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IDEALS DIFFERENTIAL
UNDER HIGH ORDER DERIVATIONS

ROLAND M. BOMMER

ABSTRACT. In this paper we prove the following theorem:
Let A be an R-algebra., S a multiplicatively closed set in
A, U a subset of Der 7 (A) and I an ideal of A. If I is U-
differential, then S(I) is U-differential as well. This implies
that the nonembedded primary components of a differential
ideal are differential. Nevertheless we give an example of
an U-differential ideal which has no U-differential embedded
primary component.

0. Introduction. Let A be a commutative noetherian ring, U a
subset of all derivations of any order n from A into A and I an Y-
differential ideal in A (i.e., d(I) C I for all d € U). In this note
we are concerned with the question of whether other ideals related
to I, especially its primary components, are U-differential. In his
paper [6, Theorem 1] A. Seidenberg proved that if A is a noetherian
algebra containing the rational numbers and I an ideal differential
under a subset U_of all derivations on A of order n = 1, then every
P € Ass(A/I) is differential and I can be written as an irredundant
intersection @; N --- N Qs of U-differential primary ideals. Simple
examples show that the elements of Ass(A/I) are not differential in
general if n > 1 or even if n > 1 and Q C A. In this note we show that
the nonembedded primary components of an U-differential ideal I are
always U-differential but no embedded primary has to be U-differential
in general. To do so, we shall prove the following theorem: Let A be
a commutative ring, S any multiplicatively closed set in A and U a
subset of all derivations of any order n from A into A. If an ideal I of
A is U-differential, then its S-component S(I) is U-differential as well.
Furthermore we give an example for an U-differential ideal I where
no embedded primary component is U-differential (i.e., I cannot be
written as an intersection of I-differential primary ideals).
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1. Preliminaries. Throughout this paper we assume all rings are
commutative and have an identity.

For a ring R and an R-algebra A and an A-module M we define a
pairing ¢ : Hom (A, M) x A — Hom g(A, M) by

(fir) = [fr]: A=M
y— fley) —2f(y) — yf(x).

DEFINITION. An element ¢ of Hom g(A, M) is called an R-derivation
of order 1, if [6,2] = 0 for all z € A and a derivation of order n > 1, if
[6,z] is a derivation of order n — 1 for all z € A.

For more information on high order derivations we refer the interested
reader to [5] and [1].

We shall let Der;(A) be the A-module of all R-linear derivations of
order n from A into A, and Der ¥ (A) = U;ZDer %, (A).

n=1

DEFINITION. If I is a subset of Der % (A) and I an ideal of A, then
we shall say that I is U-differential, if 6(I) C I for all 6 € Y.

REMARK. If an ideal I is é-differential, then I is also [, z]-differential
for any z € A, since [6, z|(y) = 6(zy) — yd(x) —zd(y) € [ for all y € I.
Therefore if I is U-differential we always can replace the subset U by
the submodule generated by U and all [d, z] with d € U and z € A.

DEFINITION. If S is a multiplicatively closed set in A and I an ideal,
then the ideal S(I) = {x € A| there exists an s € S such that sz € I'}
is called the S-component of I.

2. S-components of differential ideals.

THEOREM. Let A be an R-algebra, S a multiplicatively closed set in
A, U a subset in Der(A) and I an ideal in A. If I is U-differential,
then S(I) is U-differential.

PROOF. Let y € S(I) and 6 € U. We have to show é(y) € S(I).
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We prove this by induction on the order of §: 6 = 1: é(sy) =
s6(y) + yb(s) € I. hence s%6(y) € I and so 6(y) € S(I). 6 =n+1:
6(sy) = sb(y) + yd(s) + [8,s](y) € I. By the induction assumption we
know [8, s](y) € S(I), therefore there exists an element ¢ of S such that
t[6,s](y) € I, hence ts?6(y) € I and we obtain again é(y) € S(I). o

COROLLARY 1. (W.C. Brown [3]). Let D be a higher derivation
on A, I a D-ideal of A, and y an arbitrary element of A. then
J =Uo(I :y") is a D-ideal of A.

PROOF. Consider S = {y"|n € Ny}, then S(I) =J. 0O

COROLLARY 2. If S is a multiplicatively closed set in A. then
ker (¢ : A — Ag) is always Der % (A)-differential.

PROOF. Ker (¢ : A — A,) = S(0).

COROLLARY 3. Let A be a ring. P a prime ideal. and I an ideal
such that P 31, PN I =0. Then P is a Der j (A)-differential. (For
derivations of order 1, see H. Matsumura [4].)

PROOF. Let r € I,z € P. S = {z"|n € Ny}, then P = S(0). 0

3. Primary components of differential ideals.

PROPOSITION. Let A be an R-algebra and U a subset of Der j,(A).
If I is an U-differential ideal in A and Q a nonembedded primary
component, then Q is U-differential.

PROOF. Let P = rad(Q) and S = A\P. Then we have Q = S([)
because P is nonembedded. O

COROLLARY 1. (W.C. Brown [2]). If I is a U-differential radical
ideal and P an element of Ass (A/I), then P is U-differential.
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COUNTEREXAMPLE FOR THE EMBEDDED PRIMARY COMPONENTS.
We construct a é-differential ideal I such that no embedded primary
component @ of I is é-differential.

Let k be a field of characteristic 0 and A = k[X,Y] the polynomial
ring in X and Y over k. We define a k-derivation é of order 2 from
Ainto A by §(XY) = XY, §(X?) = X2, §(Y?) =2Y, 6(X) = X,
8(Y) = 1. Let I be the ideal in A defined by I = (X2, XY). Possible
primary decompositions of I are I = (X)N (X,Y)",n > 2. The ideal
I has the following two properties:

1. I is é-differential (respectively I is U-differential where U is
submodule of Der (A) generated by {4, [6, z]|x € A}).

2. No embedded primary component is 6-differential.

PROOF. 1. Since [ is generated as a k-module by elements of
the form X"Y" ,n € N,m € Ny and n + m > 2, we have to
show 6(XY™) € I for all n € N,m € Nj. (Note that it is not
enough to show §(X?) and 6(XY) are in I for derivations of order
n > 1.) We make induction on n +m. n+m = 2,3 : §(X?),6(XY),
8(XY?) = X6(Y?) +2Y8(XY) —2XY6(Y) — Y26(X) and 6(X?Y) =
Y6(X?) 4+ 2X6(XY) — 2XY6(X) — X25(Y) are elements of I by
definition of 6.

Now we assume §(X"Y™) € I for n + m = s > 3. We have to prove
o(X"Y™)elforn+m=s+12>4.

Casel. n=1,2, (i.e, m > 2)

S(XmY™) =6(XX" Y™ ly)
= X6(X"ly™) + X"y IS(XY) + YE(XTY™ )
— X"Y™5(Y) = XPTlY™E(X) — XY §(XnTy™mT
Case 2. n > 2.
5(X"Ym) — 6(X2 . Xn—‘Zym)
= X25(X"T2Y™) + X (XY + Y (X
—X"5(Y™) - XZY™ME(X" ) — X" T2y™me(X?)
In either case using the induction assumption and the power rule for

derivation of order 2 (Y. Nakai [5]), we find that each monomial on the
right hand side is in I, therefore 6(X"Y™) € I.
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2. Let Q be an embedded component of I. then @ 2 m" = (X.Y)"
for a suitable n € N. Therefore Y" € Q for an n € N. Let m be the
smallest number with Y™ € N, then

1 ifm=1
(2)Y™=26(Y2) — m(m — 2)Y"~18(Y)

— (1;))/"1—2 .2Y — m(m _ Q)Y"t—-l

=m-Yym-! ifm>1

6(Y"l) =

hence §(Y™) € Q. This shows Q is not é-differential.

REMARK. Since é6(I) C I, ¢ induces a second order derivation 6 on
A/I. The ideal (0) is of course Der } (A)-differential for all n € N (resp.
Der < (A)-differential) but no embedded primary component of (0) is
Der } (A)-differential for n > 2 (resp. Der < (A)-differential).
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