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LOCAL ALGEBRAIC INVARIANTS OF A-SETS 

L. S. HUSCH 1 

In this note we define homology and homotopy groups at a vertex 
of a A-set. The theory is developed parallel to S. T. Hu's theory 
[1] of homology and homotopy groups at a point of a topological 
space. If one considers the space S of continuous functions of one 
differentiable manifold into another, it is well known that S is a dif-
ferentiable manifold (usually modelled on some infinite dimensional 
linear space). When one attempts to put a piecewise linear structure 
on some piecewise linear function space, the attempt fails since the 
induced topology is wrong. Sacrificing the geometry, one considers 
these spaces as A-sets and the homotopy structure remains. The 
natural question arises to what extent can these A-sets be thought of 
as manifolds. The answer obtained in this paper for A-sets which 
naturally arise in piecewise linear topology is that the local homotopy 
and homology theory in the sense of Hu is similar. 

In the last five sections, we calculate local invariants of some well-
known A-sets. 

1. A-sets. We recall some definitions and results from the A-set 
theory of C. P. Rourke and B. J. Sanderson [5] (or equivalently, the 
quasisimplicial theory of C. Mori et [4]). Note that, except in §8, we 
could have used semisimplicial sets; however the A-sets are easier 
to handle. 

Let An denote the standard n-simplex with ordered vertices 
t>o, Vi, ' • *, vn. The ith face map d{ : An_1—» An is the order-pre­
serving simplicial embedding which omits V{. A is the category whose 
objects are An, n = 0, 1, • • -, and whose morphisms are generated 
by the face maps. A A -set (A-group) is a contravariant functor from 
A to the category of sets (groups). A A-map between A-sets is a 
natural transformation between the functors. 

If X is a A-set, Xn = X(An) is the set of n-simplexes and the maps 
di = X(di) are called face maps. A 0-simplex will also be called a 
vertex. We shall be interested in pointed A-sets (X, * ) in which we 
distinguish a simplex * n £ X " for each n and designate * C X, the 
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base point ofX, as the A-subset of X consisting of these Simplexes and 
whose face maps are defined by di * n = * n~l. 

With each ordered simplicial complex K, we associate a A-set, also 
designated by K, whose n-simplexes are order-preserving simplicial 
embeddings of An into K. 

Let An,i = CI (bdry An - ^ A " " 1 ) . A A-set X is called a Kan 
A-set if every A-map / :A„i —>X can be extended to a A-map 

If X is a Kan A-set and F is a polyhedron, a map f\P-*X is a 
A-map f : K-+ X where K is an ordered triangulation of P. f0, f\ : F 
—» X are homotopic if there is a map F : P X [0,1] —* X such that 
F | F X {i} = fi, i = 0, 1. [F, X] denotes the set of homotopic classes. 
We need the following proposition which was proved by Rourke and 
Sanderson [5]. 

PROPOSITION 1. Any homotopy class in [F; X] is represented by a 
A-mapf : K-» X where K is any ordered triangulation of P. 

If (X, * ) is a pointed Kan A-set, then the nth homotopy group of 
X, 7Tn(X, * ) = [In, bdry In; X, * ] , the homotopy classes of A-maps of 
pairs, where In is the PL-n-cell. 

If X is a A-set, let Cn(X) be the free Abelian group generated by the 
elements of Xn. Define d : Cn(X)-> C„_i(X) by d = ^t

n
=0 (-1)%. 

Now one can proceed to define in the usual way the homology groups 
of X, Hn(X), and the reduced homology groups Hn(X). 

A A-map n : E -» B is called a Kan fibration if for all i, n, given a 
A-map / : An,t—* E and an extension fi : An—» B of 7rf, then there is 
an extension/' o f / such tha t / i = irf. 

PROPOSITION 2. A Kan fibration of Kan A-sets has the homotopy 
lifting property for maps ofpolyhedra. 

2. Local homology and homotopy groups. If X is a topological 
space and x G X, Hu defined the local homotopy and homology at 
x by considering the space of all paths / : [0,1] —» X such that 
f~1(x) = 0. We propose to define an analogous set; however, there 
is a difficulty in getting a condition which corresponds to / _ 1 (x ) = 0 
for arbitrary A-sets. We shall adopt a formal device which will 
naturally arise in the A-sets we shall consider later. 

Let X be a A-set and let x be a vertex of X. For each polyhedron F, 
suppose that there is defined an equivalence relation a (~a(P)) o n *he 

collection of maps from F to X. Let Xa(X, x) be the A-set in which an 
n-simplex is a A-map/: An+1—» X such that 

LI. f~l(x) = v0; 
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L2. If we consider / a s a map from the polyhedron underlying 
A n + 1 to X and / ~ « g , then g_1(x) = v0. dtf is defined to be 
f\ di+i An, i = 0, 1, • • -, n. X is Kan at x if Xa(X, x) is a Kan A-set. 

The (reduced) local homology groups of X at x are defined by 
Ln«(X? x) = HnU«(X, x)) (Ln«(X, x) = Hn(X°(X, x))). If X is Kan at x, 
the foca/ homotopy groups of X at x are defined by Ana(X, x; * ) = 
7Tn(^«(X,x),*). 

If Y is a A-subset of X which contains x, then we can define 
Xa(Y, x). Note that £a(Y, x) is a A-subset of Xa(X, x) and hence we can 
define the local relative homology and homotopy groups of X mod Y 
at x in the usual way. Since these groups are, in fact, homology and 
homotopy groups of a A-set, many results in homology and homotopy 
theory can be restated in terms of the local groups. In particular, 
we have the following theorem which follows from [5, Theorem 8.1] 
and [3, Theorem 13.6]. 

THEOREM 1 (HUREWICZ). If X is a A-set which is Kan at x and if 
kka(X, x; * ) is trivial for k^ n, n = 1, then Lka(X, x) is trivial for 
k^ n and An+i(X, x;*) is isomorphic to L£+i(X, x). 

It should be noted that two different equivalence relations can give 
rise to different groups. For example, if ß is the trivial equivalence 
relation fo ~~ßf\ if and only iffo = fÌ9 then the groups corresponding to 
ß in Theorem 6 are all trivial. 

3. Admissible maps. Let X and Y be A-sets with vertices x and y, 
respectively, and with equivalence relations a and ß, respectively. 
A A-map/ : X—> Y is admissible if 

( i ) / - 1 (y ) = x, 
(ii) g ~ah implies f g ~ßfh, 
(iii) if g : An—» X is a A-map and if g ~ ah, then /i_1(x) = 

(/g)_1(j/). Iff: X—» Y is an admissible map, then / naturally induces 
a A-map f£ : Xa(X, x)-> Xß(Y, y) defined by jT (g) = gf. Hence we 
have induced maps 

/ L : M X , x ) ^ L / ( Y , t / ) , 

fL:Ln<iX,x)^Lne(Y,yl 

fk:kn«(X,x;*)^Kß(Y,y;fJ*))-

PROPOSITION 3. If f is an A-automorphism of X such that g ~ Ji 
implies fg ~ afh and if X is Kan at x, then X is Kan at f(x), 
f is an admissible map, and the induced maps f^, fi, fx are iso­
morphisms. 
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4. Local invariants of spaces of PL-automorphisms. We shall 
assume familiarity with either [2] or [6]. Let M be a PL (= piece-
wise linear) manifold and let Aut M be the A-group in which an 
n-simplex is a PL automorphism f:MX A " - > M X An which is 
level-preserving (i.e.,/commutes with the projection along the second 
factor). If F is a polyhedron, Ki and K2 are ordered triangulations of 
F and fi : Ki—> Aut M are A-maps, then the fis are PL-automorphisms 
of M X F which are level-preserving. We define fi ~ af2 if and only 
if fx(x) = f2(x) for all xGMXP. Define d f / = / | M X ^ A»"1. 
If F is a subpolyhedron of M, then Aut (M mod F) is a A-subgroup 
consisting of the n-simplexes / of Aut M such that / | F X An is the 
identity map. 

THEOREM 2. Let M be a PL-manifold. 
(a) Ln

a(Aut M,/) = Xn
a(Aut M,f * ) = 0 for all vertices / E Aut M 

and n ̂  0. 
(b) M A u t (M mod F), / ) = \n

a(Aut (M mod F), / * ) = 0 for all 
vertices fE. Aut (MmodP), n ^ 0 when F is a compact subpoly­
hedron of M of codimension at least three. 

(c) Ln«(Aut (M mod bdry M),/) = Xn«(Aut (M mod bdry M),/; *) = 0 
for all vertices fŒ. Aut (M mod bdry M) and n = 0. 

We shall prove Xn
a(Aut (Mmod F), / ;* ) = 0; the proofs that the 

other local homotopy groups are trivial are similar. The proof of the 
theorem is then completed by referring to the Hurewicz Theorem. 

Let mi, m2, * * *, mr be r distinct interior points of M — F where 
rm ^ 2n + 5. Let E be the set of embeddings of {m^ m2, * * *, mr} 
into the interior of M — F with the compact-open topology. E is 
homeomorphic with an open subset of the product of r copies of M 
and hence is an rm-dimensional PL-manifold where m = dimension 
M. 

Let E0 be the A-set consisting of n-simplexes / where / : 
{mb m2, * • *, mr} X An-» int (M — F) X An is a level-preserving 
PL-embedding and dif=f\diA

n~l. Let K be an ordered sim-
plicial complex and l e t / : K—» E be a piecewise linear map. / induces 
a level-preserving PL-map / : {miy m2, * * *, mr} X K—» int (M — F) 
X K Note that / ' induces a A-map &J) : K-> E0. The following 
proposition is easy to prove. 

PROPOSITION 4. i is a bisection between piecewise linear maps of 
K into E and A-maps of K into E0 and induces a bisection between 
the homotopy classes of such maps. 

Define a A-map p : Aut (Mmod F)—> E0 by restriction; — i.e., if 
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/ is an n-simplex, then p(f) = f\ {mb ra2, * • •, mr] X An. From 
[4, p. 379], we have the following. 

PROPOSITION5. pis a KanfibrationofKan à-sets. 

PROPOSITION 6. Let M and P be as in Theorem 2. Aut (M mod P) 
is Kan at each vertex of Aut (M mod P). 

PROOF. Let / be a vertex of Aut (M mod P) and let g:An>i —> 
Xa (Aut (M mod P), f) be a A-map. Hence g is a A-map A—» 
Aut (M mod P) where A is the join of v0 and doAn,» m A n + 1 and such 
that g satisfies LI and L2. Therefore, g induces a level-preserving 
PL-automorphism of M X A which we shall also call g such that 
g | P X A is the identity and such that gx = / if and only if x = v0 

where gx is the PL-automorphism of M defined by g(ra, x) = (gx(wi), x), 
(m, x) G M X A. We wish to extend g to a level-preserving PL-
automorphism of M X A n + 1 with similar properties. 

Consider the PL-map g ' = £~l p(g) ;A—» £. Since rm ^ 2n + 5, 
by general position, there exists a PL-homotopy fc' : A X l-^> E such 
that ko' = g', kt' is a PL-homeomorphism for £ > 0, and image 
kt' H image ks' = 0 for t ^ s. By Proposition 4, we have a A-map 
f(fc'):AX Z—» £ 0 such that we have the following commutative 
diagram. 

A g > Aut (M mod P) 

Id X 0 L 

Hence by Propositions 2 and 5, there is a A-homotopy G: A X J—> 
Aut (M mod P) such that Go = g and pG = f(fc'). Let h:(AX I, 
A X {0})—» ( An+1,A) be a PL-homeomorphism of pairs such that 
h(y, 0) = y for each j / £ A . 

fc = (id X h) G (id X h~l) is the desired PL-automorphism of 
M X An+1. For it (x, q)GMXA, k{x, q) = (id X h)G(x, q, 0) = 
(id X h)(Go(x, q\ 0) = (id X h){g(x, q), 0) = g(x, 9). Suppose fc, = / 
for some x E An+1 . Therefore k(miy x) = (f(mi), x) and G(m,i,q,t) 
= (f(mi), qy t), i = 1, 2, • • *, r, where /i(g, £) = x. Hence pf = 
pGiq>t) = è{k(qtt)) and £~lpf= k(qyt). Since image kt' fi image fc0' = 
0 unless £ = 0, we must have t = 0 and hence x = Vo. k induces 
the desired A-map A n -* ^a(Aut (M mod P),/). 

Define a base point * for ^ a ( Aut ( M mod P),/) by letting * ° : A 1 -» 
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Aut(MmodP) be any vertex of Xa(Aut (M mod P\ f) (the proof of 
the existence of * ° follows from the fact that / represents an interior 
point of the PL-manifold £ defined above). * *, for i = 1, is defined 
inductively by using the Kan condition. 

PROOF OF THEOREM 2. Let g be a level-preserving PL-automorphism 
of M X A n + 1 which represents an element of \n

a(Aut (M mod P) , / ; * ). 
Hence g | M X An+i,0= * n + 1 | M X An+i.o- To show that g is trivial, 
it suffices to find a level-preserving PL-automorphism k of 
M X ( A n + 1 X [0,1] ) such that 

(i) fc(m, x, t) = ( * n+l(m, x), t) for x G An+i,o, m G M, * G [0,1] ; 
(ii) k(m, x, 0) = (g(ra, x), 0) for m G M, JC G A"+1; 
(iii) k I P X ( A"+1 X [0,1] ) = identity; 
(iv) k(x>t) = fc(üo>o) only if (x, t) = (v0, 0). 
Using the fact that the pair (A"+ 1 X [0,1] , A"+1 X {0,1} U An+i,o 

XI) is PL-homeomorphic to (A"+1 X [0,1] , A n + 1 X {0}), k can be 
constructed as the k of Proposition 6 was constructed. 

5. Local invariants of spaces of PL-embeddings. Let M be a PL-
manifold and let P be a compact subpolyhedron of M. Let PL(P, M) 
be the A-set in which an n-simplex is a level-preserving PL-
embedding of P X An into M X An. If Q is a polyhedron, KY and 
K2 are ordered triangulations of Ç a n d ^ : K*—» PL(P, M) are A-maps, 
then them's are PL-embeddings of P X Q into M X Q which are level-
preserving. Wedefine/i—^ifandonlyiff^x) = f2(x) for all x G P X Q. 

THEOREM 3. Let M be a PL-manifold and let P be a compact sub-
polyhedron of codimension at least three and dimension = 1 con­
tained in the interior of M. Ln

a(PL(P, int M),f) = kn
a(PL(P, int M\f; *) 

= 0 for all vertices / G PL(P, int M) and n ^ 0 . (An analogous 
theorem can be proved when P D bdry M ^ 0 ; but in this case, one 
must work with PL-embeddings of pairs.) 

PROPOSITION 7. Let M and P be as in Theorem 3; then PL(P, int M) 
is Kan at each of its vertices. 

PROOF. Let / be a vertex of PL(P, int M) and let g:An,i—> 
-Z!a(PL(P, int M)f) be a A-map; then g is a A-map A-> 
PL(P int M) and induces a level-preserving PL-embedding / : P X A—> 
M X A. By [2, Remark 2, p. 154], there is a level-preserving PL-
automorphism g' of M X A such that g'„ = identity and g'(f X id) 
= g. Proceed as in Proposition 6 except that one should choose 
{rab ra2, * * %mr}from/(P). 

6. Local invariants of PLm and PL m n . Let Rm be Euclidean m-space 
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with its usual PL-structure and let 0 be the origin. Let 
Aut(RmmodN(0)) be the A-subgroup of Aut (Rmmod {0}) con­
sisting of the n-simplexes / such that there exists a neighborhood U 
of 0 such that f\ UX An is the identity. The A-quotient group 
Aut (Rm mod {0})/Aut(RmmodN(0)) is PLm, the A-group of germs 
of PL-automorphisms of Rm. Let a be the equivalence relation in­
duced from the equivalence relation defined on Aut (Rmmod {0}) 
in §4. 

THEOREM 4. Ln
a(PLm,f) = K^P^f * ) = 0 for all n ^ 0 and ver­

tices / £ PLm. 

The proof of Theorem 4 is analogous to the proof of Theorem 2, but 
in the place of the manifold £ which we used to distinguish maps, we 
must use a different space. Let U\, u^ ' ' ', ur be r distinct points in 
Rm - {0} ( r è 3) such that the cone K, = 0{ui, u2, • ' ', ur} is non-
singular. Let PL(Kr, Rm mod {0}) be the A-subset of PL(Kr, Rm) con­
sisting of the n-simplexes f such t h a t / | {0} X An is the identity. Let 
Aut (Kr mod N(0)) be the A-subgroup of Aut K, consisting of the n-
simplexes/such t h a t / | U X An is the identity for some neighborhood 
U of 0 in Kr. 

L e t / a n d g be n-simplexes of PL(Kr, Rmmod {0});/— g if and only 
if there exists a neighborhood U of {0} such that f\UX An = 
g | U X An. Clearly — is an equivalence relation; let G be the result­
ing A-set of equivalence classes. Let A be the A-quotient group 
Aut KrlAut (Kr mod N(0)) and note that A acts on G in the following 
way. Let [g] G A and [/] G G be n-simplexes and define [g] [f] = 
[gf] where gf is the composition of the two functions. Let £(r, m) 
be the A-set which is the orbit space of this action. 

Let h be an n-simplex in Aut (Rm mod {0}) and let h ' = h \ Kr X An. 
Definep: Aut (Rmmod {0})-> £(r,m) byp(h) = [ [& ' ] ] . 

PROPOSITION 8. pis a Kanfibration of Kan A-sets, 

PROOF. Let / : An,i-> Aut (Rmmod {0}) be a A-map and let 
fi : A n -» £(r, m) be a A-map which is an extension of pf Let g be an 
n-simplex of PL(K,, Rmmod {0}) such that [[g]] = / i (A n ) . By 
[2, Remark 2, p. 154], there is a level-preserving PL-automorphism 
G of Rm X An such that G(gVo X id) = g. Hence G is an n-simplex 
of Aut (Rm mod {0}). Let G°: An>i - • Aut (Rmmodgüo(K r)) be the 
A-map induced from ' G = G~lf: Rm X An,i-> Rm X An)i. 

Aut(Rmmodgüo(K r)) is a Kan A-set, hence G can be extended to 
Gi : An—» Aut (Rm mod gÜ0(Kf)). G Gì is the desired extension. 

Let a EL Sr, the symmetric group on {1, 2, • • -, r}, and define an 
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action on PL({«i, s2, — ; sr}, S™"1) by cr(f) (siy x) = / (^ ( i ) , x) 
where / is an n-simplex of PL({Ä!, S2, • • -, sr], Sw_1), x G An, and 
S\, s2, ' ' ', sr are r distinct points in Sm_1. Let ^0(r, m — 1) be the 
resulting A-orbit space. 

Let <p : Am—» Rm be a PL-embedding such that <p(Am) is the cone 
over <p(bdry Aw) = <p(Sm~l) with vertex 0. Let [g] be an n-simplex 
of ^o(f> m — 1) and let /(g) be a level-preserving PL-embedding of 
Kr X An into R™ X An defined by 

f(g)(ui, x) = ((fgxSi, x), i = 1, 2, • • -, r; x G An, 

/ïg)(o,*) = (o,*), * e A», 
and extend linearly. Define X : ^ 0 (n m — 1)—» ^(r, m) by X([g] ) = 

[[ / (g)]]-

PROPOSITION 9. kisa ^-isomorphism. 

PROOF. X is a well-defined A-map since one can easily find 
[h] ŒA such that [h] [/(g)] = [/(a(g))]. We shall construct s 
A-map n : £(r, m) —> ^o(f> m — 1) such that /wA and X/ß are the iden­

tities on the respective A-sets. Let [ [f\] be an n-simplex in £(r, m) 
and let K and L be triangulations of Kr X An and Rm X An such 
t h a t / : K—» L is simplicial. Let N be a convex regular neighborhood 
of {0} X Ar which is contained in the first derived neighborhood 
of {0} X Ar in L and let u*(x) = fx(Oui) fi bdry N, x G An, i = 1, 
2, • •• , r. Let <pi(x)=<p-1(Owi(x)n<p(S™-*)) and M([ [ / ]]) = 
[ !/(/>] where y(/)(*, x) = {y{(x\ x). 

If / - g , then / | / - W = g | / - W and y(f) = y(g). Let 
fo G Aut Kr; from the construction above it should be clear that 
image j/(/) = image y(hf) and hence [*/(/)] = [y(hf)] Therefore 
/A is a well-defined A-map. It is easy to see that /LLX and X/u, are iden­
tities. 

Let E be the set of embeddings of {s\, s2, ' ' *, sr} into Sm _ 1 with 
the compact-open topology; the symmetric group acts naturally on 
E and let ^(r, ra — 1) be the resulting orbit space. It is well known 
that ^(r, m — 1) is an open PL-manifold of dimension r(m — 1). 

As in §4, we can define a map ß from the set of piecewise linear 
maps of a simplicial complex K into ^?(r, m — 1) and the set of A-maps 
from the A-set K into &o(r, m — I). 

PROPOSITION 10. ß is a bijection and induces a bijection between the 
homotopy classes of the respective maps. 

PROPOSITION 11. PLm is Kan at each of its vertices. 

PROOF. Let G:A —» PLn be a A-map satisfying LI and L2 which 
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represents a A-map An,t—> -/""(PL™, [f\ ). G can be represented by a 
level-preserving PL-automorphism g of Rm X A such that gx = / 
if and only if JC = i>0. 

Let r be chosen such that rm ^ 2n + 7 and let g ' = g | K, X A. 
g ' induces a A-map y(g') : A—» PL({s1? s2, ' * % $•}> Sm-1) (see defini­
tion of /it above) and a A-map [j/(g')] : A—> %(r, ra — 1). Consider 
the PL-map ß~1[y(g')] : A—» ^(r, m — 1). By general position, there 
exists a simplicial homotopy fc' : A X / - » ^?(r, m — 1) such that 
fc0' = ß - 1 [ t / ( g ' ) ] , kt

f is a homeomorphism if £ ^ 0, and image A:/ 
H image ks ' = 0 for t ^ s. 

Consider \ß(k'):A X / - • £(r, m) and note that Xß(kf) |A X {0} = 
p(g). By Propositions 2 and 8, there is a A-homotopy H :AX / -> 
Aut (Rm mod {0}) such that H0 = g and pH = A^S(fc'). Let 
/ i : (A X I, A X {0})-»( An+1,A) be as in Proposition 6 and let 
k = (id X h)H(id X n_ 1) . Proceed as in Proposition 6 to show that 
[k] is the desired element of PLm. 

The proof of Theorem 4 is analogous to the proof of Theorem 2. 
Consider Rn = Rn X 0 C Rn X Rm~n = Rm and PLm>n = 

Aut (Rm mod Rn)/(Aut (Rm mod N(0)) H Aut (Rm mod Rn)). Let a be 
the equivalence relation on PL m n induced from the equivalence 
relation on Aut (Rm mod Rn). 

THEOREM 5. If n / m - 2, tfien Lia(PLm>n,f) = kia(PLm>n,f * ) 
= 0/or alli^O and vertices/ €E PLmn. 

The proof of this theorem is analogous to the proof of Theorem 4. 
The only difference in the proof is the choice of spaces and A-sets 
used in distinguishing maps. For example, one considers instead of 
PL(Kr? R™mod {0}), PL(Kr, (Rm - Rn) U {0},mod {0}) and instead 
of PL({s1? s29 • • -, Sr], S— i), PL({*1? *2, • • -, sr}> S— i - S'"1). 

7. Local invariants of spaces of PL-embeddings of points. Let 
X = {x\, X2, ' ' *, Xr} be a finite collection of distinct points and let 
M be an M-dimensional PL-manifold. 

THEOREM 6. Ln
a(PL(X, int M), f) = 0 for n / mr — 1 and is tfie 

integers for n = mr - 1; \n«(PL(X, int M), / ; * ) = TT^S™- 1 ) /or a// 
n ^ 0 and vertices f G PL(X, int M). 

Let £ be the subspace of the product of r copies of M consisting of 
the r-tuples (yi9 y2, ' * ', yr) such that if i J^ j , then y{ ^ y$ for all 
i,j. E is an open mr-dimensional submanifold of the product of r 
copies of M. The theorem essentially follows from [1] and the fol­
lowing proposition. 
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PROPOSITION 12. There is a bisection from the set of maps of a com­
pact polyhedron P into PL(X, int M) and PL-maps of P into int E 
and a bijection between the homotopy classes of such maps. 

8. Local invariants of pseudo-isotopy spaces. Let M be a PL-
manifold and let Autpj(Af) be the A -group in which an n-simplex is 
a PL-automorphism f of M X An such that if F is a face of An, 
then f(M X F) = M X F. One^ can define analogously 
AutF/(M mod F)andPLP/(F, int M). [PLm = AutPI(I

mmod (i, I, • • -,4)) 
is the A-group used in classifying block bundles.] We note that 
Theorems 2 and 3 can be generalized to these A-sets even though 
the analogue of Proposition 4 is false. Because of this difficulty, the 
conclusion of Theorem 6 must be changed to Xn

a(PLP/(X, int M), / ; * ) 
= 77n (PLF / ({x} ,S— 1)). 
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