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ON CONFLUENT MAPPINGS AND ESSENTIAL 
MAPPINGS—A SURVEY 

J. GRISPOLAKIS AND E. D. TYMCHATYN* 

1. Introduction. In 1935, Eilenberg showed in [13] that if g: X -+ F i s 
a monotone mapping or an open mapping of compact metric spaces and 
if/: Y -> S1 is a mapping such that / o g is homotopic to a constant map
ping, then/is homotopic to a constant mapping. 

In 1964, Charatonik introduced in [9] the class of confluent mappings. 
These mappings are generalizations of both the class of monotone 

mappings and the class of open mappings. In 1966, Lelek extended in 
[44] Eilenberg's theorem to the class of confluent mappings. In §3 of 
this paper we present the various generalizations of Lelek's result to 
compact HausdorfT spaces and to semi-confluent mappings. We would 
like to emphasize these generalizations concern mappings into any one-
dimensional connected ANR instead of into S1. We also prove that 
semiconfluent mappings onto one-dimensional connected ANRs are 
essential. 

In 1934, Mazurkiewicz showed in [63] that AH-essential mappings of 
compact metric spaces onto the 2-cell I2 are weakly confluent, and he 
stated that his result extends to arbitrary dimensions. In §4 we give a 
proof of this result for AH-essential mappings of compact HausdorfT 
spaces onto connected manifolds M. We also show that for spaces X 
which are contractible with respect to Sn~l a mapping/: X -+ In is AH-
essential if and only if the restriction o f / to the preimage of the boundary 
of /" is essential. 

Eilenberg's theorem implies that monotone mappings and open map
pings preserve metric continua with trivial first cohomology group. A 
very considerable literature has grown up concerning classes of continua 
which are preserved by these and related mappings. In §6 there is given a 
brief survey of this literature. Characterizations are given of the pseudo-
confluent images of the arc and of dendrites. 

In §5 reults of Lokuciewski and Holsztynski concerning the fixed point 
property of continua which are inverse limits of «-cells with essential 
bonding mappings are discussed. It is proved that cones over continua 
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which are inverse limits of «-cells (resp. «-spheres) with AH-essential 
(resp. essential) bonding mappings have the fixed point property. 

2. Preliminaries. By a mapping we mean a continuous function. By a 
continuum we mean a connected, compact, Hausdorff space. A mapping 
/ : X -> Y of a compact Hausdorff space X onto a Hausdorff space Y is 
said to be (m) monotone, (c) confluent [9], (s) semi-confluent [55], (w) 
weakly confluent [47] and (p) pseudo-confluent [53] if for each continuum 
Cm Y 
(m) / - 1 (C) is connected, 
(c) each component of/ - 1(C) is mapped onto C, 
(s) for each pair of components K and L of f~l(C) either /(X) a f(L) 
or f(L)Œf(K), 
(w) some component of/_ 1(C) is mapped onto C, 
(p) some component of/_1(C) is mapped onto C if C is irreducible. 
A mapping/: X -> Y is o/?e/j if /(£/) is open in F for each U open in X 
Whyburn proved in [88, p. 148] that open mappings are confluent. 
Clearly, monotone mappings are confluent, confluent mappings are semi-
confluent, semi-confluent mappings are weakly confluent and weakly 
confluent mappings are pseudo-confluent. It is easy to see that none of 
the above implications can be reversed. 

A mapping/: X -+ Y is said to be essential if / i s not homotopic to a 
constant mapping. We wr i te /non ~ 1. If / : X -• Y is homotopic to a 
constant mapping, we write / ~ 1. If / : X -* Y is such that / non ~ 1 
but / | B ~ 1 for each proper closed subset B of X, write/ irr non ~ 1. 

If X is a compact Hausdorff space and G is an Abelian group, we let 
Hn(X; G) denote the nth Cech cohomology group based on arbitrary 
open coverings and with coefficients in the group G. We let Z denote 
the group of integers. A continuum Xis said to be acyclic if Hn(X; Z) = 0 
for each n ^ 1. 

If P is a collection of polyhedra and X is a compact Hausdorff space, 
we say that X is P-like if X is the inverse limit (see [15, p. 215]) of an 
inverse system {Xa, %l

a, A} where each Xa is a member of the collection 
P of polyhedra, A is a directed set, for each X ^ a in yl %l

a\ Xx -> A^ is 
a mapping such that #£: Xa -> A^ is the identity and %l

a — %i°%\ for 
a è ß è I in A. 

A gra/?/z is a finite one-dimensional connected polyhedron. A tree is 
a simply connected graph. A dendrite is a locally connected metric con
tinuum which contains no simple closed curve. By an ANR we mean a 
metric absolute neighbourhood retract [6], We let ]a, b[ denote the open 
interval from a to b. 

A continuum X is unicoherent if X ^ P \J Q where P and Q are sub
continua of X such that P fl Q is not connected. A continuum is said 
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to be decomposable if it can be written as the union of two proper sub
continua, otherwise, it is said to be indecomposable. A continuum is said 
to be hereditarily unicoherent (resp. hereditarily decomposable) if every 
subcontinuum is unicoherent (resp. decomposable). 

If P is a collection of polyhedra, X is /Mike and every member of P is 
a tree (resp. arc, resp. homeomorphic to Sn), then X is said to be tree-like 
(resp. arc-like, resp. Sw-like). It is obvious that arc-like continua are 
tree-like and tree-like continua are one-dimensional. 

If A is a subset of a topological space X, then Cl(A), Bd(A) and Int(y4) 
denote the closure of A in X, the boundary of A in X, and the interior of 
A in X, respectively. 

An extensive study of the spaces of confluent and related mappings of 
compacta has been carried out by several authors. The reader may 
consult [42], [43], [58] and [69] for conditions under which the space of 
mappings in (m), (c), (s), (w) and (p) are closed or complete in the space Yx. 

3. Confluent mappings and cohomology. In this section we present the 
various generalizations of Lelek's theorem [44]. Recently, the following 
result was given in [27] answering a question of Pasynkov. 

THEOREM 3.1. ([27, 5.2]). Let g: X -+ Y be a confluent mapping of a 
compact Hausdorff space X onto a Hausdorff space Y> and let f: Y -> G 
be a mapping of Y into a graph G. Thenf ' o g ~ 1 implies f ~ 1. 

Using Theorem 3.1 we can show the following more general result. 

THEOREM 3.2. Let g: X -+ Y be a confluent mapping of a compact Haus
dorff space X onto a Hausdorff space Y. and let f: X ->• M be a mapping of 
Yinto a one-dimensional connected ANR M'. Then f'o g ~ 1 implies f~ 1. 

PROOF. Since M is a one-dimensional connected ANR, it contains at 
most finitely many simple closed curves. Hence, there exists a graph 
G cz M with fundamental group iz\(G) = m{M). Then, there exists a 
monotone retraction r : M -> G of M onto G. 

Since fo g ~ 1 we have that r°f°g ~ 1. By Theorem 3.1, since g is 
confluent and r of: Y -> G is a mapping such that (r o f) o g ~ 1, we have 
that rof ~ 1. But the condition %\{G) = %\{M) implies that r of considered 
as a mapping of Finto M is homotopic to / . T h u s / ~ 1. 

A space X is said to be contrac tibie with respect to a space Y provided 
that every mapping of A" into y is homotopic to a constant. An immediate 
consequence of Theorem 3.2 is that contractibility of a compact Haus
dorff space with respect to any one-dimensional connected ANR is pre
served by confluent mappings. It follows from Theorem 3.1 and [12, 
Theorem 8.1] that if g: X -> Y is a confluent onto mapping of compact 
Hausdorff spaces, then the induced mapping g*: Hl(Y\ Z) -> H\X\ Z) 
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is a monomorphism (compare with [44, p. 230]). An example given in 
[44, p. 233] shows that the above statement fails for groups Hl(X; G) if 
G is different from Z and also for Hn(X; Z), n > 1. Another immediate 
corollary of Theorem 3.2 is that confluent mappings of compact Haus-
dorff spaces onto nonsimply connected one-dimensional connected ANRs 
are essential. 

LEMMA 3.3. Let f: X -+ Sl be a semi-confluent mapping of a compact 
Hausdorff space X onto Sl. Then fis essential. 

PROOF. Suppose, on the contrary, tha t / i s inessential. Then there exists 
a mapping <j>: X -• Rl where R1 is the real line such that f(x) = e2m'^(x) 

for each xe X. Let a and b be two real numbers with a < b such that 
(f)(X) = [a, b]. Then b — a ^ l. We need to consider only the following 
two cases. 

Case l. There exist integers n and m such that 

n<a^n+ l/2 <m^b<m + 1/2. 

Let A be a component of <j>~l([n, n + 1/2]) = (j>~l({a, n 4- 1/2]) which is 
mapped by <f> onto [a, n 4- 1/2], and let B be a component of <j>~l([m, 
m + 1/2]) = (j)~l([m, b]) which is mapped by <]> onto [m, b]. This is possible 
since every mapping onto an arc is weakly confluent (see [75]). We denote 
points of Sl be means of polar coordinates. Let K be the following subset 
o fS i : 

K = {(1, 0) | 0 ^ e ^ 7t), 

Then A and B are components of / _ 1 (^) , since (j> is continuous and 

<f>(f~HK)) c (J [r, r + 1/2], 
re* 

where Z denotes the set of integers. Since (1, %) ef(A) and (1, %) £f(B), 
we obtain that/04) <£f(B). Since (1, 0) ef(B) and (1, 0) £f(A), we obtain 
that/(I?) <tf(A). This contradicts the semi-confluence of/ 

Case 2. There exist integers n and m such that 

n < a ^ n 4- 1/2 < m + 1/2 g 6 < m 4- 1. 

Let c G Z? be a number such that b < c < m + 1. Since $ is weakly con
fluent, there is a component A of 0-1([w> « + c — m]) = <f>~l([a, n + 
c— m]) which is mapped by <j> onto [a, n + c — m], and a component B 
of ^-1([tfî> c]) = <f>~l([m, b]) which is mapped by cf> onto [m, è]. Let 
K be the continuum K = f(A U ^0- Then, as in Case 1, A and i? are com
ponents of f~KK). Since (1, 0) ef(B) and (1, 0)$f(A), we obtain that 
/(J?) <£/04). Since e2™ ef(A) and e2«' $f(B)9 we obtain that / ( ^ ) <£/(£). 
This contradicts the semi-confluence of/ and the proof of the theorem is 
complete. 
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It is not true, though, that even monotone mappings of continua onto 
Sn for n > 1 are essential. 

EXAMPLE 3.4. Let Bn denote the «-dimensional disc (n ^ 2) and let 
Sn~l be its boundary. Let / : Bn -+ Bn/Sn~l s Sn be the quotient map. 
Then/ is monotone, bu t / i s not essential. 

THEOREM 3.5. Let f: X -+ Y be a semi-confluent mapping of a compact 
Hausdorff space X onto a non-simply connected one-dimensional connected 
ANR. Then fis essential. 

PROOF. As in the proof of Theorem 3.2, there exists a graph G with 
%X{G) = 7C\{Y) and a monotone retraction r: Y -> G of Y onto G We 
now show that G admits a monotone mapping onto Sl. For this let C 
be a simple closed curve in G and let [a, b] be an arc with endpoints a and b 
in C such that [a, 6]\{a, b) is open in G. Let g: G -> S1 be a mapping 
which maps [Û, Ò]\{#, /J} homeomorphically onto £^{(1, 0)}, and such 
that g(a) = g(b) = g(G\[a9 b]) = (1, 0). Then g is monotone, and hence, 
g is confluent. By [55, p. 254], gor of: X -» S1 is a semi-confluent 
mapping of X onto S1. By Lemma 3.3, g o r o / is essential, and hence, r ° / 
is essential Since rof can be considered to be a mapping of X into Y, it is 
obvious that r of ~ / . Thus , / is essential. 

Let / : Sl -> S1 be an onto mapping. Consider, the universal covering 
p: Rl -> S1, where i?1 is the real line and p(X) = e2izix for each JC G R1. 
Since the mapping /©/?: Rl -+ Sl is inessential, there exists a mapping 
g : R1 -» 7?1 such that pog = / o p [82, p. 67]. We say that / is a wrapping 
function if and only if g is a monotone mapping. 

THEOREM 3.6. Let f: Sl -+ Sl be a mapping of Sl onto Sl. Then the 
following are equivalent : 

(a) fis confluent; 
(b) / is semi-confluent ; 
(c) fis a wrapping function. 

PROOF, (a) => (b). This is obvious. 
(b) => (c). Let/: S1 -+ S1 be a semi-confluent mapping. By [55, Theorem 

3.9] there exists a monotone mapping fx\ S1 -• F of S1 onto a continuum 
Y and a semi-confluent mapping/2: Y -> S1 such t h a t / = f2 °/i and such 
that/2 is a light mapping ( i . e . , / ^ ) is zero-dimensional for each t e S1). 
By [88, p. 165] Y is homeomorphic to Sl. It is clear that if/2 is a wrapping 
function, then / i s also a wrapping function. We suppose, therefore, that 
/ i s a light mapping. 

Let p: Rl -> Sl be the universal covering of Sl (i.e., />(*) = e2xix for 
each ^ e R ä n d l e t g :[0,1] -• Rl be a mapping such the pog = fop\[0, 1] 
(see [82, p. 67]. We shall prove that g is monotone. If g fails to be mono-
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tone, then we may suppose, without loss of generality, that there exists 
/0 in the open interval ]0, 1[ such that g has a local minimum at t0. Then 
one of the following two cases holds. 

Case (1). There exists sQ e ]0,t0[ U ]tQ, 1[ such that g has a local maximum 
at .y0. 

Case (2). g has local maxima at both 0 and 1. 
Since fis SL light mapping, g is also light. It is now easy to show that 

for each e > 0 there exists ö > 0 such that diameter (C) < e for each 
component C of g-1([g(0, g(t) + d]) and for each t e [0. 1]. 

Let us suppose Case (1) holds. LetO < ö < 1/2 be such that 

pM*o)> S('O) + fl) H />(fefo>) - 5, *fo>)]) = 0 

if p(g(s0)) # p(g(t0)) and such that if [a, 6] (resp. [c, d]) is the component 
of g-l([g(to), g(to) + d]) (resp. g'l(lg(s0) - 5, g(j0)D) which contains t0 

(resp. %), then 0, 1 <£ [Ö, Z>] U [C, J] and 

(*) g(a) = *(é) = g(f0) + Ö and g(c) = g(d) = g(s0) - Ö. 

The condition (*) follows from the previous paragraph and from the 
fact that g has local extrema at t0 and s0. Notice that g([a, b]) = [g(t0), 
g(t0) + Ö]) and g([c, d}) = [g(s0) - Ö, g(s0)] by (*). 

Let K be the arc in S1 with endpoints p(g(s0) — d) and p(g(t0) + ö) 
and which contains in its interior the points p(g(s0)) and/?(g(f0)). It follows 
from condition (*) that [a, b] and [c, d] are components of p~lf~l{K). 
Notice that /'o p([a, b]) = p o g([a, b]) is the arc in K with endpoints p(g(t0)) 
and p(g(t0) 4- 5). Similarly, f°p([c, d]) is the arc in K with endpoints 
/>(g(.Jo)) and p(g(s0) - ö). Hence fop([a, b]) <£ f<>p([c, d]) and fop([c, d]) € 
f°p([a, &]), which contradicts the semi-confluence of / . Hence in Case 1 g 
is monotone. 

Case 2 can be handled in an analogous way by replacingp(s0) by p(\) = 

P(f» 
(c) => (a). It is clear that if/: Sl -> Sl is a wrapping function and the 

degree o f / i s «, then for each arc C in Sl, f~l(C) consists of exactly n 
components and each of these components is mapped onto C. 

A mapping/: X -> y of a compact Hausdorff space Xonto a Hausdorff 
space Y is said to be quasi-interior [91] provided that for each y e Y and 
each neighbourhood U of a component C of / _ 1( j ) , we have j ; G Int f(U). 
It is known (see [52]) that the confluent mappings onto locally con
nected continua are exactly the quasi-interior mappings. It is also known 
(see [91]) that the quasi-interior mappings are exactly the compositions 
of monotone mappings followed by light open mappings. 

COROLLARY 3.7. A mapping f: Sl -> S1 of Sl onto Sl is semi-confluent 
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// and only iff is quasi-interior. Moreover, iff is semi-confluent and light, 
then fis open. 

Grace and Vought proved in [18] that semi-confluent images of tree
like metric continua are hereditarily unicoherent. The following theorem 
extends their result. 

THEOREM 3.8. ([27, 4.1]). Let X be a continuum with Hl(X; Z) = 0, 
and let f: X -> Y be a semi-confluent mapping of X onto a Hausdorjf space 
Y. Then Y is unicoherent. 

The following result is a partial extension of Theorem 3.1 and Lelek's 
theorem [44] to semi-confluent mappings. 

THEOREM 3.9. ([27, 4.2]). Let g: X -> Y be a semiconfluent mapping of 
a compact Hausdorff space X onto a hereditarily unicoherent Hausdorff 
space Y, and let f: Y -> G be a mapping of Y onto a graph G such that 
fog~ 1. Then f ~ 1. Hence, if X is contractible with respect to G, then 
Y is also contractible with respect to G. Furthermore, g*: H\Y\ Z) -• 
Hl(X; Z) is a monomorphism. 

By using a proof identical with the one of Theorem 3.2, Theorem 3.9 
can be generalized to the following theorem. 

THEOREM 3.10. Let g: X -+ Y be a semi-confluent mapping of a compact 
Hausdorff space X onto a hereditarily unicoherent Hausdorff space Y, and 
let f: Y -> M be a mapping of Y into a one-dimensional connected ANR 
M such that g°f~ 1. Then f ~ 1 Hence, if X is contractible with respect 
to M, then Y is also contractible with respect to M. 

QUESTION 1. Can the hypothesis in Theorem 3.10 that Fis hereditarily 
unicoherent be dropped? 

4. AH-essential mappings. In this section by a a space we mean a topo
logical space. Let In be the «-dimensional cube. Then by Sn~l we denote 
the boundary of In(n ^ 1). Let Rn denote the Euclidean «-space. 

Let/, g: X -> 7be mappings from a space Xto a space Fand let A a Y. 
We say fis homotopic to g relative to A provided there exists a homotpoy 
H: X x [0, 1] -• Y such that H(x, 0) = g(x) and H(x, 1) = f(x) for each 
x € X and H(x, t) = f(x) for each JC ef~l(A) and each t e [0, 1]. Let M be 
a connected manifold with (possibly empty) boundary 9(M). A mapping 
/ : X -* M of a topological space X onto M is said to be essential in the 
sense of Aleksandrov-Hopf written AH-essential, provided that if g: X -> 
M is a mapping which is homotopic to/relative to d(M), then g(X) = M. 
Otherwise,/is said to be AH-inessential. In the above definition we follow 
Krasinkiewicz [34]. If M = Sn, then f: X -> Sn is AH-inessential if and 
only i f / i s homotopic to a constant mapping. If M = In, then/ : X -> In 
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is AH-inessential if and only if there is a mapping g: X -• In such that 
/(*) = #(*) for e a c r i x G/_1(^w_1)) and such that g(X) # /«. AH-essential 
mappings into 7W were first defined and used by P.S. Aleksandrov in 1932 
(see [1] and [2, page 180]), when he characterized the dimension of subsets 
of Euclidean spaces in terms of AH-essential mappings. This characteriza
tion was extended in 1956 (see [81]) by Smirnov to the class of Tychonov 
spaces. This characterization in its most general form, was given by 
Morita in [67, page 43]. In order to state Morita's theorem we need the 
following definition. 

DEFINITION. Let X be a space. A covering % is called a normal covering 
if there is a sequence of open coverings <%l9

 (JU2-> • • • s u c r i that ^i-star 
refines <% and $f,-+1-star refines ^ for / = 1, 2, . . . . 

In [67] Morita defines the covering dimension of X, denoted by dim X, 
to be the least integer n such that every finite normal open covering of X 
admits a finite normal open covering of order ^ n 4- 1 as its refinement. 
In case X is a normal space, dim X as defined above coincides with the 
covering dimension in the usual sense. 

THEOREM 4.1. (Morita [67]. A space X has dim ^ n if and only if there 
exists an AH-essential mapping of X onto In. 

It is an easy exercise to prove that the identity mapping on In is AH-
essential (n ^ 1). The following example shows that there exist mappings 
of «-dimensional spaces onto In which are not ^//-essential. 

EXAMPLE 4.2. Let X = {(p, 0)|l/2 ^ p ^ 1, 0 ^ 0 ^ 2%), where (p, 0) 
denotes a point of the plane in polar coordinates and let Y = {(p, 0)| 
0 ^ p ^ 1,0 ^ 0 ^ 2%\. Notice that Fis homeomorphic to 72, and define 
a mapping/: X -> Y as follows. For each 0,/(l /2, 6) = (0, 0) , / ( l , 0) = 
(1, 0) a n d / m a p s the convex arc {(p, 0)|l/2 ^ p ^ 1} linearly onto the 
convex arc {(p, 0)|O g p ^ 1}. T h e n / I / - 1 ^ 1 ) is the identity, and as such 
it is essential, but / i s not ^//-essential. To see this simply define a map
ping g: X - Y by putting g(p, 0) = (1, 0) for each 0. Then g\f-\Sl) 
= f\f-KSl), but g(X)ï Y. 

In [63] Mazurkiewicz used AH-essential mappings in order to show that 
each compact metric space of dimension n with 2 ^ n < oo contains an 
indecomposable continuum. He proved this by showing that every AH-
essential mapping of finite-dimensional compact metric space onto In 

is weakly confluent. In [27] Mazurkiewicz's result was generalized in the 
setting of mappings of compact Hausdorff spaces onto I2. In [17] Feuer-
bacher proved the following theorem for the case M = S1. 

THEOREM 4.3. Iff: X -> M is an AH-essential mapping of a compact 
Hausdorff space X onto a connected manifold M, then fis weakly confluent. 
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Before we give the proof of Theorem 4.3, we need some auxiliary results. 

PROPOSITION 4.4. Let X be a normal space, let Y be an ANR, f: X -* Y 
a mapping of X into Y, and A a G§-subset of X such thatf\A ~ 1. Then there 
exists an open subset U ofX containing A and such thatf\ U ~ 1. 

PROOF. Let g: A -> y be a constant mapping of A into Y and let g(x) = 
b for each xeA. Assume t h a t / | ^ ~ g. Since f\A admits an extension/ 
over X, by the homotopy extension theorem [68, Theorem 7], there exists 
an extension gx: X -+ y of g such t h a t / ~ gx. Since gx\A = g is a constant 
mapping and since Y is an ANR, there exists a small neighbourhood U 
of A in X such that gi(U) is contractible. Thus, we have that gi\U ~ 1, 
and hence, f\U ~ gi\U ~ 1. 

Proposition 4.4 generalizes [27, Proposition 2.1] as well as a result of 
Eilenberg in [14, p. 65]. 

The proof of Theorem 4.3 is based on that of Mazurkiewics [63]. Some 
of the proofs in the next series of lemmas are very similar to those given 
in [27, §3]. 

PROPOSITION 4.5. Given a compact Hausdorff space X and a mapping 
/ : X -> Y of X into a connected ANR Y, in order for f to be essential it is 
necessary and sufficient that there exists a component X' of X such that 
f\X' is essential. 

The proof of Proposition 4.5 is identical with the proof of [13, Lemma, 
p. 164] and as such it is omitted. 

PROPOSITION 4.6. Iff: X -+ Y is a mapping of a compact Hausdorff space 
X into a connected ANR Y such that f non ~ 1, then X contains a subcon
tinuum C such that f\C irr non ~ 1. 

PROOF. Let H be the collection of all subcontinua K of X for which 
f\K non ~ 1. By Proposition 4.5, H # 0 . Consider that H is partially 
ordered by inclusion, and let H' be a chain in H. We claim that Ç\Hf 

is an element of H. Suppose, on the contrary, that f)H' $ H. Then 
/ | f}H' ~ 1, and, by Proposition 4.4, there exists an open subset U of X 
containing Ç\H' and such that f\U - 1. Let Ke H' such that K c U. 
Then we have that/|A^ ~ 1. This contradiction proves the claim. By the 
Zorn-Kuratowski Lemma, there exists a minimal element C of H. Then 
we have t ha t / |C irr non ~ 1. 

LEMMA 4.7. Iff: X -> In is an AH-essential mapping of a normal space 
X onto In, then j \ = f\f~\Sn~l) is essential. 

PROOF. Suppose, on the contrary, that f is homotopic to a constant 
mapping g. Since g admits an extension gx over X such that gx is constant, 
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by [68, Theorem 7], fx admits an extension f2 from X into Sn~l which is 
homotopic to gt. Then/2 coincides with/on f~\Sn~ l) , butf2{X) <= Sn~l ^ 
In. This contradicts the hypothesis that fis AH-essential and the lemma is 
proved. 

LEMMA 4.8. Iff : X -* In is an AH-essential mapping of a compact Haus
dorff space X onto In, then A\ = f~\Sn~x>) has a component K such that 
f\K: K -> Sn~l is an essential mapping. 

PROOF. By Lemma 4.7, f\A1 is essential. The lemma follows by Proposi
tion 4.5. 

LEMMA 4.9. If M is a connected n-manifold, f: X -> M is an AH-essential 
mapping of a topological space X onto M,J a M is an (n — \)-sphere in 
M which is the boundary of an open n-cell H with H c M\d(M), then 
/ i / - 1 [Cl(#) ] is an AH-essential mapping of f-\C\(H)] onto Cl(H) = 
H\JJ. 

PROOF. Suppose, on the contrary, that f\f~l[C\(H)] is not an AH-es
sential mapping. Then there exists a mapping g : /-1[C1(//)] -> C\(H) such 
that g\f-\J) =f\f-\J) and g(f-l[C\{H)}) # Cl(/7). Define a function 
g1 : X -> M by setting 

gl(x)J
8(x)> üxtf-WW] 

\f(x), otherwise. 

It is clear that gx is continuous since g\f~\J) = f\f~\J). We also have 
t h a t g ! ! / - 1 ^ - 1 ) = f\f-\S»-*) and that gl(X)±M9 since g(f-l[C\(H)}) ± 
Cl(H). This contradicts the fact t h a t / i s AH-essential, and the lemma is 
proved. 

LEMMA 4.10. If M is a connected n-manifold, f: X -> M is an AH-es
sential mapping of a compact Hausdorff space X onto M and J is a copy of 
Sn~l in M which is the boundary of an open n-cell in M\d(M), then there 
exists a continuum K in X such thatf(K) = J. 

PROOF OF THEOREM 4.3. Let AT be a subcontinuum of M. Then we claim 
that ATis the limit of a sequence {B^%\ of copies of Sn~l such that each B{ 

bounds an open «-cell in M\d(M). To see this, let {A^^ be a sequence of 
polygonal arcs in M\d(M) such that K = Lim^oo A{. For each / let Ct 

<= S(At-, \ji)\d{M) be a polyhedral «-cell such that A{ c Q. Let Bt be 
the boundary of Q. Then B{ is a copy of Sn~l and K = lini^«, B{. 

By Lemma 4.10, for each / there exists a subcontinuum K{ of Xsuch that 
f(Kt) = Bt, Let {Kia}aeA be a convergent subnet of {Kt)f=l. Then, if 
L = \imaç=A Kia (see [41, pages 45 and 139]), we have L is a continuum 
and/(L) = limaeil/(ÄJ-a) = limaGi4 Bia = K. 

In Lemma 4.7, it is proved that if/ : X -* In is an AH-essential mapping 
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of a normal space X onto In, then f\f~\Sn~l) is essential. Example 4.2 
shows that the converse of Lemma 4.7 is not true in general, although we 
shall prove in Theorem 4.11 that it is true if X is contractible with respect 
to S»~K 

THEOREM 4.11. Let X be a space which is contractible with respect to 
Sn~l

9 and let f: X -> Inbea mapping of X onto In such that f\f~\Sn~l) is 
essential. Then fis AH-essential. 

PROOF. Suppose, on the contrary, tha t / i s not AH-essential. Then there 
exists a mapping g: X -> /» such that g\f~\Sn-1) = f\f~\Sn~l) and 
g(X) 9* ln. Let r:g(X) -> S*-1 be a retraction of g(X) onto Sn~l. Then 
r(g(a)) =f(a) for each fle/-1^"-1). Consider the mapping r o g: X -> 
S"-1. Since Xis contractible with respect to 5W_1, there exists a homotopy 
F: X x / -• S»"1 such that F(x, 0) = r(g(x)) and F(x, 1) = b for some 
è e Sn~l and for each x G X. Then G = F\f~\Sn-1) x / is a homotopy 
from/-1^»-1) x / t o 5""1 such that G(a, 0) = r(g(a)) = /(a) and G(a, 1) = 
6 for each a ef-^S"-1)' This shows that f\f~KSn-1) is homotopic to a 
constant. This contradiction proves the theorem. 

In Theorem 5.4, we prove that a mapping / : X -* 7W is AH-essential if 
and only if it is universal in the sense of Holsztynski [30].. In view of this 
result, Theorem 4.12 together with Lemma 4.7 generalize Proposition 10 
in [30]. One might hope to prove Theorem 4.3 for the mappings that are 
homotopically essential (i.e., are not homotopic to a constant mapping). 
There exist homotopically essential mappings of the circle S1 onto the 
torus S1 x Sl and onto the figure eight (i.e., one point union of two copies 
of Sl). Since the weakly confluent image of S1 is atriodic, by 6.4. there 
exists no weakly confluent mapping of Sl onto either S1 x Sl or onto the 
figure eight. 

The problem of mappings which preserve the dimension of spaces has 
been of continuing interest since Peano constructed in 1890 a mapping of 
/onto I2. There is a very large literature on this problem but this is far from 
the scope of this paper. It is appropriate though to mention some results 
in this area. Anderson claimed in [3] and Wilson proved in [93] that there 
exist monotone and open mappings from the Menger universal curve (a 
one dimensional continuum) onto any Peano continuum such that the 
preimages of points are homeomorphic to the Menger universal curve. 
For a discussion on the matter and for a rather complete bibliography see 
[92] and [93]. 

It is worth noticing that the Menger universal curve is not acyclic. The 
following result is due to H. Cook (see [53] and [27]) and proves that even 
weaker than monotone and open mappings preserve one-dimensionality 
provided the domain is an acylcic continuum. 
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THEOREM 4.12. (Cook). Let f: X -+ Y be a pseudo-confluent mapping of 
an acyclic one-dimensional continuum X onto a continuum Y. Then dim Y 
^ 1. 

R.L. Moore [66] and J.H. Roberts and N.E. Steenrod [77] proved that 
monotone images of 2-manifolds have dimension at most two. By using a 
recent result of Krasinkiewicz [37] one can prove the following more 
general result. 

THEOREM 4.13. If f: M -> Y is a pseudo-confluent mapping of a con
tinuum M, which is embeddable in a 2-manifoldf onto a Hausdorff space Y, 
then dim Y <; 2. 

PROOF. Suppose, on the contrary, that dim Y ^ 3. By Theorems 4.1 
and 4.3, there exists a weakly confluent mapping g : Y -• P of F onto P. 
Then g °f: M -> P is a pseudo-confluent mapping of M onto P (see 
[53, 1.5]). Let D be a dyadic solenoid in P. Since D is irreducible, there 
exists a continuum Kin M such that/(jfif) = D. By [37, 7.3], A îs a mov
able continuum, and by [37, Theorem 6.2] D is movable, which is a con
tradiction (see for example [35, page 241]). 

One might expect that such a theorem would be true in higher dimen
sions also, but this is not the case. Walsh [86] has proved (among other 
results) that every compact connected 3-manifold admits a monotone, 
open mapping onto every compact metric absolute retract. 

5. AH-essential mappings and the fixed-point proporty. Let X and Y be 
topological spaces and let <% be an open cover of X. A mapping/: X -> Y 
is said to be ^-mapping [30] provided that for each y G y there exists some 
U e U such that f~l(y) c U. We say that a space X has the fixed-point 
property provided that for each mapping f.X -+ X there exists a point 
x e X such that/(jc) = x. 

In [54] Lokuciewski proved a fixed-point theorem for compact metric 
spaces by using AH-essential mappings. We observe that Lokuciewski's 
proofs generalize to arbitrary Hausdorff spaces. We wish to thank Pro
fessor Nadler for bringing to our attention reference [54] and for indi
cating to us the connection between AH-essential mappings and fixed-
point theory. 

LEMMA 5.1. (Lokuciewski [54]). Let fand g be two mappings of a topologi
cal space X into In for some n ^ 1. If g is an AH-essential mapping, then 
there exists a point x G X such thatf(x) = g(x). 

THEOREM 5.2. (Lokuciewski [54]). If X is a Hausdorff space such that for 
each open cover fy there exists a positive integer n and an AH-essential 
^-mapping of X onto In, then Xhas the fixed-point property. 

Theorem 5.2 generalized Brouwer's fixed-point theorem and has various 
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applications to fixed-point theorems. In [34] Krasinkiewicz used Theorem 
5.2 in order to give a simple proof of the following theorem. We remark 
that the proof given in [34, 4.1] works for the non-metric case as well. 

THEOREM 5.3. (Krasinkiewicz [34]). If X is either an arc-like or a circle
like continuum, the hyper space C(X) of subcontinua of X has the fixed-point 
property. 

The same theorem was proved independently by Rogers [78] and for 
arc-like continua by Segal [80]. 

A mapping / : X -> Y is said to be universal provided that for each 
mapping g: X -> Y there exists some x e X for which /(x) = g(x) [30]. 
Holsztynski proved in [30] that iff: X -• F is a universal mapping, then 
F has the fixed-point property, and tha t / i s onto. 

The following result shows that relationship between universal map
pings and AH-essential mappings, and proves that universal mappings 
are generalizations of AH-essential mappings. Nadler has evidently no
ticed this result independently. 

THEOREM 5.4. Let Xbe a topological space and let n be a positive integer. 
Then the mapping f: X -» In is universal if and only if fis AH-essential. 

PROOF. Let / : X -> In be an AH-essential mapping. It follows from 
Lemma 5.1 that / is universal. 

Conversely, let / : X -> In be a universal mapping and suppose, on the 
contrary, that / is not AH-essential. Then there exists a mapping g : X -> In 

such that g\f-\S*-v) = f\f~\Sn~l) andg(Z) # In. Hence, there exists a 
retraction r: g(X) -• Sn~l of g(X) onto 5W_1. Then we have that r(g(a)) = 
f(a) for each a ef~\Sn~l). Consider the mapping r og: X -> S"'1 and de
fine a mapping h: X -» In by h(x) = -r(g(x)) where -r(g(x)) denotes 
the antipodal point of r(g(x)) on Sn~l for each x e X. Then it is clear that 
for each x e X we have f(x) ^ h{x), which contradicts the fact that / is 
universal. 

The following result is obtained by Holsztynski in [30, Corollary 1]. 

THEOREM 5.5. (Holsztynski [30]). Let {Xa,f@, A} be an inverse system of 
compact ANR's, where all the bonding mappings f^: Xß -> Xa (a ^ ß) are 
universal. Then the inverse limit of this inverse system has the fixed-point 
property. 

Using this result Holsztynski proved that the cone over a solenoid as 
well as the m-fold suspension of the cone over a solenoid have the fixed-
point property. Holsztynski's result can be extended to 5w-like continua 
X with Hn(X, G) 7̂  0 by using the next theorem. 

Let X be a topological space and let / denote the unit interval [0, 1], 
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Then the m-fold suspension of X denoted by Sm(X) is defined for each 
m ^ 0 inductively as follows: 

sm = {x , i f m = o 
\Sm^(X) x I/{Sm^(X) x {0}} U {Sm-!(X) x {1}}, if m > 0. 

Let/: X -* y be a mapping of X onto Y. Define the mapping induced by 
the m-fold suspension. 

Sm(f): Sm(X) - SJLY) 

by setting S0(f) = / a n d for m > 0 

SJUXx, t) = (Sm_!(/)(x), 0 

for each (x, t) e Sm_x(X) x ]0, 1[, 

SM( /)({Sm- iW x {1}}) = {Sm_j(y) x {1}}, 

and 

Sm{f){{Sm^X) x {0}}) = {5M_i(y) x {0}}. 

THEOREM 5.6. Let x = Un? &«>/«> A} w/zere e#cA j a w an n-cell (n ^ 1) 
tf«d //ze / £ w a« AH-essential mapping. Then X, the cone over x, and the 
m-fold suspension of X have the fixed-point property. 

PROOF. By Theorem 5.4, each fP is universal, and hence by Theorem 
5.5, j ^ has the fixed-point property. 

We prove first that if/: In -> In is a simplicial AH-essential, then Si(f): 
Stfn) = /»+i _> s^/») is AH-essential. If n > 1, then by 4.7, /IS»-1 is 
AH-essential. By [82, 8.5.11] S^/IS»"1) is AH-essential. By 4.11, S( / ) is 
essential. If « = 1, then there is a component K of ^( /^{O,1}) such that 
K is the union of continua A and B such that y4 f] B = P U g where 
P and g are non-empty separated sets, P a /_ 1(0) and Q a f ~ \ \ ) . 
Furthermore, Si(f)(B) is the bottom semicircle of S1 and Si(f)(A) is the 
top semicircle of S1. It is now easy to see that Si(f)\K is AH-essential. By 
4.12, Sx(f) is AH-essential. 

By 6.9 of [38]. we may assume that each/^ is simplicial. By the above 
Sm(fP) is AH-essential for each a S ß- Notice that 

Sm(X) = ]sm{Sm(Xa), SJffr A}. 

Hence Sm(X) has the fixed-point property by 5.4 and 5.5. 
To show that the cone over X has the fixed-point property, Let X = 

X x I/X x {1} and for each a let Xa = Xa x I/Xa x {1}. For each a 
and ßinA with a ^ ß define / £ : ^ -+ Xa by s e t t i ng /^ , 0 = (f&z), t) 
for each (z, t)eXßx [0, 1] and setting fß({Xß x {1}}) = {Xa x {1}}. 
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Notice that Xa is homeomorphic to S^X^ and / £ is homotopic to S^f?) 
relative to Sn = d(Xa). As above X has the fixed-point property. 

In case n — 1 Theorem 5.6 may be restated as follows. 

COROLLARY 5.7. Let Xbe an arc-like continuum. Then X, the cone over X, 
and the m-fold suspension of X have the fixed-point property. 

That arc-like continua have the fixed-point property was first proved 
by Hamilton in [29]. We also state the following question which was asked 
by Knill in [33, page 36]. 

QUESTION 2. Does the cone over every tree-like continuum have the 
fixed-point property? 

It has recently been proved by Bellamy [4] that there exists a tree-like 
continuum without the fixed point property. 

In Theorem 5.4 we proved that universal mappings onto «-cells (n ^ 1) 
are AH-essential, and in Theorem 4.3 we saw that AH-essential mappings 
are weakly confluent. The following question can be posed. 

QUESTION 3. Let/: X -» F be a universal mapping, where Zis a compact 
HausdorfT space. Is /weakly confluent? 

The converse to Question 3 does not have to be true even if Y is a 2-cell 
and / i s a monotone map (see Example 4.2). 

6. Classification of continua. We start our discussion in this chapter 
with a very useful characterization of tree-like continua given in [8, p. 
74-75]. As was remarked in [27], this result is also valid for non-metric 
tree-like continua. With the exception of 6.1 and 6.2 all the results in this 
section are for metric spaces. 

THEOREM 6.1. (Case-Chamberlin [8]). A continuum X is tree-like if and 
only ifX is one-dimensional and each mapping ofX into a graph is homotopic 
to a constant mapping. 

It follows from [12, Theorem 8.1] that a continuum is one-dimensional 
and acyclic if and only if it is contractible with respect to Sl. Thus, each 
tree-like continuum is one-dimensional and acyclic. A. Lelek proved in 
[49, 2.7] that confluent mappings preserve one-dimensional acyclic metric 
continua, and McLean proved in [65] that confluent mappings preserve 
tree-like metric continua. The following result generalizes the above 
mentioned results and is a consequence of Theorem 3.10 and Theorem 
4.13. 

THEOREM 6.2. ([27]). Semi-confluent mappings preserve one-dimensional 
acyclic continua, tree-like continua, and continua which are contractible 
with respect to a particular one-dimensional connected ANR. 
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Rosenholtz has proved in [79] that open mappings preserve arc-like 
continua, and Bing has proved (see [5, page 654]) that monotone mappings 
preserve arc-like continua. 

QUESTION 4. (Lelek [46, p. 94]). Is the confluent image of an arc-like 
continuum always arc-like? 

The same question was asked later by Mackowiak but for semi-con
fluent mappings [55, 5.8]. A partial answer to Mackowiak's question has 
been given in [18] where it is proved that semi-confluent mappings preserve 
hereditarily decomposable arc-like metric continua. In what follows all 
continua will be considered to be metric. 

A continuum A'is said to be a triod provided that Xis the union of three 
proper subcontinua Xh X2 and X3 of X such that Xx f| X2 = X\ fl ^3 = 
X2 fi ^3 is connected and Xt-c£Xj \J Xk for each j , j , ke{\, 2, 3}; 
j z£ i ^ h. The triod X = Xx U X2 U Xs is said to be a simple triod 
provided that XÌ9 X2 and X3 are arcs which intersect only in a common 
end-point. A continuum is said to be atriodic provided it does not contain 
any triod. A continuum is said to be rational provided it admits a basis of 
open subsets whose boundaries are countable sets. A continuum is said to 
be Suslinian [45] provided it does not contain an uncountable collection of 
mutualy disjoint, non-degenerate subcontinua. It is easy to see that con
fluent mappings preserve atriodic continua (see [61, 5.19]). In [11] the 
following result was given. 

THEOREM 6.3. (Cook and Lelek [11, 2.4]). For a continuum X the following 
conditions are equivalent: 

(a) X is atriodic and Suslinian ; 
(b) each weakly confluent image of X is atriodic and Suslinian; 
(c) each weakly confluent image of X is atriodic, and 
(d) no mapping of X onto a simple triod is weakly confluent. 

QUESTION 5 (Mackowiak [61, 8.5]). Is the semi-confluent image of an 
atriodic continuum always atriodic? 

The following result is a partial answer to this question. 

THEOREM 6.4. (Grace and Vought [18]). The semi-confluent image of an 
arc-like continuum is atriodic. 

It is known that weakly confluent mappings do not preserve either arc
like continua or tree-like continua, and pseudo-confluent mappings do not 
preserve atriodic continua. In fact, there exists a weakly confluent mapping 
of the unit interval onto the circle [47, p. 99], and a pseudo-confluent 
mapping of the unit interval onto a triod [53, p. 1343]. 

There exist several other classes of continua which are preserved by 
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pseudo-confluent mappings. For example, continua in Class A, regular 
continua, finitely Suslinian continua, hereditarily locally connected 
continua and Suslinian continua are preserved by pseudo-confluent map
pings (for the definitions and the results see [53]). The only singular class 
of continua in this classification [49, p. 55] is the class of rational continua. 
It is known that monotone mappings [88, p. 138] as well as open mappings 
[49, p. 57] preserve rational continua. Recently, both these results were 
generalized in [19, p. 127]. Finally, in [26] an example was given of a 
strongly confluent (and hence, confluent) mapping from a rational arc-like 
continuum onto a non-rational arc-like continuum, thus, proving that 
confluent mappings do not preserve rational continua. The first example 
though of a confluent mapping from a non-acyclic rational continuum onto 
a non-rational continuum was given in [83]. 

Let T = Tx U T2 U T3 be a triod, where Th T2 and T3 are subcontinua 
of T whose intersection is connected and such that no one is contained in 
the union of the other two. Then the continuum 7\ f| T2 f] T3 is called 
the branch-continuum of T. 

THEOREM 6.5. (Cook and Lelek [11, 3.2]). Let f: X -> Y be a weakly 
confluent mapping of a Suslinian continuum onto a Hausdorff space Y. 
If Y0 is a branch-continuum in Y and Uà Y is an open set containing Y0, 
then there exists a triod T c= X such thatf(T) c U 

Consequently, if y0 is a branch-point of a simple triod in Y, then there 
exists a sequence Tx, T2, ... oftriods in X such that 

Limf(Tn) = {yQ}. 
» - 0 0 

In [20] the following characterization of confluent mappings was given, 
thus answering a question of Lelek and generalizing [53, 4.1]. 

THEOREM 6.6. ([20]). Let f: X -• Y be a mapping of a compact metric 
space X onto a hereditarily locally connected Hausdorff space Y. Then the 
following are equivalent: 

(a) fis confluent; and 
(b)fis strongly confluent, i.e., if K is a connected subset of Y, then every 

component of f~\K) is mapped by f onto K. 

An example was also given in [20] to show that the assumption that Y 
is hereditarily locally connected cannot be dropped. 

Epps proved in his thesis [16] the following result. 

THEOREM 6.7. (Epps [16, Theorem 3]). If G is a graph, then there is a 
finite tree T and a finite-to-one weakly confluent mapping from T onto G. 

Since finite trees contain at most finitely many distinct maximal arcs, 
the following result is an easy exercise. 
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PROPOSITION 6.8. If T is a finite tree, then there exists an arc I and a 
pseudo-confluent mapping of I onto T. 

By combining 6.5 and [16, 4.8] we obtain that every graph is the pseudo-
confluent image of an arc. 

For some other results in this direction see also [28]. 

THEOREM 6.9. Pseudo-confluent mappings preserve graphs. 

PROOF. Let/ : [0, 1] -> F be a pseudo-confluent mapping. We prove first 
that each arc in Y has at most finitely many ramification points. Let A 
be an arc in Y with endpoints a and b. Suppose {#!, a2, . . . } is an infinite 
set of ramification points in A. Let A have its natural order with initial 
point a. We may suppose without loss of generality that ax < a2 < . . . . 
Let A{ denote the arc in A with endpoints a and a{. For each / let B{ be an 
arc in Y such that Bt: f| A — {# J , a{ and b{ are the endpoints of Bt and 
Bf fi Bj = 0 for i # j . 

Let [ci, d{\ be an irreducible arc in [0, 1] such that/([c l5 rfj) = Ax \J Bx. 
Without loss of generality/(ex) = a and/(di) = bx. Let [c2, d2] be an irre
ducible arc in [0, 1] such that/([c2, d2]) = A2 [j B2. Then either [c2, d2] <= 
[0, c j or [c2, d2] e [di, 1]. Similarly, we can choose arcs [ci9 dt] in [0, 1] 
such that f([ch d^]) = A{ {j B( and such that [ci9 dt] f| [CJ, dj\ contains 
at most one point for each / ^ j Since the arcs A{ [} B{ do not form a null 
sequence, it follows that the arcs [ch dt] do not form a null sequence. This 
is a contradiction since [0, 1] does not contain an infinite collection of large 
pairwise disjoint arcs. This completes the proof of the fact that each arc 
in F has at most finitely many ramification points. A similar argument can 
be used to show that there do not exist infinitely many arcs C{ in Y and a 
point y e Y such that C{ fi Cj = {y} for each / ^ j . 

To prove that Fis a graph is suffices to prove that Y is locally a graph. 
Let y G F. Let {Q, . . . , Cn} be a maximal family of arcs such that C{ f| 
Cj = {y} for each i ^ j . Let {ah ..., an} be the ramification points of Y 
different from y which are contained in Q U • • • U Cn. Since Fis locally 
connected it follows that the component of ( Q U • • • U Cn)\{

ah '••><*„} 
which contains y is a neighbourhood of y which is also a finite graph. 

Since every graph is the pseudo-confluent image of [0, 1] and since the 
composition of pseudo-confluent mappings is pseudo-confluent the theo
rem is proved. 

REMARK 6.10. Theorem 6.9 resolves in the affirmative Problem 9.30 
in [61], and was obtained by A. Lelek and the second author and independ
ently by the first author in the spring of 1976. Theorem 6.9, also generalizes 
a previous result [56, (4.3)]. 

In [84] the second author characterized the weakly confluent images of 
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dendrites. We would like to mention that the same proof with only the 
obvious modifications works to give the following results. 

PROPOSITION 6.11. Let Xbea continuum. Let Xi and x2 be points of X and 
let e be a positive number. If X is the pseudo-confluent image of a dendrite, 
then X does not contain a sequence AÌ9 A2, . . . of distinct arcs with endpoints 
Xi and x2 such that the arcs A{ agree on the e-neighbourhoods of both x± and 
x2. 

THEOREM 6.12. A locally connected continuum X is a pseudo-confluent 
image of some dendrite if and only if X satisfies the following two conditions: 

(i) each true cyclic element ofX is a finite graph; and 
(ii) if Ei, E2, . . . is a sequence of distinct true cyclic elements of X all of 

which lie in a cyclic chain C, then the sequence E\, E2, . . . has at most two 
cluster points. Each cluster point is an endpoint of the cyclic chain C. No 
cluster point ofEÌ9 E2, . . . lies in a true cyclic element ofX. 

COROLLARY 6.13. IfX is a continuum the following are equivalent: 
(i) X is the weakly confluent image of a dendrite; and 

(ii) Xis the pseudo-confluent image of a dendrite. 

7. Another classification of continua. In this chapter all spaces are metric. 
In 1967 H. Cook [10] proved that if X is a hereditarily indecomposable 
continuum, then every mapping of any continuum onto X is confluent. 
Later Lelek and Read [52] proved that if Xis a continuum such that every 
mapping of any continuum onto X is confluent, then X is hereditarily 
indecomposable. This gave rise to an attempt at classifying continua in 
terms of the types of onto mappings that they admit. 

A continuum X is said to be in Class (C) (resp. Class (S), Class (W), 
Class (P)) provided that every mapping of any continuum onto X is 
confluent (resp. semi-confluent, weakly confluent, pseudo-confluent). 

THEOREM 7.1. (Cook [10] and Lelek and Read [52]). The Class (C) is 
exactly the class of hereditarily indecomposable continua. 

The following theorem was proved by the authors in [25]. 

THEOREM 7.2. ([25, Theorem 5.1]). The Class (S) is exactly the class of 
hereditarily indecomposable continua. 

In [75] Read proved that arc-like continua are in Class (W) and in [17] 
Feuerbacher proved that non-planar circle-like continua are in Class (W). 
By Cook's result [10] hereditarily indecomposable continua are also in 
Class (W). In [21] Feuerbacher's result was generalized by proving that 
circle-like continua with no local separating subcontinua are in Class (W). 
Finally, in [22] the authors gave a general theorem which implies all the 
above mentioned results as well as the following theorem. 
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THEOREM 7.3. ([22, 5.6]). Tree-like atriodic continua and the Case-
Chamber lin continuum [8] are in Class (W). 

Finally in [24] and [23] the authors gave the following characterizations 
of Class (W) and Class (P), respectively. 

THEOREM 7.4. ([24, 3.2]). Let X be a continuum. Then the following are 
equivalent: 

(a) X is in Class (W); 
(b) fi: C(X) -» [0, Ì] is a Whitney map for C(X), the hyper space of sub

continua of X, and A is a subcontinuum of pr\t) for some te [0, 1] with 
[]A = X, then A = fTl(t)\ and 

(c) // Y is a continuum with I c 7 and Xi, X2, . . . are subcontinua of Y 
with X = lim^ooAV, then for every subcontinuum A of X there exist continua 
Ai, A2, . . . with Ai a X{for each i such that A = lim^o^-. 

THEOREM 7.5. ([23, 5.2]). Let X be a continuum. Then the following are 
equivalent: 

(a) X is in Class(P); 
(b) iffj,: C(X) -> [0,1] is a Whitney map for C(X) and A is a subcontinuum 

of fTl{t) for some t e [0, 1] with [JA = X, then every irreducible subcon
tinuum AofX with Ae jjTl(t) belongs to A; and 

(c) if Y is continuum with X a Y and Xh X2, . . . are subcontinua of Y 
with X = lim^oo^-, then for every irreducible subcontinuum A of X there 
exist continua Al9 A2, . . . with A; a Xtfor each i such that A = lim,^^,-. 

For an extensive discussion on the subject and for more results we refer 
the reader to [25]. 
Added in proof. 1) Question 1 has been answered in the affirmative (see 
[85]). 

2) Nadler [74] has announced a negative solution to 
question 3. 
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