, Table 3 and Table 4. The groups listed
in Table 4 are those for which a single irreducible character degree
is divisible by all primes in 7(|G|), that is, the sporadic groups with
covering number 1. ]

3. Alternating groups. We next consider the simple alternating
groups Alt (n) for n > 5. The graphs for these groups are complete
except when n =5, 6 or 8, and in fact, Alt (n) has covering number 1
for all n > 15 by [1]. The exceptions in this case are also special cases
for the linear groups (subsection 5.1), because Alt(5) 2 PSLy(4) 2
PSLy(5), Alt (6) 2 PSLy(9), and Alt (8) 22 PSL4(2).
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Theorem 3.1. Let G = Alt(n), the alternating group of degree n,
withn > 5. Ifn is not 5, 6 or 8, then the graph A(G) is complete. The
graphs for Alt (5), Alt (6), and Alt (8) are as follows.

1. A(Alt(5)) is

3. A(Alt(8)) is

0o | T3
\ /

~—

Proof. For the graphs of Alt (5), Alt (6), and Alt (8), we have
cd (Alt (5)) = {1,3,22,5},
cd (Alt (6)) = {1,5,23,3%,2 - 5},
and

cd (Al (8)) = {1,7,2-7,2%-5,3-7,2-7,5-7,3%.5,2%.7,25.2.5.7}
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by the Atlas [3] character tables. Therefore, the graphs are as claimed.
We also have

cd (Alt (7)) = {1,2-3,2-5,2-7,3-5,3-7,5- 7},

so A(Alt (7)) is complete.

The character degrees needed to prove that the graphs of Alt(n)
are complete for 9 < n < 14 are given in Table 5. The degrees for
n < 13 may be found in the Atlas [3], and the degrees for Alt (14) were
computed using GAP [5].

It is shown by Barry and Ward in [1] that for n > 15, Alt(n) has
an irreducible character whose degree is divisible by all primes dividing
the order of Alt (n). Therefore, A(Alt (n)) is complete for all n > 15. O

4. Exceptional groups of Lie type. In this section, G is a simple
group of exceptional Lie type. Thus, G will be one of the following:

G2(q) for g # 2,

Fy(q), Es(q), E7(q), Es(q), *Es(q°), *Da(q®) for all g,
’By(q?) and ?Fy(¢%) for ¢* = 22™*1 ¢% +£ 2,
2F4(2)/,
2Gy(q?) for ¢* = 32Tt ¢® £3.

(See [2] or [3] for notation.) Note that certain values of g are excluded
for some types because the corresponding groups are not simple. The
group 2Bz(2) is solvable. The derived groups of G2(2) and 2G2(3)
are simple but are isomorphic to the simple classical groups 24(32)
and A;(8), respectively, which will be considered in Section 5. The
derived group of 2Fy(2) is simple and does not appear elsewhere in the
classification of finite simple groups, so will be considered here.

Theorem 4.1 [18, Theorem 3.3]. Let G = 2By(¢?), where ¢*> =
22m+L gnd m > 1. The set of primes p(G) can be partitioned as

p(G) = {2} Um(¢® = 1) Um(¢" +1).

The subgraph of A(G) on p(G) — {2} is complete and 2 is adjacent in
A(G) to precisely the primes in 7(¢*> — 1).
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Proof. We have |G| = ¢*®,®,®, and

1
cd (G) = {17 q47 ﬁqqﬁq’m g, ‘1’1‘1)2‘1’§37 ‘1’1‘1)24)181},

where ®; = ¢®> +v/2¢ + 1 and ®} = ¢*> — v/2¢ + 1. (Thus, ®; and d}
are integers with ®5®g = ®4.) See [18] for details. o

Theorem 4.2 [18, Theorem 3.4]. If G is a simple group of excep-
tional Lie type, other than type *Ba, then the graph A(G) is complete.

Proof. If G = F,(2), then |G| = 22*-3%.5%2.72.13.17. By the Atlas
[3], G has character degree X46(1) = 1299480 = 23-3-.5-72-13-17, so
the graph is complete.

If G =2 %F4(2), then G’ =2 2F4(2)’ is simple and |?F4(2)'| = 2!1.33.52.
13. By the Atlas [3], 2F4(2)’ has character degrees Xg(1) = 78 = 2-3-13,
x7(1) = 300 = 22 - 3- 52 and Xg(1) = 325 = 52 - 13, and these degrees
show that the graph is complete.

For the other cases, the group orders are given in Table 6 and the
degrees used to prove that the graphs are complete are given in Tables
7 and 8. See [2] for the notation for the character labels, and see [18]
for details of the proof. i

5. Classical groups of Lie type. The classical groups of Lie
type are the classical simple linear, unitary, symplectic, and orthogonal
groups. For the classical groups, it is generally easier to compute the
degrees of the so-called adjoint group, which contains the simple group
of the given type as a normal subgroup. For the purpose of finding the
character degree graphs, we will use the degrees for the adjoint groups
along with the following well-known lemma (see [8, Corollary 11.29]).

Lemma 5.1. If NaG with |G : N| = d, x € Irr(G), and p is a
constituent of the restriction of X to N, then X(1)/d divides p(1).

Various notations are used for these groups. In the terminology of
groups of Lie type, the linear groups are of type Ay, the unitary groups
are of type 24,, the various orthogonal groups are of types By, D, and
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2Dy, and the symplectic groups are of type Cy. The table below gives
the classical matrix group notation and the notation used in the Atlas
[3] for these groups. Also listed are the adjoint group and the index of
the simple group in the adjoint group for each type. The notation for
the adjoint groups is as in [2].

Lie Simple Group Adjoint

Type Classical Atlas Group Index
A¢ PSLeti(q)  Leta(g)  PGLeya(q) (6+1,9-1)
2A¢ PSUpa(¢®) Ugpa(g)  PUga(e)  (£+1,g+1)
By Q2r41(q)  O2e41(q)  SO2e41(q) (2,g—-1)
Ce PSpylq)  Salq)  PCSpy(q) 2
Dy PQ;?((I) OQ(Q) P(CO,(q)°) (44— 1)
°Dy Q(a)  Oyle)  P(COxu()°) (44" +1)

5.1 Type A;: Linear groups. In this section, G is the projective
special linear group PSLy;1(q) of type Ay, where ¢ is a power of a prime
pand £ > 1. If £ = 1, then we take ¢ > 4, as PSL2(2) and PSL4(3) are
not simple. Note also that PSLy(5) = PSLy(4) = Alt (5).

Theorem 5.2 [19, Theorem 3.1]. Let G = PSLy(q), where ¢ > 4 is
a power of a prime p.

1. If q is even, then A(G) has three connected components, {2},
m(g—1) and w(q¢ + 1), and each component is a complete graph.

2. If ¢ > 5 is odd, then A(G) has two connected components, {p}
and w((g -~ 1)(g +1)).

(a) The connected component w((q —1)(g+ 1)) is a complete graph if
and only if g — 1 or ¢+ 1 is a power of 2.

(b) If neither of g—1 or g+ 1 is a power of 2, then w((¢—1)(¢+1))
can be partitioned as {2} UM U P, where M = w(q — 1) — {2} and
P = 7w(q + 1) — {2} are both nonempty sets. The subgraph of A(QG)

corresponding to each of the subsets M, P is complete, all primes are
adjacent to 2, and no prime in M is adjacent to any prime in P.
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Proof. If g =2", n > 2, then
cd(G) = {1,2" —1,2" 2" + 1}
If g =p™ > 5 is odd, then
cd(G) = {1, - 1,4, + 1,(g +¢)/2},
where £ = (—1)(@~1/2, See [19] for details. u]
We next describe the degree graph for PSL3(g). Note that PSL3(2) =

PSL4(7), so if ¢ = 2, then the graph is described in Theorem 5.2. We
will therefore take g > 2.

Theorem 5.3 [19, Theorem 3.2]. Let G = PSLs(q), where ¢ > 2 is
a power of a prime p.

1. The graph A(G) is complete if and only if q is odd and ¢g—1 = 2¢37
for somei>1,j > 0.

2. (a) If ¢ = 4, then G =2 PSL3(4) and A(G) is

2—5<

~—w

(b) If q # 4, then p(G) = {p} Un((¢ —1)(a + 1)(¢° + g +1)). The
subgraph of A(G) corresponding to m((q — 1)(q + 1)(¢*> + ¢ + 1)) is
complete and p is adjacent to precisely those primes dividing ¢ + 1 or
@ +qg+1

Proof. If ¢ = 3, then G = PSL3(3) and by the Atlas [3] character
table, we have

cd (PSL3(3)) = {1,22-3,13,2%,2-13,3°,3 - 13}.

If ¢ = 4, then G = PSL3(4) and again by the character table in the
Atlas [3], we have

cd (PSL3(4)) = {1,2%-5,5-7,3%-5,3% - 7,2}



DEGREE GRAPHS OF SIMPLE GROUPS 1723

If ¢ > 4, then by the character table of G in either [16] or the CHEVIE
system [6], every character degree of G divides one of the degrees in
the subset

{& alg+1), (q=1)(a*+q+1), q(¢®*+q+1), (g+1) (> +q+1), (¢—1)*(g+1)}

of cd(G). The theorem follows from these lists of degrees. See [19] for
details. O

We now consider the simple groups of type A, for all £ > 3. The
one exceptional case is PSL4(2), which is isomorphic to the alternating
group Alt (8).

Theorem 5.4 [19, Theorem 3.3]. Let G = PSLy11(q), where £ > 3
and q is a power of a prime p. The graph A(G) is complete unless
=3 and g=2. If { =3 and q = 2, then G = PSL4(2) = Alt (8) and
A(G) is

0o | >3
\ /

~N—w

Proof. The order of G 22 PSLy;1(q) is given by
Gl = 2 d VG -G 1) - 1) 1),

where d = (41,9 — 1) = [PGLgy1(q) : PSL¢11(q)]. Therefore, p(G) is
precisely the set of primes dividing ¢ or some &, for 1 <k < ¢+ 1.

For ¢ > 4, the graph A(PSL;1(g)) is seen to be complete using
Lemma 5.1 and the following degrees of PGL/1(q):

|l oD

(@—1)(¢* - 1)

X1(1) = (¢—1)(¢® - 1)(¢* = 1) -+ (" = 1)(¢* - 1)

Xo(1) = (" = 1)(¢* = 1) -+ (¢" " = D)(¢"" = 1)
(-1 -1)- (¢ -1

W)= e

1,6— 1)(1
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For ¢ = 3, s0 G = PSL4(q), the primes in p(G) are those primes dividing
one of g, ®1, Py, B3, or P4. In this case, PGL4(q) has the degrees

X1(1) = &0, P,

Xa2(1) = ®103®,

X3(1) = q®,®;9,.
For ¢ = 3, these are sufficient to prove that the graph is complete. For
q > 3, PGL4(q) also has the degree x(1) = q®2®3P4, and the graph is

shown to be complete using this degree along with those listed above
and Lemma 5.1. Finally, if ¢ = 2, then G 2 PSL4(2) = Alt(8) and

cd(G)={1,7,2-7,2%.5,3-7,22.7,5.7,3%2.5,23.7,262.5. 7},

as noted in Theorem 3.1. The graph follows in this case. See [19] for
details. |

5.2. Type 24,: Unitary groups. In this section, G is the
projective special unitary group PSU,,(q?) of type 24, where ¢ is a
power of a prime p. Note that this case is very similar to the case where
G is of type Ay. Roughly speaking, replacing g with —g in the results
for type A, yields the analogous results for type 24,.

Because PSU3(g?) = PSLy(q), we take ¢ > 2. If £ = 2, then we take
q > 2, as PSU;3(22) is not simple.

Theorem 5.5 [19, Theorem 3.4]. Let G = PSUj3(q?), where ¢ > 2
is a power of a prime p.

1. The graph A(G) is complete if and only if q satisfies ¢ +1 = 2¢37
for some i >0, j > 0.

2. If ¢ > 2, then p(G) = {p} Un((¢— (g +1)(¢* —q+1)). The
subgraph of A(G) corresponding to 7w((q — 1)(q¢ + 1)(¢* — ¢ + 1)) is
complete, and p is adjacent to precisely those primes dividing ¢ — 1 or

2
q° —q+1.

Proof. Since ¢ > 2, the character table of G in either [16] or the
CHEVIE system [6] shows that every character degree of G divides
one of the degrees in the subset

% a(a—1),(¢—1)(*—a+1),a(*—q+1),(¢+1)(a* —q+1),(¢—1)(g+1)*}
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of cd(G). The graph follows from this list of degrees. See [19] for
details. o

We next determine the graph A(G) for the simple groups of type 24,
for all £ > 3.

Theorem 5.6 [19, Theorem 3.5]. If G = PSU,;1(q?), where £ > 3
and q is a power of a prime p, then the graph A(G) is complete.

Proof. The order of G = PSU,1(g?) is given by
1
Gl =~ ¢ - 1)+ 1) (¢ = (D)) = (-,

where d = (£ + 1,¢ + 1) = [PUp1(¢?) : PSUp1(¢?)]. Therefore,
p(G) is precisely the set of primes dividing g or some ¢* — (—1)* for
2<k<l+ 1

If (4,q9) is in {(3,2),(3,3),(4,2)}, then in each case there is an
irreducible character whose degree is divisible by all primes in p(G).
Using Atlas [3] notation for the characters, we have p(PSU4(2?)) =
{2,3,5} and X1;(1) = 30 = 2-3 -5, p(PSU4(3?)) = {2,3,5,7} and
Xs(1) = 210 = 2-3-5-7, and p(PSU5(22)) = {2,3,5,11} and
X26(1) =330 =2-3-5-11. Hence, A(G) is complete in these cases.

If (¢,9) ¢ {(3,2),(3,3),(4,2)}, then PUy;1(¢?) has the character
degrees

| pla T = D~ (1))
(¢+1)(¢>—1)

Xi(1) = (¢ +1)(¢* = 1)(¢* +1)--- (¢ = (=) )(¢" ~ (1))
X2(1) = (¢ = 1)(¢* + 1) -+ (¢ = (D) (" = (-1D))
(@ 1)@ +1)--- (¢ — (-1

(@ = D"~ (-D7)
For ¢ > 4, these degrees, along with Lemma 5.1, are sufficient to prove
the graph is complete.

If ¢ = 3, so G = PSU4(q?), then the primes in p(G) are those primes
dividing one of g, ®;, ®3, ®4, or ®¢. In this case, since ¢ > 3, PUy(q¢?)

X(1,1,e—1)(1

q3

X3(1) =g¢
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has degrees
X1(1) = @, 5P,

(1)
X2(1) = ®193P,
X3(1) = g2, 24P
X(1) = ¢®29,.
The graph is shown to be complete for £ = 3 and ¢ > 3 using these
degrees and Lemma 5.1. See [19] for details. o

5.3. Type By: Odd dimensional orthogonal groups. In this
section, G is the simple odd dimensional orthogonal group Qs11(q)
(or O2¢41(q) in Atlas [3] notation) of type By, where ¢ is a power of
a prime p. Since Bi(q) = A1(q), we assume £ > 2, and since B3(2)
is isomorphic to the symplectic group Sp,(2), which is not simple, we
assume g > 2 when ¢ = 2.

Theorem 5.7 [20, Theorem 1.1]. If G = Qop41(q) is a simple group
of type By, where { > 2 and q is a power of a prime p, then the graph
A(G) is complete.

Proof. The order of G is given by
1 2 _
Gl =" (@ = 1)(g" = 1) (@D = 1)(¢* - 1),

where d = (2,9 — 1) = [SO2¢4+1(q) : Q2e41(q)]- It follows that p(G)
consists of p and the primes dividing ®; or ®,; for j =1,...,4.

If ¢ > 3, then SOg11(q) has character degrees

Xo(1) = 2qt (¢ %~ 1)(q€1(q2 1_)(1(1;21 +1)(¢* +1)

2

(®—1)(¢* —1)--- () —1)(¢* - 1)

xe() = ¢t +1

= (- 1)(g* 1) (P —1)(¢" - 1)
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(¢* = 1)(¢® —1)-- (D — 1)(¢* — 1)
¢ 1 +1

X1(1) =g¢

(see [20, Lemma 2.2]). These degrees, along with Lemma 5.1, are
sufficient to show A(G) is complete for ¢ > 3.

Now let £ =2 so G = Ba(q) =2 Cs(q), hence G =2 PSp,(q). As noted
above, G is not simple if ¢ = 2. If ¢ = 3, then |G| = 26-3%.5
and, by the Atlas [3] character table, G has the character degree
X11(1) = 30 = 2-3 -5, so the graph is complete. Hence, we may
assume g > 3. The order of G is

|G| = |PSp,(q)| = ' eI P5®,,

1
(2,94)

and the character tables in [4, 17] show that for ¢ > 3, G has the
character degrees

x1(1) = @1®3

X2(1) = q®, 24

X3(1) = ¢®,9,.
These degrees show that the graph A(G) is complete for £ = 2. See
[20] for details. o

5.4. Type C;: Symplectic groups. In this section, G is the simple
symplectic group PSp,,(q) of type Cy, where q is a power of a prime p.
Since C(q) =2 Bz(q) for all g, we assume £ > 3.

Theorem 5.8 [20, Theorem 1.1]. If G = PSp,,(q) is a simple group
of type Cy, where £ > 3 and q is a power of a prime p, then the graph
A(G) is complete.

Proof. Since Cy(q) = By(q) for all £ if g is even, by Theorem 5.7 we
may assume that ¢ is odd. Since ¢ is odd, the order of G = PSp,,(q) is

G| = %qﬁ(qz —1)(¢* = 1)+ (Y - 1)(¢* - 1).

It follows that p(G) consists of p and the primes dividing ®; or ®,; for
j=1,...,0
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If £ > 4, then the projective conformal symplectic group PCSp,,(q)
has character degrees

() =@ ( >1<)q )
_ (¢® —1)(¢* - )...(q2(2—1) —1)(¢* - 1)

= ¢ +1
— (@ -1~ 1) (@D —1) (¢ —1)

)= @@ D@ =@ =1 (@D —1)(¢* ~ 1)

¢ 2+1

(see [20, Lemma 2.3]), and we have [PCSpo,(q) : PSpy,(¢)] = 2. Using
Lemma 5.1, these degrees are sufficient to show that A(G) is complete
for ¢ > 4.

Now let ¢ = 3 so that G = PSpg(g). The order of G is
1
Gl = |PSpg(g)| = 54" PTLLL, 2, s

Since ¢ is odd, the character table of the conformal symplectic group
CSpg(g) is available in the CHEVIE system [6]. This table shows that
PCSpg(g) has a character of degree

X82(17 ]-a q— 2)(1) = q@1¢2¢3®4¢67

and since [PCSpg(q) : PSpg(q)] = 2, this degree, along with Lemma 5.1,
shows that A(G) is complete. See [20] for details. u]

5.5. Types D, and 2D,: Even dimensional orthogonal groups.
In this section, G is a simple even dimensional orthogonal group and
so is either P2, (g) of type Dy or P2,,(g) of type 2D, (that is, OF,(g)
or O,,(g), respectively, in Atlas [3] notation), where ¢ is a power of a
prime p. Since Dy, =2 A, and 2D, = 24, if ¢ is less than 4, we assume
> 4.

Theorem 5.9 [20, Theorem 1.1]. If G = PQ,(q) is a simple group
of type Dy, where £ > 4 and q is a power of a prime p, then the graph
A(G) is complete.
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Proof. The order of G is given by
G = =¢"“" V(@ = 1)(g* = 1) (@Y = 1)(¢" - 1),

where d = (4,¢° — 1) = [P(CO,,(q)°) : PQJ,(q)]. (See [2, subsection
1.19] for notation.) It follows that p(G) consists of p, the primes
dividing ®; or ®9; for j =1,...,¢ — 1, and the primes dividing ®,.

If ¢ > 6, then P(CO,,(g)°) has character degrees

6@+ )PP = (D = 1)(¢f - 1)
(¢> —1)%(¢* - 1)
(?-1D(¢* =1 (PP - 1)@V -1)(¢" —1)
(g+1)(¢*1 +1)
L@+ 1) (D DY - 1)(¢f - 1)
(g+1)(¢*3*+1)

X*(1) =g¢

Xc(1) =

Xi(1)=¢q

(see [20, Lemma 2.4]). Using Lemma 5.1, these degrees are sufficient
to show A(G) is complete when £ > 6.

If £ =5, then
|G| = 2°<1> P30, 2D Dy Dy

and P(CO,,(¢)?) has character degree
X1(1) = 272,858, P; PP

Since [P(COlO( )% G] = (4, > — 1) = d, it follows using Lemma 5.1
that A(G) is complete for £ =

Finally, let ¢ = 4. If ¢ = 2, then |G| = 2!?.3% .52 .7 and
by the character table of G in the Atlas [3], G has an irreducible
character of degree xi;(1) = 210 = 2-3-5-7. If ¢ = 3, then
|G| = 212.3!2.52.7.13 and again by the Atlas character table,
G has the degree X17(1) = 5460 = 22 -3-5-7-13. Hence, A(G) is a
complete graph if ¢ = 2 or ¢ = 3.

If =4 and q > 3, then

|G| = 12<I>4<I>4¢~ ;2D
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and P(COg(g)°) has character degrees

X1(1) = * 21,25
Xe(1) = 2105, 0F

1
XP(1) = §q3‘1’§q’6-

Since [P(COg4(g)°) : G] = (4,¢* — 1) = d, these degrees, along with
Lemma 5.1, show that A(G) is complete in this case as well. See [20]
for details. |

Theorem 5.10 [20, Theorem 1.1]. If G = PQ;,(q) is a simple group
of type 2Dy, where £ > 4 and q is a power of a prime p, then the graph
A(G) is complete.

Proof. The order of G is given by
1 _ _
6] = 2@ —1)(g* — 1) (@D = 1) +1),

where d = (4,¢° + 1) = [P(CO(q)°) : PQ5,(q)]- (See [2, subsection
1.19] for notation.) It follows that p(G) consists of p, the primes
dividing ®; or ®5; for j =1,...,¢ — 1, and the primes dividing ®3,.

If £ > 5, then P(CO,,(¢)°) has character degrees

oy L@ =D 2+ D" -1 (" +1)

=5 @+ D - 1P

Xe(1) = (> = 1)(¢* = 1) -+ (¢*“? = 1)(**Y - 1)

2@+ D(® = 1) (PP — 1) (Y - 1)(¢* + 1)
¢ 2+1

X1(1) =g¢

(see [20, Lemma 2.5]). Using Lemma 5.1, these degrees are sufficient
to show A(G) is complete when £ > 5.
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If ¢ = 4, then

|G| = 12c1>3<1>3<1> 3@, PP
and P(COy (¢)°) has character degrees

Xe(1) = 27050, 0, P,
X1(1) = ¢*®1 P2 P3PPs,
X2(1) = ¢*®1 P3P, Ps.

Since [P(COgq (¢)°) : G] = (4,¢* + 1) = d, these degrees, along with
Lemma 5.1, show that A(G) is complete for £ = 4. See [20] for details. O

6. Diameters of degree graphs. Combining the results above,
we have the following theorem summarizing results on connectedness
and diameters of degree graphs of simple groups. This result is used
in [12] to improve the bound on the diameter of the degree graph for
nonsolvable groups found in [11].

Theorem 6.1 [20, Corollary 1.2]. Let G be a finite simple group.
The graph A(G) is disconnected if and only if G = PSLa(q) for some
prime power q. If A(G) is connected, then the diameter of A(G) is at
most 3 and A(G) is a complete graph except in the following cases:

1. The diameter of A(G) is 3 if and only if G = J;.

2. The diameter of A(G) is 2 if and only if G is isomorphic to one
of

(a

(b

(c)

)

d) the linear group PSL3(q), where ¢ > 2 is even or q is odd and
— 1 is divisible by a prime other than 2 or 3, or

) the sporadic Mathieu group Myy or Mas,
) the alternating group As,
the Suzuki group *Ba(q?), where ¢> = 2°™+! and m > 1,

( ) the unitary group PSU3(q?), where ¢ > 2 and q+ 1 is divisible by
a prime other than 2 or 3.
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APPENDIX
A. Tables of orders and degrees.

TABLE 1. Orders of sporadic groups.

Group Order

M, 26.3%.5.11

Moo 27.32.5.7-11

Ja 27.3%.52.7

HS 29.32.5%.7.11

J3 27.3%.5.17-19

Moy 210.33.5.7.11-23

MC€L 27.36.5%.7.11

He 210.33.52.73.17

Ru 214.33.5%.7.13-29

Suz 213.37.52.7.11-13

O'N 29.34.5.73.11-19-31

Cos 210.37.53.7.11-23

Coy 218.36.5%.7.11-23

Fig 217.39.52.7.11-13

HN 214.36.56.7.11-19

Ly 28.37.56.7.11-31.37-67
Th 215.310.5%.72.13.19-31
Fias 218.313.52.7.11-13-17-23
Co; 221.39.5%.72.11.13-23

Ja 221.33.5.7.11%.23.29-31-37-43
Fil, 221.316.52.73.11.13-17-23-29
B 241.313.56.72.11.13-17-19-23-31-47
M 2%6.320.59.76.112.13%.17.19-23-29-31-41-47-59-71
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TABLE 2. Degrees of sporadic groups.

Group Char Degree
Mo Xs 955 =5-11
X11 66=2-3-11
X13 120=23-3-5
Mo Xs 55 =5-11
Xe 99=32-11
X7 154=2-7-11
Xg 210=2-3-5-7
Ja X7z 63=32.7
Xg 70=2-5-7
Xig 90=2-32.5
HS x4 154=2-7-11
X13 825 =3-52-11
X2 2520=23.32.5.7
Js Xg 816=2%.3-17
X1ip 1140=22.3.5.19
X13 1615=5-17-19
Moy X190 770=2-5.7-11
X14 1035 =132.5-23
Xo1 3312=2%.3%2.23
Xo3 5313=3-7-11-23
M°L X3 231=3-7-11
Xs 770=2-5.7-11

X12

4500 = 2% .32 .53

1733
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TABLE 3. Degrees of sporadic groups (continued).

Group Char Degree

He X1z 1920=27-3.5
Xi7 7497 =3%.72.17
X25 11900 =22.5%.7.17

Ru X11 27000 =23 -33.53
Xo1 52780 =22.5.7-13-29
Xoa 71253 =3%-7-13-29

Suz X3 364=22.7-13
Xo 5940 =2%2.3%.5.11
X3 15015=3-5-7-11-13

O'N Xy 58311=232.11-19-31
X5 175770=2-3*.5.7-.31
X209 234080 =2°.5-.7-11-19

Cos Xi3 Hb44 =23.32.7.11
X922 31625 =5%-11-23
Xg7 57960=23.32.5.7.23

Ly X9 381766 =2-7-11-37-67
X0 1152735=3-5-31-37-67
X33 28787220 =2%.32.5.7-11-31-67

Ju X19 35411145=3-5-7-11-23-31-43
X25 300364890 =2-3-5-7-29-31-37-43
Xa2 1182518964 = 22.32.113.23.29 .37
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TABLE 4. More degrees of sporadic groups.

Group Char Degree
Coz X28 212520=23.3.5.7.11-23
Figo X24 150150 =2-3-52.7-11-13
HN X29 1053360 =2%.32.5.7.11-19
Th X39 40199250 =2-3-5%.7.13-19-31
Figs Xa3 35225190 =2-32.5.7-11-13-17-23
Coy X3¢ 9669660 =22.3.5.72.11-13-23
Fil, X34  7150713570=2.32.5.72.11.13.17.23.29
B Xe5  40955835260340 = 22.33.5.72.11-13-17-19-23 - 3147
M X188  198203900044423845494482560 =

27.32.5.74.112.13%.17-19-23-29-31-41-47-59- 71

TABLE 5. Orders and degrees of alternating groups.

Group Order Char Degree
Alt(9) 26.3%.5.7 Xs 35=5-T7
Xo 42=2-3.7
X4 120=2%.3-5
Alt(10) 27.3%.52.7 X121 210=2.3.5-7
Alt(11) 27.3%.52.7.11 X311 2310=2-3-5-7-11
Alt(12) 29.3%.52.7.11 X0 320=2%.5
X12 462=2-3.7-11
X9 1155=3-5-7-11
Alt(13) 29.3%.5%.7.11-13  Xxg 220=22.5-11
Xz6 6006 =2-3-7-11-13
Xs2 15015=3-5-7-11-13
Alt(14) 219.35.52.72.11-13 X309 715=5-11-13
Xo4 6006 =2-3-7-11-13

X36

13650 =2-3-5%-7-13
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TABLE 6. Orders of exceptional groups.

Group Order
G2(q) QG‘I’%‘I’%‘I’s‘%
Fy(q) D1 P; PP P D3P,
Eg(q) 70 DY DL PZDT D5 DE D5 Do D12
E+(q) q63<I>Z<I>;<I>§<I>ﬁ‘I>5<I>g<I>7<I>8<I>9<I>10<I>12<I>14<I>18
Es(q) qm@?‘?3@%@3@%@%@@%%@%<I’%2<I’14<I’15<I>18<I>zo<1>24<1>30
*Ba(q?) ¢ PPy P
*Da(q?) (2010383030,
*G2(q?) D1 P2P4 P12
*Fu(q®) PO} PFPIDFP 1Py
*Es(q%) PP BIPIPEPs P10 P12Pus
TABLE 7. Character degrees of exceptional groups.
Group Label Degree
G2(q) P22 39932
Ga[—1] %Q‘I’%‘I’s
Xa, X10, X6 O Py P35 Dg
Fy(q)
qF#2 ¢é,3 613‘1)2‘1’8‘1’12
Bsy,r %q4<1>%<bg<b§d>§<b8
Xs DI DZP2D2 DDy D1y
Es(q) P64,4 1 P3PID203D,
Dy, 1 %q3<I>‘11<I>§<D5<I>9
Xs, PSPPI DID; D2Dg D1
Xsy @?@%(D%@Z@g@%@g(bg
¢60,5 q5¢’4‘1>5‘1>8‘1’9‘1>12
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TABLE 7. Character degrees of exceptional groups (continued).

Group Label Degree

Ez(q)  ¢s1212 3¢ PIDIDID D112 D14 P18
Eq[¢] 1g1 0103030507 D5 Py D12

X P PIPIDI P PERr Py Do P10 P12P14

Dy, 02 %QIO‘I’%‘I’?,‘I’s‘I)7‘I’8‘I’9‘I>14‘I>18
$512,11 3¢ PIDIDID D112 D14 P1s

Es(q)  da096,12 1q1 QTR 0E 207 BT, D14 P15 P20 P2a P30
Eq[¢],1 30" PTPIDIRIBr BF Py DT, P15 Po0Pos

b134410 1qOPIPIPID PP DT D 12P14P15P 15 P2 P2y P
Dy, 165 5901 RIPIDZDLID PEDy DT P14 P15P 13 P24 P30
Dy, ¢h 4 2q* P1RIRIPIR Do P10 P12 P15 P20 P30

TABLE 8. Character degrees of twisted exceptional groups.

Group Label  Degree
*Dy(q®) *D4[-1] j¢*@i®3
$21  30°P3PF
11,3 qP12
X8 1P, P3P7P 12
2G2(¢%) cuspidal %qq)l@g%

cuspidal ﬁq@l D9,
cuspidal ﬁ (q®, DD,
&2 P12
n; D,P,9,9Y,

’I]z+ @1@2@4@’12
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TABLE 8. Character degrees of twisted exceptional groups (continued).

Group Label  Degree
2Fu(¢®) 2%Bs[a),1 %qq)l@zq)ﬁq)lg
P2 3¢ ®3Py4
Xs PIPIDI PP 1oPoy
2Bs(q?)  %4s5,1 '3 PsP1o
P53 3P P50510P1s
Xoy  PIPDIDIREPsD1oPro
X, D1 P5D20202D3 PPy
Phr "D P1P12Ps
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