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EXTREME AND SMOOTH POINTS IN
LORENTZ AND MARCINKIEWICZ SPACES WITH
APPLICATIONS TO CONTRACTIVE PROJECTIONS

ANNA KAMINSKA, HAN JU LEE AND GRZEGORZ LEWICKI

ABSTRACT. We characterize extreme and smooth points
in the Lorentz sequence space d(w, 1) and in Marcinkiewicz
sequence spaces dx (w, 1) and d*(w, 1), which are predual and
dual spaces to d(w, 1), respectively. We then apply these
characterizations for studying the relationship between the
existence sets and one-complemented subspaces in d(w, 1). We
show that a subspace of d(w, 1) is an existence set if and only
if it is one-complemented.

Marcinkiewicz and Lorentz spaces play an important role in the the-
ory of Banach spaces. They are key objects for instance in the inter-
polation theory of linear operators. The origins of the Marcinkiewicz
spaces go back to the theorem on weak type operators [24, Theorem
2.b.15], which was originally due to Marcinkiewicz in the 1930s. The
Lorentz spaces introduced by G.G. Lorentz in 1950, have appeared in a
natural way as interpolation spaces between suitable Lebesgue spaces
by a classical result of Lions and Peetre [24, Theorem 2.g.18]. This the-
ory has been developed very extensively thereafter and along with these
investigations, the theory of Lorentz and Marcinkiewicz spaces, includ-
ing the studies of their geometric structure, has evolved independently,
e.g., [7, 8, 23, 25, 27]. One can observe that these spaces also find ap-
plications in other topics of operator theory. It is worth mentioning that
Marcinkiewicz spaces d*(w, 1) and their subspaces of order continuous
elements d, (w, 1) have emerged recently many times in the context of
norm-attaining linear operators. In the papers [1, 10, 15] it was shown
among others, by using the space d,(w, 1) with specific weight, that the
subspace of norm attaining operators is not always dense in the space
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of all bounded operators, contrary to the Bishop-Phelps theorem for
linear functionals. For such types of isometric results the knowledge of
geometric properties of the ball is of the utmost importance, see e.g.,
[10], where the characterization of complex convexity of the Lorentz
spaces was the key factor in the proof of the main result.

In this paper we consider the Lorentz and Marcinkiewicz sequence
spaces generated by decreasing weight sequences. In the first two
sections we shall characterize the smooth and extreme points of the
balls in these spaces. In the last section we shall apply these results
to study the relationship between the existence and one-complemented
subspaces of Lorentz sequence spaces.

Let’s first agree on basic definitions and notations. Throughout the
paper any vector space will always be considered over the field of real
numbers R. Given a Banach space (X, ||-||), by Sx and Bx we denote
the unit sphere and the unit ball of X, respectively. Recall that z € Sx
is an extreme point of the ball Bx whenever z = (z; + z2)/2 with
x; € Sx, i = 1,2, implies that x = z; = x3. An element z € X
is called a smooth point of X if there exists a unique bounded linear
functional ¢ € Sx- such that ¢(z) = ||z||. Such a functional ¢ is called
a supporting functional of x.

A symbol ext C will stand for the set of all extreme points of a convex
subset C' of X.

Assume that {w(n)} is a decreasing sequence of positive numbers such
that lim,, w(n) =0 and Y -, w(n) = co. Let W(n) = > i, w(i). By
card A we denote cardinality of A C N. For a real sequence z = {z(n)},
by x* = {z*(n)} we denote its decreasing rearrangement. Recall that
z*(n) = inf{s > 0: d,(s) <nm— 1}, n € N, where d, is a distribution
of z, that is, d,(s) = card{k € N : |z(k)| > s}, s > 0. For any z =
{z(n)}, the support of z is the set suppz = {n € N : z(n) # 0}. We
say that two sequences are equimeasurable whenever their distributions
coincide. The Lorentz sequence space d(w, 1) is a collection of all real
sequences z = {z(n)} such that

12[|w,1 = Zw*(n)w(n) < 0.

It is well known that d(w, 1) is a Banach space under the norm || - ||,1-
The Marcinkiewicz sequence space d*(w, 1) consists of all real sequences
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z = {z(n)} satisfying

Z?=1 z* (i)

W(n) < 00,

|z/lw = sup
and the subspace d.(w, 1) of d*(w,1) is defined as
di(w,1) = {CE €d"(w,1): limzﬁ/li(z) = }

Both spaces d*(w, 1) and d.(w, 1), equipped with the norm || - ||w, are
Banach spaces, and d,(w,1) is a closed subspace of d*(w,1). It is well
known that d,(w, 1) and d*(w, 1) are predual and dual spaces of d(w, 1),
respectively. Note also that, by the assumptions on the weight w, each
space d(w,1), d*(w,1) and d,(w,1) is contained in the space ¢y, and
thus for any element x in any of these spaces, the distribution function
d, is always finite. For more details on the Lorentz and Marcinkiewicz
spaces, see e.g., [18, 20, 23]|. Given a € R, signa =1 if a > 0 and
signa = —1ifa < 0.

1. Smooth points. In this section we characterize smooth points
in Lorentz and Marcinkiewicz sequence spaces. We start with some
auxiliary lemmas.

Lemma 1.1. Let ¢ = {a(n)} € d(w, 1) be a supporting functional at
T € Sg«(w,1)- If there is an m € N such that

m

S0 a(i) < Wm),

i=1
then a*(m) = a*(m + 1).

Proof. Suppose, on the contrary, that a*(m) > a*(m + 1). Since
z is an element of the unit sphere of d*(w,1), we have S*(n) :=
Yo x*(i) < W(n) for all n € N. Thus, in view of S*(m) < W(m)
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and by summation by parts, for every | > m,

ga*(l)w*(l) = i(a*(i) —a*(i+1))5%(4)
+ i_:Z;(a*(i) —a*(i +1))8* (i) + a* (1)S* (1)

< é(a*(i) —a(i+1)W (i)
+ i_l%;l(a*(i) —a* (i + 1))W(i) + a* ()W ()

I
'M“

a*(t)w(i) = [¢]-

=1

In view of

li}n i (a*(i) —a* (1 +1))S8*(3) < li}n i (a*(i) —a™ (i + 1))W(7)
i=m+1 i=m+1

and

li}n a*(1)S*(1) < li}n a* (W (D),

it follows that

(1.1) Y a*(mat(n) < Y a*(nuwn) =l9].

n=1 n=1

Since ¢ is a supporting functional at x, applying the Hardy inequality
[20], we obtain that

18] = ¢(x) =Y a(n)z(n) < Y a*(n)z*(n).

This is a contradiction to inequality (1.1) and the proof is done. |
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Corollary 1.2. Suppose ¢ = {a(n)} € d(w,1l) is a supporting
functional at x € Sq, (w1). Then it is finite, i.e., a(n) = 0 except
for finite numbers of n € N.

Proof. In view of « € d.(w, 1), there exists an N € N such that

N:max{n:%zl}.

Then ZLI z*(i) < W(k) for all k > N, and by Lemma 1.1, a*(N+1) =
a*(N +2)=---=0, since {a(n)} is an element of co. O

Proposition 1.3. If z is an element of Sq«(,,1) such that

2 <t s T 1) o,

then there exist two different norm-one supporting functionals in
d(w,1) at z.

Proof. Let

by the assumption M < oco. Suppose that N < M such that

e Xt

:1:

W(N) W (M)
Notice that
M-1
w(M)+ Y (w(i) = 2*(i) = 2" (M) > w(M) > w(M +1).
i=1
Notice also that
M+1 M+1
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So we have z*(M + 1) < w(M + 1). Therefore, *(M) > z*(M + 1).
Hence, there is a permutation o on N such that |z(c(k))| =
allk=1,..., M. Now let, for y € d*(w, 1),

Jy(o(2)))

and

b2(y) = = sign (2(0())y(0 ().
W(M) ¢

It is clear that ¢1 # ¢2, ¢1(z) = ¢2(z) = 1 and [|¢1]| = [[¢2|| = 1.

Thus, ¢; and ¢y are two different norm-one supporting functionals in
d(w,1) at x. O

Proposition 1.4. Let x be an element of Sg«(y,1)- If

card{m:%:l}:l,

then there is a unique norm-one supporting functional v in d(w,1) at
x.

Proof. Suppose that
> iy @ (4) -1
W (m)
holds for some m € N. Then z*(m) > z*(m + 1). Indeed, if
m = 1, then z*(1) = w(1). Since z*(1) + z*(2) < W(2), so z*(2) <

(1
w(2) < w(l) = z*(1). If m > 2, then Y7 ' 2*(i) < W(m — 1) and
it x*(i) = W(m). Hence, z ( ) > w(m). Thus, W(m) + z*(m +
1) = Y 2t (i) < W(m+1), that is, z*(m+1) < w(m+1) < w(m) <

z*(m).

Let ¢ = {a(n)} be a norm-one supporting functional at x, where
{a(n)} is an element of d(w, 1), that is,

(oo}

= a(dz(i) = |l¢ll = 1.

i=1
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Then, by Lemma 1.1,

and
a*(m+1)=a*(m+2)=---=0.

Set a = a*(1). Then there exists a finite set {j1,...,75m} such that
A = signa(jx), k = 1,...,m, a(jr) = aXx and a(i) = 0 otherwise.
Thus,

m

$(y) = aley(ix),

k=1
for every y € d*(w, 1). Since ¢ is a supporting functional at z,

m

1=|lgll =Y aw(k) = ¢(z) = > a\pz(js) < Y az* (k)
k=1 k=1

k=1
= Zaw(k) =1.
k=1

This implies that a = 1/W(m) and that

Z arpz(jx) = Z ax”* (k).

Then, in view of z*(k) > z*(m + 1) for every k = 1,...,m, we find
a permutation {j,(1),---,jo(m)} Of {j1,---,Jm} such that |z(j, 1)) >
T Z |x(.70(m))‘ and

m m m

Z a gz (Ji) = Za)\,,(k,)ac(jg(k)) = Z ax* (k).

k=1 k=1 k=1
Thus,
o) (k) = 2*(k), k=1,...m.

Hence |z(jx)| = Mez(jr) and so Ay = sign(z(jx)) for every k =
1,...,m. Thus, for y € d*(w, 1),

b(y) = ﬁ S sign (2(n))y(i)-
k=1
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On the other hand, there is a permutation 7 on N such that |z(7w(k))| =
z*(k) for k = 1,... ,m, because z*(m) > z*(m + 1). Then the linear
functional v, defined by

1 m
= — sign (z(w(k w(k)),
¥(y) W m) kz::l gn (z(m(k)))y(r(k))
is a norm-one supporting functional at z. Since z*(m) > z*(m + 1)
and |z(7(k))| = z*(k) = |z(j§)| for k=1,...,m, so
{mk):k=1,... m}y={jp:k=1,...,m}.

However, it implies that ¢ = % and completes the proof. ]

Theorem 1.5. Let x be an element of Sy, (w,1)- Then x is a smooth
point of By, (w,1) if and only if

card {m : —Z%l(g)(i) = 1} =1

Proof. The necessity follows from Proposition 1.3 and sufficiency from
Proposition 1.4. O

Since d.(w, 1) is M-embedded, so (d*(w, 1))* = d(w,1)®; F, where F
is the set of singular functionals. If £ € F', then it vanishes on d, (w, 1),
[16, Examples III.1.4]; see also [18].

Suppose that ¢ is a supporting functional at € d*(w,1). Then it
has a unique representation ¢ = ¢ + &, where ¥ = {a(n)} € d(w,1),
and £ is a singular linear functional. By the M-ideal property we have

o]l = 141l + €]l = ¥ () + &(2) = ¢(x) = [[#]-

Therefore, both 9 and £ are supporting functionals at x.

Proposition 1.6. Let x be an element of Sg«(y,1)- Suppose that

EZ:1 z* (k)
W(n) <1

holds for all n € N. Then a supporting functional ¢ at x is singular.



EXTREME AND SMOOTH POINTS 1541

Proof. Let ¢ = ¢ + £ be a unique decomposition, where 1 = {a(n)}
and ¢ is a singular linear functional. Then ¢ = {a(n)} is a supporting
functional at x, and by Lemma 1.1, a*(1) = a*(2) = --- = 0. Thus,
P =0. o

Proposition 1.7. Let x be an element of Sg«(y,1)- If

n * k
lim sup 22k=1 7 k) _

n W (n)

then there exist two different norm-one supporting functionals of x.
We need the following lemma.

Lemma 1.8. Let z be an element of Sy (w1)- If

: Dk 2 (k)
limsup =“——— =1,
ST ()
then there is a decomposition x = x1 + x2 such that |z1| A |x2| = 0 and

za]lw = [lz2llw = 1.

Proof of Lemma 1.8. For any subset G' of N, define the characteristic
function X¢ : N - R as Xg(i) =0if i € G and Xg(i) =1 if i € G.

We claim that for every nonempty finite set F' C N and for every
€ > 0, there is a finite set G C N with G N F = & and such that
lzxc|lw > 1—¢. Indeed, by assumption, there is an unbounded strictly
increasing sequence {m,} of N such that

Mn * k
lim 21

n— 00 W(mn)
Since F is finite and x* € ¢y, we can clearly assume that
m := min{|z(s)| : s € FNsuppz} > 0,
and so there is an N such that z*(k) < m for every k > N. Since
mpy > N, and for n > N, we have
Spmatk) _ S et ) | S o ®)
W(ms) W(mn) W (ms) ’
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and the first sequence in the above sum converges to zero, the second
one converges to 1. This implies that ||zXn\r|lw = 1, so there is a
finite set G C N\ F so that [|[zXg|lw > 1 — ¢ as we wanted to show.
By applying the above claim, we can construct a sequence of disjoint
sets {F},} of natural numbers such that lim,, [|[xXg, || = 1. Finally, by
setting Gy = UpFa,—; and G2 = N\ Gy, we have for all n € N,

Xl < oXeallw 1. X, 4w < X, lw < 1.
and so the elements T = IXGla 9 = q,‘XGz satisfy ||$1||W = ||1‘2HW =
1, z =z + x3 and |z1| A |z2| = 0. =

Proof of Proposition 1.7. By Lemma 1.8, any € Sg=(,,1) can be
decomposed as ¢ = x1 + 2, |z1| A |z2| = 0 and ||z1||w = ||z2||lw = 1.
Let Y; = {z € d*(w, 1) : suppz C supp;}, i = 1,2. Notice that

dist (x,Y2) = dist (x1,Y2) = 1 = ||z1||w-

By a well-known corollary of the Hahn-Banach theorem, there is a
functional ¢; € (d*(w,1))* such that [[¢1]| =1 = @1(z1) and ¢1(Y2) =
{0}. Thus, ¢1(z) = ||z||w. Analogously there exists ¢ € (d*(w,1))*
such that ||@2|| = 1 = ¢(z2) and ¢2(Y1) = {0}. Hence, ¢; and ¢ are
distinct norm-one supporting functionals of z. a

Theorem 1.9. An element x in Sy« (. 1) i a smooth point of Bg«(y1)
if and only if there is an m € N such that

ZEAr )y (T )]

Proof. The necessity follows from Propositions 1.3 and 1.7. In order
to show the sufficiency, suppose the inequality in the hypothesis is
satisfied. Then z*(m) > z*(m + 1) and there exists a permutation o
on N such that |z(o(k))| = z*(k) for k = 1,... ,m. Let ¢ = ¢ +¢
be a norm-one supporting functional at x, where ¢ € d(w,1) and € is
singular. If £ # 0, then setting

t =max{o(k):k=1,...,m},
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it is clear that ||zXn\ {1,...¢3/lw < 1. Therefore,

€]l = &(z) = &(@Xm\qu,....e1) < lI€],

and so it is a contradiction. Hence, £ = 0. By Proposition 1.4, the
norm-one supporting functional ¢ € d(w,1) at x is unique, and the
proof is done. ]

Below we provide a characterization of smooth points in the Lorentz
space d(w,1).

Theorem 1.10. An element x of the unit sphere of d(w,1) is a
smooth point if and only if supp x is infinite and the following condition
1s satisfied:

(1.2) Whenever thereis a k>1 such that w(k) > w(k+ 1),
we get z*(k) > z"(k +1).

Proof. We shall show first the necessity. It is easy to see that if
supp « is finite, then there are infinitely many supporting functionals
at ©. Thus, assume that suppz is infinite. We shall show that if
z*(ko) = x*(ko + 1) and w(ko) > w(ko + 1) for some ky € N, then we
can obtain two different supporting functionals at x. It is well known
that there is a one-to-one and onto mapping ¢ : N — supp z such that
x* = |z o o|. Choose two sequences y; and y, defined by

(k) = { sign (z(k)) - w(o (k) for k elsupp x;
0 otherwise,
yi(k),
k # o(ko) and k # o(ko + 1);
sign (2(o (ko)) - (w(ko) + w(ko + 1))/2,
k= o(ko);
sign (z(a (ko +1))) - (w(ko) + w(ko +1))/2,
k=o(ky+ 1).

y2(k) =




1544 A. KAMINSKA, H.J. LEE AND G. LEWICKI

Notice that ||y1|lw = ||ly2]lw = 1. It is also easy to check that y; and
yo are two different supporting functionals at x.

Now let x € Sy(,,1) satisfy condition (1.2), and let y € Sg-(w,1) be a
supporting functional of . Then

1= a(k)y(k) =) _sign(a(a(k)) - z*(k)y(o(k)),
k=1 k=1

where z* = |z o o|. Taking S(n) = Y ,_, sign (z(c(k))) - y(o(k)) and

S'(n) = > r_, y*(k), we have S(n) < §'(n) < W(n) for every n € N,

in view of the Hardy inequality and ||y|lw = 1. We shall show by

induction that, for every n € N,

y(o(n)) = sign ((c(n)) - y*(n) = sign (2(o(n))) - w(n).

Since lim, 00 *(n) = 0, there is an m such that m = max{k > 1 :
z*(1) = z*(k)}. If S(m) < W(m), then by the summation by parts,
we get

=Y (@ (i) —2* (i +1))S(0)
=1 L
+l13§o{ D (e (i) —m*(i+1))S(i)+m*(Z)S(l)}
(1.3) N =m
< (@t (i) — 2t (i + D)W (i)
= -1
+l1320{ Y (i) = (i+1))W(i)+x*(l)W(Z)}

which is a contradiction. So S(m) = W(m). Notice that sup;, |y(k)| <
y*(1) < w(1). Since z*(i) = z*(j) for every 1 < 4, j < m, we also have
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w(l) = --- = w(m) by assumption (1.2). This and S(m) < S'(m) <
W (m) imply that

S(m) = S'"(m) =W (m) =m-w(1),
and sign (z(o(k))) - y(o(k)) = y*(k) = w(k) for k =1,...,m. Hence,

y
y(o(1)) = sign (z(0(1))) - y* (1) = sign (z(o(1))w(1).

For the inductive step, assume that for every k < n, we have

y(o(k)) = sign (z(a(k))) - y* (k) = sign (z(a(k))) - w(k).

Let now m = max{k >n+1:2*(n+ 1) = z*(k)}. If S(m) < W(m),
then the inequality (1.3) yields a contradiction, and so S(m) = W(
By the induction hypothesis and by (1.2), we get S(m) — S(n)
W(m) =W (n) = (m—njw(n+1) and w(n+1) = sup;>, 41 [y(o(j))| =
SUp;>,4+1 Y (j)- Thus, forn+1<j<m

y(o(4)) = sign (z(c(4))) - y* (j) = sign (z(o(5))) - w(7)-

This completes the induction and the uniqueness of the supporting
functional at x has been proved. O

2. Extreme points. A Banach space (X, || - ||), a collection of real
sequences, is said to be an r.i. sequence space if for any z = {z(n)} € X
we have ||z|| = ||z*||, and for any y = {y(n)} such that |y(n)| < |z(n)]
for every n € N, we have that y € X and ||y|| < ||z||. It is clear that
all spaces d(w, 1), d*(w, 1) and d.(w, 1) are r.i. sequence spaces. An r.i.
space X is strictly monotone if for z,y € X such that |z(n)| < |y(n)|
for all n € N and |z(m)| < |y(m)| for some m € N, we have that

]l < {lyll

Proposition 2.1. Let (X,] -||) be an r.i. sequence space, and let
x € Sx be such that its distribution d, is a finite valued function.

(i) If supp x is finite or equal to N, then x is an extreme point of
Bx if and only if x* is an extreme point.

(i) If = is an extreme point of Bx, then x* is also an extreme point
of Bx. If, in addition, X is strictly monotone, then the converse
statement is also satisfied.
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Proof. Since d;(6) < oo for all > 0, lim,, 2*(n) = 0 and there exist
M C N and a one-to-one and onto mapping o : N — M such that, for
alln € N,

(2.1) 2" (n) = lz(a(n))] = Anz(a(n)),

where \,, = signz(o(n)). In fact, we can take M = N if supp « is finite
and M = supp x otherwise.

(i) Under the assumptions, o is a permutation of N and then the
operator
Ty(n) = Any(o(n)), ye€X,

is an isometry on X such that Tx = z*. We get the conclusion

immediately since T" preserves extreme points.
(ii) Suppose z* € Sx is not an extreme point of Bx. Then there
exist y, z € Sx such that y # z and z* = (y + z)/2. Hence,
Any(n) + Anz(n)
2 ?

z(o(n)) =
and so we get for every n € supp z,

_ Buy(o71(n)) + Bnz(0c™(n))
z(n) = 5 )

where 07+ : M — N is one-to-one and onto mapping and (3, =
sign z(n). Thus, setting

= {0l me

0 otherwise;

1

y
O

0 otherwise;

we have that y and Z are equimeasurable with y and z, respectively.
Hence, ||z|| = ||yl = ||Z||. Moreover, z = (g + z)/2 and y # Z, since
there exists an m € M such that y(oc (m)) # 2(c!(m)) by the
assumption that y # z. Thus, x is not an extreme point of By as well.

Suppose now that X is strictly monotone, and let x not be an extreme
point of Bx. Then there exist y,z € Sx such that y # z, and for all
n € N,

y(n) + 2(n)

z(n) = 5
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It follows that suppy U suppz C suppz. Indeed, if there is an
m € N such that z(m) = 0 and y(m) # 0, then z(m) # 0 and
setting § = YXsuppzr and Z = 2Xsuppaz, we have ||7|| < |[ly|| and
IZIl < llz]|, by strict monotonicity of X. However, z = (§ + Z)/2
and so [lz|| < (3]l + |121)/2 < (llyll + [[))/2 = [[z[|, a contradiction.

By (2.1), for all n € N,

ey — Mny(a(n)) + Anz(a(n))
z*(n) 5 .

Since supports of y and z are included in supp z, |y o o] and |z o o| are
equimeasurable with y and z, respectively. It is also clear that they are
different. Thus, taking yo(n) = A\py(o(n)) and zo(n) = Apz(c(n)), we
have that ||yo|| = |20l = 1, yo # 20 and z* = (yo + 20)/2. Thus, z* is
not an extreme point, which completes the proof. a

Theorem 2.2. An element x € Sg-(v,1) i an extreme point of
Bg-(w,1) if and only if * = w.

Proof. Recall that whenever € d*(w, 1) then d,(8) < oo for every
6 > 0. Assume that =* # w, where ||z||w = 1. In view of Proposition
2.1 (ii) it is enough to show that if z* is an extreme point, then z* = w.
We shall prove it by use of induction. Suppose, on the contrary, that
z*(1) < w(1). We have three possible cases.

Case (1). Suppose first that «*(1) > z*(2) > 2*(3) holds. Then
choose an € > 0 such that z*(1) + & < w(1),

(1) +e>z"(2) —e > z2"(3)

and
z*(1) —e > 2*(2) + € > z*(3).

Then, by setting
y=(z"(1) +¢&2"(2) —&,2"(3),...)

and
z=(z2"(1) —¢e,2"(2) +,2"(3),...),
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we have that |ly||lw,|lz]lw < 1 and z* = (y+ 2)/2. Hence, it is a

contradiction to the assumption that z* is an extreme point.

Case (2). Suppose that z*(1) = z*(2) = --- = z*(m) > z*(m + 1)

for some m > 2. Then, for every 1 < k < m,

kz* (k) < w(l) +--- 4+ w(k).
Indeed, if kxz*(1) = w(1l) + --- + w(k) for some 1 < k < m, then
w(k) < z*(1). Hence,

mz*(1) =w(l) +---+wk) + (m —k)z"(1) > w(l) + - -- + w(m),
which is a contradiction to the fact that ||z|w = 1.

Now choose € > 0 such that (k—1)z*(1) +e < w(l) +---+w(k —1)
for every 1 < k <m and z*(1) — ¢ > z*(m + 1). Setting
y=(z"(1)+e,2"(1),...,2"(1) —g,z"(m+1),...),
z=(z"(1) —e,2"(1),... ,2" (1) + e, 2" (m+1),...),

we have that ||y|lw = ||z]lw < 1 and z* = (y + 2)/2. This is also a
contradiction.

Case (3). Suppose that z*(1) > z*(2) = z*(3) = --- = z*(m) >
z*(m + 1) for some m > 3. Then, for 1 <k < m,
(1) + (k — 1)z*(2) < w(l) + - -+ + w(k).

Indeed, if 2*(1) 4+ (k— 1)z*(2) = w(1) +- - - +w(k) for some 2 < k < m,
then (k — 1)z*(2) > w(1) — z*(1) + (k — D)w(k) > (k — 1)w(k). Thus,
z*(2) > w(k) and so
2" (1) + (m - 1)2"(2) = w(l) + - + w(k) + (m — k)z"(2)
>w(l)+---+wlk)+wk+1)+- -4+ wim).
It is however impossible since £* has norm one.
Now choose € > 0 such that z*(1) > z*(2) +¢, 2*(2) —e > *(m+1)

and

z*(1)+(k—2)z"(2)+e <w(l)+---+w(k—1) forevery 1<k <m.
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Let
y=(2*(1),z*(2) +¢,...,2"(2) —g,2*(m + 1),...)

and
z=(z"(1),2%(2) —¢g,...,2"(2) + e, 2" (m + 1),...).

Then |ly|lw = ||z|]lw <1 and z* = (y + 2)/2, which is impossible since
x* is an extreme point.

Therefore, we have shown that z*(1) = w(1). For the use of
induction, suppose now that z*(k) = w(k) for 1 < k <n. If2*(n+1) <
w(n + 1), then exactly the same argument as for cases (1), (2) and (3),
shows that it is a contradiction. Hence, z*(n+1) = w(n+1). Therefore,
if £* is an extreme point, then z* = w.

Now we show that x is an extreme point of the unit ball of d*(w, 1)
if z* = w. Let A =suppz and B : A — A be a one-to-one and onto
mapping such that the sequence {|z(8(n))|} is decreasing on A, that
is, |2(B8(4))| < |z(B(7))] whenever ¢ < j. Consider v : N — N defined
as y(n) = B(n) for n € A and y(n) = n for n ¢ A. Then

(Ty)(n) = signz(y(n))y(y(n))

is a linear isometry on d*(w, 1) such that

(Tz)(n) = [z(y(n))|-

Hence, z is an extreme point whenever |z o 7| is an extreme point.
In view of that we can assume that x € Sg«(4,1) is nonnegative,
decreasing whenever restricted to its support A, and z* = w. Now
let y,2 € Sg(w,1) be such that, for all n € N,

sy = V) 5(0)
2
In view of the assumptions on z, letting A = {n;,ns,...}, where

n; < ng < ---, we have
z(nk) =w(k), ke€N.
We shall show first that

y(ng) = z(ng) = z(ng), ke N.
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Let further

Yy =yXa and Z=2zX4.
We shall apply mathematical induction. Let n = n;. Since y,z €
B (w,1), so |y(n1)| < w(l) and |z(n1)| < w(l). Then y(ni) =
z(n1) = w(l) in view of w(l) = z(n;). Notice also that we have

~%

7*(1) = y(n1) = 2*(1) = z(ny1). Assume now that
7 (1) = y(ni) = w(i) = 2(ni) = 2°(2)

foralli=1,...,m and some m > 1. Then

S ) S w@ i ma )
W(m + 1) W(m+1) =5

and so §*(m + 1) < w(m + 1). Hence, for all i > m + 1,
7" (1) < w(m+1),
and since there exists a j > m + 1 such that §*(j) = y(nm+1), we have
y(nmi1)| < wim +1).
Analogously, we can show that
[2(nm11)| < wim + 1),
and so
grm+1) = y(mi1) = 2(nmy1) = 2 (m+ 1) = wim + 1) = 2(nmi1)-

This completes the induction. It remains to show that y(i) = z(2) =0
for all i ¢ A. Notice that §* < y*, and we have for every n > 1,

SLut) | S 0G)
B TwWw W

Hence, §* = y* and in view of lim, y*(n) = 0, we have y(i) = 0.
Similarly z(i) = 0 for every i ¢ A. i
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Remark 2.3. The extreme points for the unit ball of finite-dimensional
Marcinkiewicz sequence spaces are characterized in [9].

Lemma 2.4. The Lorentz space d(w, 1) is strictly monotone.

Proof. If 0 < z < y and z,y € d(w, 1), then z* < y* and there exists
an m € N such that 2*(m) < y*(m). This results from the simple fact
that d, is finite. It follows that ||z||w,1 < [|Y]|w,1- O

The next result follows immediately from Proposition 2.1 and Lemma
2.4.

Corollary 2.5. An element x € Sg(w,1) is an extreme point of the
ball By(w,1) tf and only if x* is an extreme point of By, 1)-

Theorem 2.6. An element x € Sy(y,1) 8 an extreme point of the ball
Baw,1) if and only if there exists an ng € N such that z*(i) = 1/W (no)
fori=1,... ,ng, z*(1) =0 fori > ng and w(l) > w(ng), provided that
ng > 1.

Proof. In view of Corollary 2.5 we assume that = x*. Suppose first

that © € Sg(y,1) is an extreme point of By(y,1), and let
ng =sup{n € N: z(n) = z(1)}.
Since d(w,1) C ¢, it is clear that ng € N. We shall show that
z(ng + 1) = 0. Let, on the contrary, z(ng + 1) > 0, and set
ny =max{n € N : z(n) = z(no + 1)}.
Setting d = min{z(1) —z(no+1),z(no+1) —z(n1+1)}, we have d > 0.
Fix b > 0 such that
W (ny)

(2 ) <

Define
Yy = <x(1)—b,...,w(n0)—b,x(n0+l)+%,...,
bW(no)

o)+ e = Wng)

,x(n1+1),x(n1+2)...>
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and

z= <x(l)+b,...,m(n0)+b,x(n0—|—l) - %,...,
bW(TL())

W(nl) — W(no)

z(n1) — ,w(n1+1),x(n1+2)...>.
Note that y # z and * = (y + z)/2. By the choice of b and d, y = y*
and z = z*. Hence,

Il = 3 y()w@) = 3 2(i)w()

Analogously, we can show that [|z||,,1 = 1. It contradicts the assump-
tion that z is an extreme point and consequently x(ny + 1) = 0, as
required. If ng > 1 and w(1) = w(ng), define for 0 < b < z(1),

Yo = (x(l) + b,l‘(?), e .,I(?’LO - l)ax(nO) o b,.’E(?’LO + ]-)a o )
and
2y = (QZ(].) - b,.’l?(2), e 7m(n0 - 1),$(n0) + bax(nO + 1)7 i )

It is easy to see that ||yp|lw,1 = ||2b]lw,1 =1, 2p # yp and © = (yp +25) /2.
So, x is not an extreme point, which is a contradiction. Thus, we showed
as required that, if ng > 1, then w(1) > w(ny).

Now assume z € d(w,1) and n € N are such that z(i) = 1/W(n) for
i=1,...,n,z(i) =0 for i > n and w(l) > w(n) if n > 1. We shall
show that z is an extreme point of By(,,1). If n = 1, this is an easy
consequence of Lemma 2.4. Suppose that n > 1. Let z = (y+2z)/2 with
lYllw1 = [|2]lw,y = 1 and y # 2. By Lemma 2.4, y(i) = 2(i) = 0 for
i > n. Indeed, if y(i) # 0 for some ¢ > n, then z(i) = —y(i). Defining
y' = (y(1),...y(n),0,...) and 2! = (2(1),...2(n),0,...), we have that
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z = (y' + z')/2. But, by strict monotonicity, |[2*|lw1 < ||z]lw,1 =1
and ||y!|w,1 < [|y¥llw, =1 and so ||z[|w,1 < 1; a contradiction. Define

L={i=1,....,n:y(d) > 1/W(n)},
L={i=1,....,n:y(%) =1/W(n)}

and

I={i=1,...,n:y(i) <1/W(n)}.

By strict monotonicity, we have y,z > 0. Otherwise, we can choose
g and Z such that |g| < |y|, |Z] < |z| and = = (§+ Z)/2. Hence,
17]lw,1 < [|Yllw,1 <1 and [|Z|lw,1 < ||2]|w, < 1, which is a contradiction
to the fact that z = (y + 2)/2.

Let, for ¢ = 1,2,3, k; = card I;. Since d(w, 1) is strictly monotone,
y # x and ||y||w,1 = 1, so k1 > 0 and k3 > 0. Without loss of generality,
permuting the coordinates of y and z, if necessary, we can assume that
y* =y. Since |y||w,1 =1,

By ||z|lwy = 1 and z = (y + 2)/2 we have z(i) = 2/W(n) — y(i)
for i = 1,...,n and 2(i) = 0 for 4 = n + 1,.... Hence, z* =

)
(2/W(n) —y(n),...,2/W(n) —y(1),0,...). Thus,

1= el = (g — 0 Ju0) 4+ (s =)t
and so
V(D) + -+ ypu() = 1.

Moreover, by the assumption w(1) > w(n), in view of y(1) > y(n) and
by the Hardy inequality, we have

I=y(Mw(l) + -+ y(n)w(n)
> y(Dw(n) + y(n)w) + (y(2w(2) + ... + y(n - Dw(n - 1))
Z y(Dw(n) + y(n)w() + (y(2wln - 1) +--- +y(n - Dw(2))
=y(Dw(n) + - +y(n)w) =1,

which is a contradiction. The proof is complete. a
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3. Applications. In this section we shall study the relationship
between the existence sets and one-complemented subspaces of the
Lorentz space d(w, 1), applying the characterization of smooth points
in d(w,1) (Theorem 1.10) and extreme points in its dual d*(w,1)
(Theorem 2.2).

Let X be a Banach space, and let C C X be a nonempty set. A
continuous surjective mapping P : X — C is called a projection onto
C, whenever P|c = Id, that is, P? = P.

Given a subspace V of a Banach space X, by P(X,V) we denote
the set of all linear, bounded projections from X onto V. Recall that
a closed subspace V' of a Banach space X is called one-complemented
if there exists a norm one projection P € P(X,V). Setting, for each
T e X,

Mco(z)={z€ X :||z—¢| < ||z — ]| for any c € C},

it is clear that x € M¢(z) for every x € X and M¢(c) = {c} for every
c € C. Letting MinC be a subset of X consisting of an element x
such that M¢(z) = {z}, we say that C C X is optimal if MinC = C.
Observe that for any C C X, C C MinC.

This notion has been introduced by Beauzamy and Maurey in [4],
where basic properties concerning optimal sets can be found.

A set C C X is called an existence set of best coapproximation
(existence set for brevity), if for any z € X, Ro(x) # &, where

(3.1) Re(z)={deC:||d—¢| < ||z — ]| for any c € C}.

It is clear that any existence set is an optimal set. The converse,
in general, is not true. However, by [4, Proposition 2], if X is one-
complemented in X** and strictly convex, then any optimal subset of
X is an existence set in X, which, in particular, holds true for strictly
convex spaces X, such that X = Z* for some Banach space Z.

Existence and optimal sets have been studied by many authors from
different points of view, mainly in the context of approximation theory
and functional analysis (see, e.g., [2-6, 11, 13, 14, 19, 22, 28|). There
is also a large literature concerning one-complemented subspaces (see,
e.g., a survey paper [26] and a recent paper [17]).
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It is obvious that any one-complemented subspace is an existence
set. However, the converse, in general, is not true. By a deep result of
Lindenstrauss [22] there exist a Banach space X and a subspace V' of
X, with codim V' = 2, such that:

(a) V is one-complemented in any Y, where Y D V is a hyperplane
in X, ie., Y = f1({0}) for some f € X*\ {0}.

(b) V is not one-complemented in X.

This fact together with the simple observation stated as Lemma 3.1
below, gives an example of a subspace being an existence set which is
not one-complemented.

Lemma 3.1. Let X be a Banach space, and let V C X, V # {0}
be a linear subspace. Then V is an existence set in X if and only if
for any x € X \ 'V, there exists a P, € P(Z,V) with ||Py|| = 1. Here
Zy =V @ [z], where [z] denotes the linear span generated by x.

Proof. Assume that for any « € X \ V there exists a P, € P(Z,,V),
|P;|| = 1. Fix z € Z, and v € V. Note that
[Pz = vl = [|Pe(z = 0)[| < |2 = v]l.

Hence, P,z € Ry(z) and so V is an existence set in X. Now assume
that V' is an existence set in X, and fix € X\ V. Take any d € Ry ().
Since any z € Z, can be uniquely expressed as z = ax + v for some
v €V and a € R, we can define P, : Z, — V by

P,z =ad+v.

It is easy to see that P, € P(Z,,V). To show that |P,|| = 1, fix
y=oax+v € Z;, with a # 0. Since d € Ry (z),

1Pyl = llad + vl| = [allld + v/all < |allz +v/al| = [Jaz + o = |y],

which completes the proof. u]
In [4] the following result has been proved.

Theorem 3.2 ([4, Proposition 5]). Let V # {0} be a linear subspace
of a smooth, reflexive and strictly convexr Banach space X. IfV is
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an optimal set, then V is one-complemented in X. If X is a smooth
Banach space, then any subspace of X which is an existence set is one-
complemented. Moreover, in both cases a norm-one projection from X
onto V is uniquely determined.

We shall show here that the above result can be true in spaces that
are not smooth. We will prove that any subspace of d(w, 1) which is
an existence set must be one-complemented, which cannot be deduced
from Theorem 3.2 because by Theorem 1.10, d(w,1) is not a smooth
space. Just recently [21], a similar result has been proved for spaces
co, C, {1 and a large class of Musielak-Orlicz sequence spaces equipped
with the Luxemburg norm. These facts provide a partial answer
to the question stated in [4, page 125] concerning generalization of
Theorem 3.2 to the nonsmooth case.

One of the main tools in our investigations, stated below, has been
recently proved in [21].

Theorem 3.3. Let X be a Banach space, and let V C X be a linear
subspace. Assume that V is an existence set and V # {0}. Put

Gy = {v e V' \ {0} : there exists a unique f € Sx- : f(v) = ||v||}.

Assume that the norm closure of Gy in X is equal to V. Then
there exists a unique projection P € P(X,V) such that |P|| = 1.
Consequently, V is one-complemented in X .

For further reference we state the next well-known result.

Lemma 3.4. Let X,Y be two Banach spaces, V C X a linear
subspace, and let T : X — Y be a linear isometry. Then V is an
existence set in X if and only if T(V) is an ezistence set in T(X). Also
V is one-complemented in X if and only if T(V') is one complemented
in T(X).

For n € N and a decreasing sequence of positive numbers {w(1),...,
w(n)} define a finite-dimensional Lorentz space

dn(wa l) = (Rna || ' ||w,1)a
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where

el =D (7)w().

Before we state the main result we shall prove several auxiliary
lemmas.

Lemma 3.5. Let {C;};en be a family of finite, nonempty subsets of
N such that C; N Cj = @ for i # j. Define for j € N,
Xo;, = {z € d(w,1) : (i) = z(k) for any i,k € Cj}.
Let -
Xc = () Xc,-
j=1
Then X¢ is one-complemented in d(w,1). The same result applies to

d™(w,1). In this case we consider a finite family of nonempty, pairwise
disjoint subsets of {1,... ,n}.

Proof. Let for j € N, Cj = {i1, ..., }, where k; = card C;.

Set for z € d(w,1), j € N, Pz = (2(1),...,2(n),...), where
z(i) = (Zlecj z(l))/k; if i € Cj, and 2(4) = x(i) in the opposite
case. It is clear that P; € P(d(w,1),Xc;). We also have that
|P;ll = 1. Indeed, since for any permutation o : N — N, the
mapping T, : d(w,1) — d(w,1) given by T,z = z o o is a linear,
surjective isometry of d(w, 1), then by Lemma 3.4, we can assume that
Cj =A{1,... ,kj}. Let & € Sj(u,1), and set for [ = 2,... , k;,

= (z(l),z(l+1),...,2(k;), z(1),...,2(l = 1),z(k; +1),...).
Then z + E;Zz z! = k;(P;z), and

k; k;
1Pizllws = @+ Y 2") /kjillwa < ([lhwy + Y 2 lw) k5 = 1,

=2 =2

since ||z!||w1 = ||z||w1 = 1 for I = 2,... ,k;. Thus, |P;|| = 1. Now
define for j € N,

J
X; =) Xe»
m=1
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and
Q]:-Pl oP2o...on‘
Since C; NCy = @, for i # k, so Q; € P(d(w,1),X;). By the above
reasoning, ||Q;|| = L.
Now, fix z € d(w,1). Define Qz = ((Q
(i

(Qz) (i) = (i) if ¢ ¢ UjenC; and (Qzx)
Since C; N C; = @ for i # j,

(Qz)(2) = lim(Q;)(3),

z)(1),...(Qz)(n),...), where
)= Tieo s x(l)/k; it i € Cj.

for any ¢ € N. Now we show that Qz € d(w,1) for any z € d(w,1).
Indeed, for any x € By, and any j € N, we have [|Q;z| < 1
since ||Q;]| = 1. In view of d(w,1) = (d«(w,1))* and the fact that
d.(w,1) is separable, the weak® topology on By, 1) is metrizable.
Thus, by the Banach-Alaoglu theorem, there exists a subsequence {jx}
and Rz € Bj(y,1), with Q;,x — Rz weakly* in d(w,1). In particular,
for any ¢ € N, we have

(Re)(i) = im(Qj,z)(7).

This shows that Qz = Rz, and consequently Qz € d(w,1). Note
also that Qr € X¢ and for any € X¢, Qr = z. Since Qz = Rz,
Qz € Bg(w,1), for any x € By(,,1)- Thus, @ is a linear projection from
d(w,1) onto X¢ with [|Q|| = 1, which completes the proof. The case
of d"(w, 1) can be proved in a similar way. o

The next lemma is well known but for the sake of completeness we
include its proof here.

Lemma 3.6. Let X be a Banach space, and let x € X. Define

D(z) = {f € Bx~: f(z) = [lz|}-

Then
& # ext D(z) C ext Bx-.

Proof. If x = 0, then D(x) = Bx- which shows our claim. So
assume z # 0. By the Hahn-Banach theorem, D(z) # @. Note
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that D(z) is a convex, weakly* closed subset of Bx. By the Banach-
Alaoglu and the Krein-Milman theorems, ext D(z) # @. We show that
ext D(xz) C ext Bx«. Let f € ext D(z). Assume f = (f1 + f2)/2 and
f1, f2 € Sx+. Hence,

[z]| = f(z) = (f1(z) + f2(2))/2.

Since ||f1]] = ||f2ll = 1, fi(z) = f2(x) = ||z||, which gives f1, f» € D(z).
Since f € ext D(z), f1 = f2, as required. |

Lemma 3.7. Let v € d(w,1) \ {0} be such that v = v* and
card (suppv) = co. Let

Dy ={keN:v(l)=v(k)} and n; =maxD;.
Fori > 2, let
D;={keN:v(n;_1+1)=v(k)} and n; 1 =maxD; ;.

Set
E(v) = {f € ext Bg«(w,1) : f(v) = [|v]Jw,1}-

Then f € E(v) if and only if f = wo o, where 0 : N — N
is a permutation such that for any k € D; and |l € D;11 we have
w(o(k)) > w(o(l)) and

Yo fk)= " wlo(k) =) wlk)

keD; keD; keD;

for any i € N.

Proof. Assume f € E(v). Since v = v* and card (supp (v)) = oo,
by Theorem 2.2, f = w o ¢ for some permutation ¢ : N — N. Now
we will check that w(o(k)) > w(o(l)) for every k € D; and I € D;44.
Assume, on the contrary, that there exist ¢ € N, k € D; and | € D; 41,
with w(o(k)) < w(o(l)). Define oy : N — N by o1(I) = o(k),
o1(k) = o(l) and o1(n) = o(n) for n ¢ {k,l}. Since v(k) > v(I)
and w(o(k)) < w(o(l)),

(oo}

[ollws =D v(w(o(i) = fv) <Y v(G)wloi()),

Jj=1 j=1
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which is a contradiction. Now, applying the induction argument, we

show that
> wlok) = w(k)
keD; kED;
for any ¢ € N.
Let Zy = @,

Z1={j eN:w(j) =w()},

m1 = max Z and for i > 2,
Zi ={j e N:w(j) = w(mi-1 + 1)},

where m;_1 = max Z;_1. Also define for u € N,

Ju_{jeN:ZjCODi}U{O}

i=1
and
Ju=max{j:je€J,}+1

If ny < myq, then o(D1) C Z1, since f(v) = ||v||w,1. Consequently, since
card (0(D1)) = ny,

Z w(i) = nw(l) = Z w(o(i)).
ieD; i€D;
Also,
o(Dy) = |J %; U(Z;, No(Dy)).
jEJ1
If m; < ny, then
D= |J z;u(2;, nDy).
jEJ1

Since f(v) = ||v||w,1, Z; C o(D1), for any j € J; and
O'(Dl) C U Zj UZ]'I.
JjE€J1

Hence,

o(Dy) = _U Z;U(Z;, Na(Dy)).
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Set for i € Ji, ¢; = cardZ; and di = card(Z;, N D;). Note that
di = card (Z;, No(D)). Consequently,

Yowlek) = Y wk) =Y culmy) +diwlmg,) = Y wk),

keD; keo(Dy) jen keD;

which ends the proof of the first step of the induction argument.

To continue the proof by the induction argument, assume that

(3.2) 3 wlo(k) = 3 wik)

keD; keD;
for i <u—1and

(3.3) UCQD,-) = U zvu (Zju_l m(uUlDi)).

jE€Ju_1 i=1
We will show that

(3.4) > wio(k) =Y w(k)

for : < u and

(3.5) U(QD,) = LJ Z; U (Z,-u m(iQDi)).
By (3.3)
oD)c |J 2

JZ2Ju—1

Since w(o(k)) > w(o(l)) for any i € N, and any k € D;, l € D;44,

O'(Du) C [j Zj.

J=Ju—1
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If J,_1 = J,, then

a<gpi> U zvu <Zju1 rw(

u—1

JE€EJu—1 i=
J€EJu i=1

If J,_1 # Jy, then J, = J, 1 U A,, where
Ay ={j 2 ju-1:7 € Ju}.
Since [|v]|lw,1 = f(v), by (3.3),
Zj C 0(Dy-1UD,),
for any j € A,. Consequently,

() =+( ) =o( U)o (U 702

j=1 i

which shows (3.5).

Now we prove (3.4). If J,_1 = Jy, then o(D,) C Z;, , and

D, C Zj;,_,. Hence,

Y w(k) = card (Do)w(my,_,) = (nu — nu-1)w(my,_,)

keD,

= > wk) =) wlok),
keo(D.) k€D,

which shows our claim. If J,, # Jy,_1, by (3.3) and (3.5),
(3.6) o(Dy,) = (¢(Du)NZ;, ,)U U Z;U(Z;,Na(Dy)).

J€Ju\(Ju—1U{ju-1})
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Also,

D, =(D,NZ;,_,)U U Z;U(Z;, N D).
jeJu\(Juflu{ju—l})

Since J, # Jy-1, Zj, , C U¥ D, and, by (3.5), Z;, , C o(U¥ 1 D;).

By (3.3), o
u—1 u—1
card (Zju1 ﬂa( U Dz>> = card <Zju1 N U Di>.
i=1 i=1
Consequently,
card (Z;, , No(Dy)) = card (Z;, , N Dy,)
and, by (3.6),

card (Z;, No(D,)) = card (Z;, N D,).

Let dy,—1 = card(Z;, , N D), ¢; = card Z; for j € J, \ (Ju—1U{ju-1})
and d, = card (Z;, N D,). Note that

Yowlk)= Y wk)=durw(m;,,)
kED, keo(Dy)
Y qulmy) dalmg,) = Y w(k),
i€T\(Ju1U{iu-1}) keDu
which shows (3.4) for ¢ = u. For ¢ < u — 1, (3.4) follows immediately
from (3.2).

In order to prove the converse, note that

[ollos = D wlne(n) = 3= vn) D w()
= Zv(ni) Z w(o(j)) = Zv(n)w(g(n))_

Thus, the proof is complete. a
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The next fact is an easy consequence of Lemma 3.7.

Lemma 3.8. Let v € d(w,1) be such that card (suppv) = co. Let
E(v) and D; = D;(v*) be such as in Lemma 3.7. Letting m : N —
suppv be a bijective mapping such that |v(mw(n))| = v*(n) for any
n € N, define for i € N,

Ui = W(Dl)

Then f € E(v) if and only if f € ext By=(y,1) and, for any i € N,

> w(g) =) signv(i)f().

JED; JjeU;

Proof. Let f € E(v). Note that

Zv*(j)w(j) = [[0* w1 = [[ollw, = f(v)

Jj=1

= Y fGwG) =Y signv(i)f()lv()|

= Zsignv(w(j))f(w(j))|v(7r(j))| = Zg(j)v*(j),

where g(j) = signv(w(j))f(w(j)) for j € N. Set g = (g(1),9(2),...).
Since f € E(v), by Theorem 2.2, f* = w. Since {|g(j)|}jen C

{IfG)tjen, 97() < f*(4) = w(j) for any j € N. By the above
calculations and the Hardy inequality,

0"l = 3" 900" () < 320" ()" G) < 3 £ @0 (@) = 0 -

Consequently, ||g|lw = |lg*|]lw =1 and
0=2 (w(j) ~g" ()" ()-

Jj=1
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Since v*(j) > 0 for any j € N, ¢*(j) = w(j) for any j € N. By
Theorem 2.2, g € ext Bg«(y1). Since ||v*||w1 = g(v*), g € E(v*). By
Lemma 3.7 applied to v* and g, for any ¢ € N,

Y w@) =Y gi) =Y signo(r(i)f(x(5) = D signv(5) (),

JED; JED; JED; JjeU;

which shows our claim. To prove the converse, assume that f €
ext By« (w,1) and for any i € N,

> w(i) =) signv(d)f(H)-

jED; JjeU;

Note that |v(j)| = v*(n;) for j € U;, where n; is a number defined in
the proof of Lemma 3.7. Thus,

=Y f<j>v<j>=2<2f(j>v<j>)

jEsupp v =1 *jel;
. i (ZU s (7))o
= iv*(ni) (J; signv(j)f(j)> = : v*(n;) (j;iw(j)>

v (G)w(d) = 10" |lw,1 = [v]lw,1-

<.
Il
-

Hence, f € E(v), as required. o

Lemma 3.9. Let V C d(w, 1) be a linear subspace. Set
Gy ={veV\{0}: there exists a unique f € Sy« : f(v) = ||v]|w,1}-
Assume v € Gy is such that card (suppv) = co. Let, for any k € N,
Cr={j e N:x(j) = z(k) for any x € V'}.

Let D; = D;(v*) and U; be such as in Lemma 3.8. If i € N is such
that w(k) > w(k + 1) for some k € D;, then U; = Ck.
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Proof. First assume that v = v*. In this case suppv = N, 7 = id
and U; = D;. Take k € D;, k+1 € D; with w(k) > w(k +1). We show
that Cy = D;. Indeed, inclusion Cy C D; is obvious by the definitions
of Cy and D;. In order to show the opposite inclusion, assume on the
contrary that there exists [ € D;\ Ck. Ifl > k+1, define for z € d(w, 1)

Z z(m
Z z(m )+ z(k)w(l) + z(H)w(k).

m£Lk+1

Note that hq(v) = ha(v) = ||v||w,1 and ||hi]jlw = 1 for ¢ = 1, 2. Slnce
l ¢ Cx and k € Cy, there exists a z € V such that z(k) # z(I).
have

hi(2) = ha(2) = 2(k)(w(k) —w(l) + 2(D)(w(l) — w(k))
= (w(k) — w(l))(2(k) — z(1))-
It follows that hq(z) # ha(z) since w(k) > w(k + 1) > w(l) and

z(k) # z(I). Thus, hy # he on V and so v ¢ Gy; a contradiction.
If | < k, consider g1, g2 € d*(w,1) = (d(w, 1))* defined by

= Z z(m)w(m)
pe)= Y z(mywm)+ewk+1)+ ek +uwl).
m#AlL,K+1

Note that g1(v) = g2(v) = ||v||w,1 and ||gi[lw = 1 for ¢ = 1,2. Since
I ¢ C), and by the above proof we have k + 1 € C, there exists y € V
such that y(I) # y(k + 1). By the following equality

91() = 92(y) = y()(w(l) —w(k + 1)) + y(k + 1)(w(k + 1) —w(l))
= (w(l) —wlk + 1)) (1) - y(k + 1)),
and in view of w(l) > w(k) > w(k + 1) and y(I) # y(k + 1), we have
that ¢1(y) # ¢2(y). Thus, v ¢ Gv; a contradiction. Thus, the sets

D; and C}, coincide. If v 7é v*, by similar reasoning we can show that
U, = Ck. [}
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Now we are able to state the main result of this section.

Theorem 3.10. Let V C d(w,1), V # {0} be a linear subspace. If
V is an existence set, then V is one-complemented.

Proof. Let

suppV = U supp v.
veV

First we assume that card (supp V') = oo. For any i € supp V, define

Cii={jeN,j#i:2()=z(j) for any z € V},
Ci2o={jeN,j#i:2(i) = —x(j) for any z € V},

and

C; = {l} @] C@l @] C@z.

Note that, for any 4,5 € suppV, C; = C; or C; N C; = @. Since
d(w,1) C ¢g, C; is a finite, nonempty set for any ¢ € supp V, set i; =
minsupp V, iz = min{supp V' \ C;, } and i,, = min{supp V' \ U?:_IICij}.
Note that suppV = U;?';ICij and C;; N C;, = & for j # k. Since, for
any permutation o : N — N and {e(n)} with e(n) = £1, the mapping
Tz = {e(n)z(o(n))} is a linear, surjective isometry of d(w,1), in view
of Lemma 3.4, we can assume without loss of generality that C;, » = &
for any j € N. For simplicity we shall further denote the sets {C;, }
by {C;}. Let X be the space considered in Lemma 3.5, generated by
the sets C; defined above. By Lemma 3.5, X is one-complemented in
d(w,1). By the construction of the sets C;, and Lemma 3.4, we can
assume that V' C X¢ for modified sets C;. Thus, in order to show that
V is one-complemented in d(w, 1), it is enough to demonstrate that V'
is one-complemented in Xc. We will apply Theorem 3.3. Let

Gv ={v eV \{0}: there exists a unique f € Sy~ : f(v) = ||vlw,1},
and
Gy,c ={v € V\{0} : there exists a unique f € S(x,)-: f(v) =|v|lw,1}

We shall show that Gv = Gv,c. Note that, by the Hahn-Banach
theorem, Gv,c C Gv. To prove the converse, assume that v € Gy. We
need to show that v is a smooth point in X¢.
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First assume that v = v*.

Note also that card (suppv) = oo. Indeed, if we assume that
suppv = {1,...,n}, then in view of card (suppV) = oo, there exist
j>nandy eV with y(j) # 0. Defining for z € d(w, 1),

and
f2(z) = fr(z) — 22(5)w(7),

we have fl(v) = f2(v) = ||’U||w’1 and |fl(x)‘ S ||x||w,1; i = 1727
by the Hardy inequality. Thus, ||fi|lv|| = ||f2|v] = 1. Since also
fi(y) # f2(y), so v ¢ Gv; a contradiction. Thus supp v is infinite.

Let
E(v,C) ={f € ext Bxc)~ : f(v) = [|[v]lw,1}-

By Lemma 3.6 applied to v and X¢, E(v,C) # &. We shall show that
card E(v,C) = 1. Recall that

E(v) = {f € ext Bgs(w,1) : f(v) = [|v]Jw,1}-
We have the following inclusion
E(v,C) C E(v)|xe = {hlxo : h € E(v)}.

Indeed, let g € Sy« be such that g(v) = ||v||w,1- Since v € Gy, g
is uniquely determined, g € ext By, and thus for any f € E(v,C),
flv = g. Hence,

E(v,C)={f € Bixc)- : flv =g}

and
E(v) = {h € Bg-(w,1) : hlv = g}

If f € E(v,C), then the set of all norm preserving extensions of f to
d(w, 1) is denoted by

G(f) = {h € Bd*(w,l) : h|Xc = f}
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Since G(f) is nonempty and weakly* compact, by the Krein-Milman
theorem, ext G(f) # @. It is clear that, for any h € ext G(f), hlx, = f
and h|y = g, which shows the required inclusion.

Now we claim that, for any h € E(v) and z € X¢,

In fact, by Lemma 3.7, h = w o o, where the permutation ¢ is such
that, for any ¢« € N,

JED; JED;

and D; are such as in Lemma 3.7. Therefore, it is enough to demon-
strate that, for any ¢ € N and any z € X¢,

D z(fw(i) = D 2(G)w(o(l)).

jeD; jeD;

Fix i € N. If D; C Z; for some j € J;y1, where Z; and J; have been
defined in the proof of Lemma 3.7, then for any k € D;,

w(k) = wlm;) = w(o(k))-
Hence,
2 2iw() = wimy) 3 a(i) = 3 @(@)w(e())-

If D;\ Z; # @ for any j € N, then w(k) > w(l) for some k,l € D;. By
Lemma 3.9, D; = C} for some k € N, and in view of Lemma 3.7 we

get
D a(wl) = Y 2()w) = x(ni) Y w(i)
jED; JECK jED;
= z(n;) Z w(o(i)) = Z z(j)w(o(4)),

which shows our claim. Thus, E(v)|x, consists of exactly one element
and consequently card E(v,C) = 1, since E(v,C) C E(v)|x., and
E(v, () is nonempty.
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If v # v*, then applying Lemma 3.8 instead of Lemma 3.7 we can
show in an analogous way that card E(v,C) = 1.

By Lemma 3.6, v is a smooth point in X and consequently v € Gy,¢.
Thus, Gy = Gy,c. Since V is an existence set in d(w,1) and
V C X¢ C d(w,1), V is an existence set in X¢o. Moreover, by
separability of d(w, 1) and by the Mazur theorem [12, Theorem 4.12],
that the collection of smooth points in a separable Banach space X
is dense in X, Gy is dense in V. Applying now Theorem 3.3 to V'
and X, there exists a norm-one projection P € P(X¢, V). In view of
Lemma 3.5 we can also find a norm-one projection @ € P(d(w, 1), X¢).
Hence, R = P o () is a norm-one projection from d(w,1) onto V. The
proof is complete in the case when supp V is infinite.

If supp V is a finite set, by Lemma 3.4, we can assume that supp V =
{1,...,n} for some n € N. In this case we can consider V as a
subspace of d"(w, 1). Since V is an existence set in d(w,1), V is also
an existence set in d"(w, 1). Reasoning as above we can show that V is
one-complemented in d™(w,1). Since the norm in d(w, 1) is monotone,
the mapping

Qz = (z(1),...2(n),0,...)

is a norm-one projection from d(w, 1) onto d"(w,1). Hence, V is one-
complemented in d(w, 1), as required. O
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