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MORSE THEORY WITHOUT CRITICAL POINTS 

WOLFGANG SMITH 

Let X denote an n-dimensional differentiate manifold and / : X —• 
R a real-valued differentiable function on X, where "differentiable" 
means (let us say) Cx. We shall be concerned with the case where / has 
no critical points, and thus, too, with the case where X is not compact. 
In place of critical points we will introduce a notion of "critical fibers", 
and in place of the index we shall assign to each isolated critical fiber 
a set of "type numbers" ra+ for p = 0 , 1 , . . . , n - 1. Roughly speaking, 
a critical fiber is one across which the fiber-structure of / suffers a 
discontinuity, and m+ is a homology measure of that discontinuity on 
dimension p. Given that / is bounded and has only a finite number of 
critical fibers, we let M+ denote the sum of the type numbers ra+ over 
all critical fibers. Our main result is that these coefficients satisfy the 
strong Morse inequalities: 

M 0
+ > Ä o 

M+ - M+ > Ri - Ro 
Mn-i - Af+_2 + • • -±M+ = Än_i - Rn-2 + • • -±Äo, 

where Rp denotes the p-dimensional Betti number of X (with respect 
to a given coefficient module G). We show, moreover, that for p < n - 1 
they constitute in fact a bona fide generalization of the classical Morse 
inequalities. For, if h : M —> R denotes a differentiable function 
on a compact manifold with non-degenerate critical points, and we 
let X denote the complement of the critical points in M, then our 
preceding inequalities for / = h\X reduce (as will be shown) to the 
Morse inequalities for h on dimensions p < n — 1. 

1. Basic lemmas. First some notation and terminology. The 
symbol HP(X, A) will denote the p-dimensional singular homology 
group of the topological pair (X, A) over some (fixed) coefficient group 
G. We will say that the pair (X, A) is regular if the inclusion A C X 
induces isomorphisms HP(A) « HP{X) for all p. We will need the 
following elementary fact regarding excisive couples [5]: 
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532 MORSE THEORY 

LEMMA l. Let {Xi,X2} be an excisive couple such that (X2,X\C\X2) 
is regular. Then (X\ U X2,X\) is regular as well. 

To show this, one observes that for an excisive couple {X\,X2} one 
has an inclusion-induced isomorphism (see p. [5, p. 188]) 

(1.1) H.{X2,XlnX2)&H.(XlìUX2ìX1). 

But since (X2,Xi D X2) is regular, it follows that H*(X2,Xi,DX2) is 
identically zero. This implies by (1.1) that H*(X\ DX2,Xi) is likewise 
zero, which again implies that the pair (X\ U X2, X\) is regular. D 

o 

Given a real-valued function f : X —> R, we will let Xb
a — f~l[a,b) 

a n d X ^ / ^ ^ ò ) . 

LEMMA 2. Let f : X —• R be a submersion (i.e., a differentiate 
function without critical points), and (a, b) a nonempty interval in R. 
Then (Xb, x?b ) is regular. 

This result depends vitally on a certain "tubular neighborhood prop­
erty" (see [4, pp. 219-220]) of submersions, which can be described as 
follows: given a compact subset C C X and a point t G f{X), there 
exists a closed neighborhood D of t in f(X), a compact subset F C ft 
(where ft denotes the fiber over t), a subspace N C X and a homeo-
morphism 0 : D x F —• TV, such that 

(i) / (0(s ,x)) = s for all (s,x) G D x F; 

(ii) 0(s,x) = x for all (s,x) e D x F; 

(iii) Cnf-1{D)CN. 

We will say that TV is a tubylar neighborhood over Z) which cuts 
through C. Now let ip : Hp(X

b
a) —> Hp(X

b) denote the inclusion-
induced homorphism. To prove that ip is injective, let 2 be a singular 

o 

p-cycle in Xb
a and c a singular (p + l)-chain in Xb such that z — dc. 

By the aforementioned tubular neighborhood property, there exists a 
tubular neighborhood N over D — [b — e,b] which cuts through \c\ (the 
support of c). Moreover, we may assume that f~l(D) does not meet 
\z\. Now let Y = Xb~£ H TV, and let n : Y -+ Xb~£ be the retraction 
defined by the tubular neighborhood structure of N. Then one has (in 
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the usual notation) 
; = II#(z) = MI#(c), 

which shows that z bounds in Xh
a^

E. 

To prove that ip is surjective, let 2 be a singular p-cycle in Xb
a and N 

a tubular neighborhood over D = [b - e, b] which cuts through \z\. Let 
Y = Xb

a-
£ U AT, and let II : Y — Xb~£ denote again the corresponding 

retraction. Then II#(z) is a cycle in X£~% and it remains to show that 
n # ( a ) is homologous to 2 in Y. But this follows from the fact that the 
tubular neighborhood structure on N enables us to define a (strong) 
deformation retraction H : Y x I -+ Y such that H(x, 1) = U(x) for 
all x e Y. o 

Our next result will involve the notion of "regular fibers", which we 
define as follows: a fiber fc is regular if there exists a positive e such 
that the pair (X£+6'fc) is regular for all S < e. Moreover, a point ce R 
will be called a regular value of / if fc is a regular fiber. 

LEMMA 3. Letf:X->Rbea submersion and (a, b) an interval such 
that every c G [a, b) is a regular value off. Then {Xb

a,fa) is regular. 

To prove this, we let S denote the set of all s G [a, b] such that 
(KJa) is regular for all t G [a, s]. Then S must be a subinterval of 
[a, 6] containing the point a. Let c denote the least upper bound of S. 
Then (XI, fa) is regular for all t G [a, c). But since singular chains have 

o 

compact support, this implies that (Xc
a, fa) is regular, too. By Lemma 

2 this implies that (X^fa) is regular, and hence that 5 = [a,c\. 

Now suppose that c < b. Since c is a regular value of / , there 
exists a positive e such that c + e < b and (X^6JC) is regular for all 
S < e. Let us choose a positive 6 < e. It now follows from the tubular 
neighborhood property of a submersion that {X^X^6} is an excisive 
couple (see [4, p. 222]). Moreover, {X^\X^ÔDX^} is regular, which 
implies by Lemma 1 that (XZ+6, Xc

a) is regular, too. But since (X£, fa) 
is regular, one concludes that {X^6Ja) is regular. Finally, since this 
holds for all 6 < e,c is the least upper bound of 5. Hence S = [a, 6], 
which implies, in particular, that (XbJa) is regular, o 

LEMMA 4. Letf:X-+Rbea submersion and (a, 6) an interval such 



534 MORSE THEORY 

that every c £ [a, b) is a regular value of f. Then (Xb
1X

a) is regular 
(where X1 = / _ 1 ( -oo , f ] ) . 

To prove this, we consider the excisive couple {Xa,Xb
a}. By Lemma 

3 we conclude that (Xb, Xb C\ Xa) is regular, which implies by Lemma 
1 that (Xb,Xa) is also regular, o 

LEMMA 5. Let f : X —> R be a submersion and (a, 6) an interval 
consisting only of regular values of f. For every t G (a, 6], let ip : 
Hp(fa) —> Hp{XXt

a) denote the inclusion-induced homomorphism. 
Then the rank of the kernel and cokernel of ip are independent oft. 

Given a < s < t < b, one has iv
v — j p o z*, where jp is the inclusion-

induced homomorphism HP(X^) —> Hp(X^). It will suffice to show 
that j p is an isomorphism. Now, since {*, Xl

s} is excisive and (X*,/ s} 
is regular by Lemma 3, the conclusion follows by Lemma 1. 

2. The Morse inequalities. A fiber fc will be called critical if it is 
not regular. It is critical, therefore, if, for every positive 5, there exists 
a positive 6 < e such that (X£+<5,/c) is not regular. If fc is critical, 
moreover, then c is called a critical value of / . 

We shall be concerned with submersions / : X —• R satisfying 
three conditions: firstly, / has only a finite number of critical points; 
secondly, the homology groups H*(Xb) are all finitely generated; and 
lastly, / is bounded. The first two conditions suffice to guarantee that 
all parameters entering into the Morse inequalities are finite, and the 
last is made for the sake of simplicity (it obviates the appearance of 
boundary terms). When all these conditions are satisfied we will say 
that / is of finite type. 

Let / : X —• R be of finite type and fc a critical fiber. For 
every 6 and integer p there is an inclusion-induced homomorphism 
ip : Hp(fc) —• Hp(Xç+ô), and Lemma 5 guarantees that the rank of the 
kernel and cokernel of ip is independent of 6 for 6 sufficiently small (to 
be precise, 6 must not exceed the distance from c to the next critical 
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value of / ) . We can therefore define parameters 

<£(c) = r(cokerip) 

e+(c) = r(kerip) 

where r indicates rank. We may think of d+ and e+ as the p-
dimensional "defect" and "excess", respectively, of the given critical 
fiber. The superscript +, which is superfluous, is there to remind us 
that we are injecting fc "to the right." 

One more remark is in order: the quantities d+ and e+ could have 
been defined for regular values of / in just the same way and would 
turn out to be zero. The vanishing of these parameters is in fact 
characteristic of regular values. 

We now define the "type numbers" m+(c) of critical fiber by the 
formula 

(2-2) m + = d + + e+_1, 

and we let 

(2-3) M+ = J2mt^-
C 

We can now state our main result: 

THEOREM A. Let X be an n-dimensional differentiable manifold and 
f '• X —» R a submersion of finite type. Then 

(2.4) M+ -M+>Ri-Rv 
Mn-l - M+_2 + • • • ± M+ = Rn-i - Rn-2 + " ' ' ± #0' 

where Rp denotes the p-dimensional Betti number of X. 

The proof hinges upon the following results. 

LEMMAS 6. If the interval (a, b) contains precisely one critical value 
c, then 

(2.5) m+(c) = rHp(X
b,Xa). 
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To prove this, we note in the first place that H*(Xc,Xa) is zero 
by Lemma 4. By the homology sequence of the triple (Xb,Xc,Xa) 
we conclude that H*{X\Xa) « H*(Xb,Xc). But since {Xe,Xb

c} is 
excisive, one has H*(Xb,Xc) « H*(Xb, fc). Hence it suffices to show 
that 

(2.6) r # p ( X c \ / c ) = < f + + e + _ 1 . 

To this end, we consider the following segment from the exact sequence 
of the pair {Xb,fc): 

HPUc)*Hp(XÌ)±Hp(Xlfc)±H^ 

Since all these groups have finite rank, one now obtains 

rHp(X
b
c, fc) = r(ker d) + r(im 9) 

= r(im j) + r(ker ip-\) 

= rHp(X
b
c)-r(kerj) + e;_l 

= rHp(X
b
c)-r(imip)+e;_l 

as was to be shown. G 

From this point on the proof of Theorem A is standard. We choose 
a partition ao < CL\ • • • < am such that / ( X ) C (ao,am), and each 
subinterval (ai_i,aj) contains exactly one critical value. (One might 
note at this point that / has at least one critical value, inasmuch as 
CÌQ(C) > 0 which c equals the greatest lower bound of / (#) in R) . 

We now consider the classical equations (first applied to Morse theory 
in [1]) 

rHp(X
a\Xa>-1) = rHp(X«) - rHp(X

a^) 

+ Sp{Xai-\Xai) + Sp.1(X
ai-\Xai), 

where Sq(A, B) denotes the rank of the kernel of the inclusion-induced 
homomorphism (H)q(A) —• Hq(B). Summing (2.7) over i and applying 
Lemma 6 gives 

m m 

(2.8) M+ = Rp + jrSP(Xa<-\X*) + YlSP-i{Xa*-\Xa>), 
1 = 1 t = l 
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and taking alternating sums of (2.8) gives 
(2.9) 

m 

MÏ-MÏ_1+...±M0 = Rp-Rp-i + ---±R« + J2Sr>(X'"-i<Xajî 
7 = 1 

for p = 0 ,1, . . . , n - 1. Now, for p < n - 1, (2.9) yields the inequalities 
in (2.4). To complete the proof of Theorem A, one must show that the 
quantities S n _ i ( X a ' - \ Xf l l) are zero. This will be done in the next 
section. 

3. Additional estimates. The following result will yield additional 
inequalities: 

LEMMA 7. If (a, 6) contains precisely one critical value c, then 

sP(x\xb)<e;(c). 
We note, in the first place, that since {Xe, X^} is excisive, one has 

inclusion-induced isomorphisms 

ap:Hp(X
h

cJc)*Hp(X\X'). 

Moreover, considering the homology sequence of the triple (X \ X(, X" ) 
and observing that H*{Xc,Xa) vanishes by Lemma 4, one sees that 
there is an inclusion-induced isomorphism 

ßp:Hp{X\X«)*Hp{X\X<). 

One thus obtains a commutative diagram 

HP+Ì{XÌ) - ^ -> Hp+x(X
brJ<) - ^ W ) - ^ W - ) 

0 <t>\ 

HP+1(X") - i - HP+1(X»,X") — HP(X") - ^ HP(X») 

where 9 is inclusion-induced,and 0 = (ßp+i)~l ° <VH- W e n o w d e f i n e 

a homomorphism ^ : ker(t„) -» ker(^) by setting tf'(i) = «' o <£(«/), 
where y € o _ 1 (x) . To show that ip is well-defined, we consider another 
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y' G d l{x). Then (y — y') belongs to the kernel of ö, which is the 
image of j . Now let z £ HP(X^) such that j(z) = y — y'. Then one has 

Ofocf>(y-y') = o'oj'o0(z) = 0, 

showing that 6' o (j)(y) = 6' o <j>(y'). Hence ip is well-defined. Moreover, 
since <t> is surjective and the kernel of i'p+l is the image of Ó', it follows 
that il), too, is surjective. Hence 

Sp(X
a,Xb) = r(keri;+ 1) < r(kerip+1) = e+ 

as was to be shown. D 

Getting back to (2.9), one now has 

in 

(3.1) £ s p ( X a - \ X » - ) < i ? P
+ , 

1=1 

where E+ = Ylc
ep(c)- ^n(^ t n^ s P r o v e s 

THEOREM B. Let X be an n-dimensional differentiable manifold and 
f : X —> R a submersion of finite type. Then 

(3.2) Mr ~ MP~l + " '±Mo+ <Rt-K-i + ---±Ro + K 
for p = 0, l , . . . , n — 1. 

Now let us observe that no compact fiber of / can be critical (this 
follows from the tubular neighborhood property). A critical fiber, 
therefore, is a noncompact manifold of dimension (n — 1). Its (n — 1) 
- dimensional homology is consequently zero, which implies that E^_x 

vanished. This observation, together with (3.2), completes the proof of 
Theorem A. o 

4. Comparison with the classical case. Let M denote a 
compact differentiable n-manifold and h : M —> R be a real-valued 
differentiable function with nondegenerate critical points. Let X denote 
the submanifold of M consisting of all regular points of /i, and let 
/ : X —> R denote the restriction of h. Now if Ms a regular value of /i, 
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the fiber / , will be compact, and therefore regular (this follows again 
by the tubular neighborhood property). It. follows that / has critical 
fibers only at the critical values of /?, and that / is a submersion of 
finite type. For the sake of simplicity, we shall assume that h has only 
one critical point corresponding to each critical value. 

THEOREM C. Let c be a critical value of h corresponding to a critical 
point of index A. Then 

mt(c) = {1 P = X 

(4.1) ^0 otherwise 
for p < n — l(where rriï is defined as in (2.2)). 

We will need the following elementary result. 

LEMMA 8. The inclusion Xf C Mf induces isomorphisms Hp(X
f) « 

Hp(M
f) for every regular value t of h and p < n — 1. 

To prove this, we enclose each critical point of h belonging to Mf 

in a small regularly-imbedded n-ball, and let W denote the union of 
these balls. Then {Xf,\V} is an excisive couple with X* U \V = M*. 
Moreover, the intersection Xf D W has the homology type of r disjoint 
(n — l)-spheres, where r is the number of critical points in M*. The 
desired conclusion follows easily from the Mayer-Vietoris sequence of 
the couple {X\W}. o 

Now to the proof of Theorem C: Let (a,b) denote an interval contain­
ing c as its only critical value, and consider the commutative diagram 

H„(X") -+ H„(X'>) — H„(X 

01 0 2 

HP(M") - , H„( 

03 

Mb) -> H„(M 

h,X") — Hp-i(X") -

"A 
KM«) - ff„-i(M") -

- // ;,-. (A"' 

- I 
- //„-i(A/* 
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where the homomorphisms 4>i are inclusion-induced, and each row 
belongs to the homology sequence of the corresponding pair. Lemma 
8 and the 5-lemma now imply that 03 is an isomorphism. This fact, 
together with Lemma 6, implies that 

m;(c) = rHp(M
b,Ma). 

The desired conclusion follows now from a well-known result of classical 
Morse theory (see p. 29 [2]). D 

We are now in a position to see that, for p < n — 1, our inequalities 

A/+ - Mp
+_! + • • -±A/0

+ >Rp- Rp-i + ' • -±Äo 

associated with the submersion / do in fact reduce to the classical 
Morse inequalities for h. For, by Theorem C, we conclude that M+ is 
just the number of critical points of h with index p, and by Lemma 7 
that Rp is indeed the p-dimensional Betti number of M when p < n — 1. 
D 

A few general remarks may be in order at this point. Classically, one 
defines the type of numbers of a critical point x by the formula 

mp = rHp(M
cJlc)J 

o 

where c = h(x) and Mc — /i_1(—oo,c). For the corresponding 
o 

submersion / = h\X, on the other hand, one finds that Hp(X
c,Xc) 

is zero for all p (as we learn from Lemma 2). Again, our "submersion 
approach" to Morse theory hinges upon the parameters dì & e +, which 
measure the extent to which the inclusion-induces homomorphism 
ip : Hp(fc) —> Hp(X<+£) deviates from an isomorphism. But is easy to 
see that the corresponding maps ip : Hp(hc) —• (M£+E) defined with 
respect to h are always isomorphisms (because M£+£) can be retracted 
onto the critical fiber hc along the "gradient lines"). Thus we find 
that the presence or absence of the critical point has a decisive effect 
on the homology structure of corresponding "tubular neighborhoods." 
The distinctive feature of our approach is to consider the structure of 
these tubular neighborhoods in the absence of critical points. 
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5. The Classification of critical points. Morse (see [3]) has 
distinguished two types of critical points, based on the fact that if 
h : M —> R has a single critical point of index À corresponding to 
the critical value c, then rHp(M

t) behaves in one of two ways as t 
increases from c — e to c + e: either it increases by 1 in dimension 
A, or else it decreases by 1 in dimension À — 1 (while in either case 
it remains unchanged in the other dimensions). Morse speaks thus of 
critical points of increasing and decreasing type. Now it is of interest to 
note that the submersion approach leads to a similar dichotomy in the 
classical case when the index A is less than n — 1. For if c is a critical 
value of h corresponding to a single critical point of index A < n — 1, 
then one concludes by Theorem C that 

which obviously can happen only in one of two ways (either d\ = 1 
and e~l_Y = 0, or the other way round). Thus, again, critical points are 
divided into two categories: type D and type E, let us say. It is a likely 
conjecture, moreover, that the two classifications coincide, and that, in 
fact, increasing type corresponds to type D and decreasing type of type 
E. But it happens that this conjecture is only half correct. 

It is easy to see that a critical point of type D (and index A < n - 1) 
is of increasing type. For in that case, e^_x is zero, which implies by 
Theorem C that e+ is zero for all p < n - 2. Thus, in particular, e^_l 

and e^_2 are both zero, which implies by Lemma 7 that Sp(X
r~\ Xr+£) 

vanishes likewise in these dimensions. Hence, by (2.7), one now obtains 

rHx^(Cc^,Xc'£) = rHX-i(Xv+E) - rHx(X
(~£). 

But, on the strength of Lemma 8, this implies that 

rHx^{Mc+£)>rHx^{Kr-e), 

which excludes the possibility that the critical point is of decreasing 
type. 

On the other hand, it is not true that a critical point of increasing type 
need be of type D. We will consider a simple example. Let T C R 3 

denote a torus of outer diameter 3 and inner diameter 1. We will 
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suppose that T is "standing on end" (like a tire rolling on the xy-plane). 
One sees now that the height function z : T —> R has four critical points 
Pi(i — 0,1,2,3) with critical values z(p?) = i. Let M — T x Sl (where 
S1 denotes the unit circle), and let h : M —> R be defined by the 
formula 

h(u,0) = z(u) + 2cos<9. 

This function has eight critical points, namely, (p?,0) and (pi,7r). The 
critical point (po>0), in particular, has index 1 and is easily seen to be 
of increasing type (this follows from the fact that Mc~£ is obviously 
connected, and Mc+e has the homotopy type of MC~E with a 1-cell 
attached). But one can also see that (po>0) is of type E. Now the 
fibers of the associated submersion / : X —> R, being 2-dimensional 
manifolds, are easy to describe. The critical fiber fc consists in fact of 
two punctured tori, whereas fc+£ is a double torus. The space X£+£ is 
therefore connected while fc is not, proving that e J = 1. The critical 
point is therefore of type E. 

On the strength of these observations we are now in a position to 
interpret the inequalities (3.2) in the classical case (where / = h\X). 
In the light of what has been said concerning the classification of critical 
points, we see that, for p < n — 2, the parameter E+ constitutes an 
upper bound for the number /i~+1 of critical points of index p + 1 and 
decreasing type. Thus (3.2) accords with the classical formula (see [3, 
p. 560]). 

Mp - A/p_i + • • •+Mo = RP- RP-i + • • -±o + /Vf J, 

where Mq denotes the total number of critical points of index q, and 
Rq denotes the ç-dimensional Betti number of M. 
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