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SOME REPRESENTATION THEOREMS
A. DE KORVIN AND R. J. EASTON

1. Introduction. Much has been written concerning integral repre-
sentations of continuous linear transformations on spaces of functions.
See, for example, [2], [3], [4], [5], [6], [7], [8], [9], [10]
and [11]. In all of these articles the functions were defined on a
compact Hausdorff space. In [1], the following representation
theorem is given. Let H be a normal topological space and let
Cg*(H, R) denote the dual of the space of all bounded continuous
real-valued functions defined on H. Then, if ® € Cg*(H, R), ®(f)
= [y f du, where u is a finitely additive, regular, bounded, real-
valued measure defined on the field generated by the closed subsets
of H. The purpose of this paper is to obtain a similar representation
theorem in the vector valued setting of [2], [3], [4], [7], [9],
[10] and [11]. The functions are defined on a normal topological
space H, with their range spaces being totally bounded subsets of
a linear normed space X. The map & is bounded and linear from this
space of functions to a linear normed space Y and the measure K
has values in B(X, Y*¥), the space of all bounded linear maps from
X to the bidual of Y.

In the second part of the paper, results similar to those of R. J.
Easton and D. H. Tucker in [2] are obtained. A Lebesgue type
theory is developed and a representation theorem is obtained.

The authors point out that these techniques would yield similar
results in the setting of Goodrich [5] and [6] and Swong [8].

The authors would also like to thank the referee for his comments, in
particular those which allow us to state Theorem 3.2 in its present
form.

2. Notations. Let H be a normal topological space and let X and
Y be linear normed spaces; let Cg(H, X) denote the space of all
X-valued, continuous, and bounded functions defined on H. Let
Crg(H, X) denote the functions of Cg(H, X) which are totally
bounded, i.e. their range is a totally bounded subset of X, F denotes
the field generated by the closed subsets of H, and Sp(H, X) denote
the simple functions, over F, from H to X. The dual and bidual of
Y will be denoted by Y* and Y** respectively.
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3. Representation theorems. If E € F, we denote the characteristic
function of E by Xg, and for x € X, the X-valued function Xg -x(t)
= Xg(t) 'x. Similarly, f-x is defined for any real-valued function f,
and any x in X.

Let f* be any element of Cg*(H, X) and let f be any element of
Cs(H, R). Define ® in Cg*(H, R) by the equation

®(f) = f*(fx),

for x in X. We now make use of the representation theorem on p.
262, Theorem 2 of [1], to obtain a unique regular, finitely additive,
bounded, real-valued measure defined on F, which we denote by
Uy, p+, such that

o= [, fdus.
Define
X, x(f*) =u,, p(E).
Then
sup  [Xeu(f*)] = sup |uop(E)| = sup |u, o
=1 =1 =1
(variation of u, p)
and since
lus ol = @ = sup |@(H|= sup [f*(fx)I= x|
IAl=1 =1

if |f=1 we have |Xg.|= |x|. Furthermore, Xz, is clearly
linear on Cg*(H, X) and hence Xz , € C**(H, X).

We now identify the simple function X 'x with the element Xg, .
of Cg**(H, X) since this identification is an isometric isomorphism.
See [11], for more detail. From this point on we will not distinguish
between the simple function Xg-x and its corresponding element
XE, x in CB**.

LemMa 3.1. If {e), e, - * -, ey} is any partition of H, with ¢; € F
andx; €EX, i=1,2, - -, n, then

n
I3 5
i=1

Proor. Consider f* € Cg*(H, X), with [|f*|| = 1. Then

= max||x|x.
c= i

(82 )00 =[5, wo
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where u; = U, ¢+ Each u; is a regular, finitely additive, measure on
F with finite variation. Hence for each i there exists a closed set
¢; C e; such that

luil|(e: = ¢:) < el3n.

Since H is normal there exists disjoint open sets o; such that ¢; C o;
and

[[if|(0:i = €:) < €l3n,
also there exist closed G; sets ¢;’ such that
¢iCc' Co
Therefore

Hence

M

2 u,'(e,-) =€+

i=1 i

wi(ci').

I
—

Since H is normal and each c; is a closed G;, pick a sequence {fi:}
of continuous real-valued functions such that 0= f;(t) = 1 for all
t and fi(t) = 1 on ¢;’, the support of f; , supp fi, C 0;, and ﬂ,i,\kxc'g,
for each i. Then

,2":1 ui(ci’) , = ,lim 2‘1 IH fridu , ,
since

J‘H lﬁc,i - Xl'}‘l = IUM_CI ,f;c,i - Xc}IdUi
= 2f|uif|(ur, — ")
where u, O supp f, and the u, may be chosen such that
fludl|(uy, = ¢:') < 1/k. We have
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[, fudus = £, ),

@)1l

i
g
£
™
S

II/\

Tim  sup 2 [fx, t)lmax flc |-

k teng i=1

But, since the supp fi ; are disjoint and 0 = fi () = 1

S fi(t)y =1 forallt € H.
i=1

Hence

' Y uia’) I = max ||xi.
i-1 i
Thus

n
(3 %em ) (fM=e+ max x|
i=1 i

foralle > 0 and for all f*, || f*| = 1, so

n
I 2 Xei "X
i=1

As before X and Y are linear normed spaces and B(X, Y**) will
denote the space of all bounded linear transformations from X to
Y** Let K be any finitely additive set function defined on F with
values in B(X, Y*¥*),

DeFiniTioN 3.1. The set function K is said to be weakly regular
if for each x in X and y* in Y*, the real-valued set function y*K( )x is
regular.

DeFINTION 3.2. The set function K is said to satisfy the Gowurin

= max ”x,”
i



SOME REPRESENTATION THEOREMS 565

property if there exists a constant P such that for any partition
ey, e, *°*, e, of H, with ¢; in F and for any choice of x; in X, the

following holds:

n

Y K(e) x; =P max [l x-

i=1 *

The greatest lower bound of the constants P is called the X-Gowurin
constant for K.

DeFiniTION 3.3. A function f from H to X is said to be integrable
with respect to K if for each € > 0 there exists an e-partition of H
with respect to f, and there exists a point y** in Y** such that for
each d > 0, there exists a partition P of H into elements of F, such
that if e, ep, * * -, e, is any refinement of P, with e; in F, then for
any choice of t; in ¢;,

n

=y K(e,-)f(t,-)”yu< d.

i=1

We denote the point y** by [y dK-f.
Note. It is clear that any function of the form 2{'=1 Xk, ' x;, E;in F,
and x; in X, is integrable and

J- dK < EXE, 'x;)= 2 K(E,) * Xi.
H i=1 i=1

Now let T denote a continuous linear transformation from Cg(H, X)
toY.

Lemma 3.2. For each such T, there exists a finitely additive,
weakly regular, Gowurin set function K, defined on F with values in
B(X, Y**), given by

K(e) * x = T**(X, - x),
for each e in F and x in X.

Proor. Consider a partition {e;, e, - -, e,} of H, with e; in H
and x;, xg, * * *, x, in X. We have

Y*x

| él K(e;) *x;

T** ( 2 Xe,.'x,-)
Ji=1

Y**

= {71 3 %

= |7 max |x,
Cp** i
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from Lemma 3.2. Now for y* in Y* and x in X, let A(e) = y*K(e) x,
then

Me) = y*K(e) ‘x = y*(T**(X.x)) = X x)(T*(y™))
= Uy, 1e(y)(€)
where u, 7++) is regular.
Lemma 3.3. Forfin Cp(H, R) and x in X, f-x is integrable.

Proor. Consider € > 0. Since f is bounded and continuous there
exists an e-partition P = {e;, ey, ' -, e,} of H with respect to f,
with e; in F for each i. Hence let y** = T*¥(f-x) and let {E,, E,,
-+, En} be any refinement of P, with E; € F. Then if x; € f-x(E)),
x; = rj-x where r; € f(E;). Therefore,

y**— 2 K(E)) -x;
i=1

Y**

rosga = o (3 xx)

Y**

= |7]-

m
fx— Xgrrx
i=1

Consider c* in Cg* such that ||c*|| = 1, then since

CB*&.

H xEllduc‘,rjx = J'H Q'xEj'duc",x

we have

(2= § %) 9

. _ e <.
[ fdue.— | 3 X I_e l[1x.

The previous lemma along with Lemma 3.1 gives us fhe following
Riesz representation theorem.

TueoreMm 3.1. Let T be a continuous linear transformation from
Cs(H, X) to Y, then there exists a unique weakly regular, finitely
additive, B(X, Y**) valued, Gowurin set function defined on F, such
that

[T(f-2]* = | dK(fx)
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forall fin Cg(H, R) and all x in X.

Proor. The existence of K follows from Lemma 3.1, and from
Lemma 3.3, we have that for all fin Cg(H, R) and x in X,

T*(fx) = [T(f-x)]** = .Lz dK(f x).
The uniqueness will follow from the same technique as we will
use in Theorem 3.2.

TueoREM 3.2. Let T be a continuous linear transformation from
Cp(H, X) to Y, then there exists a unique, finitely additive, weakly
regular, Gowurin set function defined on F, with values in B(X, Y**)
such that every f in Crg(H, X) is integrable with respect to K.
Moreover,

*k( L) — .
™) = [ dKf,
forall fin Crp(H, X).

Proor. From Lemma 3.2, let K be the finitely additive, weakly
regular, Gowurin set function, defined on F, which is given by the
equation

K(e) 'x = T**(X, x).

From Theorem 3.1 it will follow that each f in Crg(H, X) is
integrable with respect to K, and that

() = [ dK-f

once it is shown that the collection of functions of the form {f - x},
fin Cg(H, R) and x in X, are dense in Crp(H, X) in the uniform norm.
This is shown as follows: given fin Crp(H, X), and € > 0, there exists
a finite cover N(f(t;), €/2) of the range of f. Let

Vi= {tlIfit) — )] < €},
and

Wi = {t]|If(t) — ft)|| <el2},
then

0 W,D H and W,C Vi.

i=1

Let H; be the union of all the W; contained in V. By Urysohn’s
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lemma there exists {g;} continuous with 0=g; =1, gg=1 on H,,
and g = Ooff Vi. Let

h1=g1, h2=(1—g1)'g2,"‘,

hn = (1 - gl)(l - gZ) o (1 - gn—l)gm
then

hi+hys+ ---+h,=1, and h;=00ff V,,

and

<e€

5 0]
i=1

where x; = f(t;).

Now suppose K’ is any other weakly regular, finitely additive,
Gowurin, B(X, Y**) valued set function defined on F such that
JudK - f exists for all f in Crg(H, X). Then for f in Cg(H, R) and
x in X, we have from Theorem 3.1 for y* in Y*,

(T 2y = ([ dK'(F 2. y* ).

Therefore
(T(f - x),y*) = (f -2, THy) = [ fdug o
Since
U, 1om(€) = Xe - x, T*(y*)) = (T*(X, - x), y*)
= (K(e) " x,y*),
let
Ae) = (K'(e) " x, y*).
Then by showing that

[ fran= | fdu e

for all f in Cg(H, R), since A and u, r+,+ are regular, we conclude
from the uniqueness of the measure in [1, p. 262], that A = u, 7xyx).
Consider X,, e in F, then

[, xean =) = (K'(e) - xy) = ([ dK'( -2, 3% ).

Hence,

[, e, aoas),
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and since
<IH dK’(f * x), y* >= J'H fdux, T*(y*)>
we have A = u, 7++. Thus
(K(e) - x,y*) = (K'(e) - x, y*)
for all x in X and y* in Y*, and therefore K= K'.

4. DEeriniTioN 4.1. A function ffrom H to X is said to be integrable
with respect to K, over a set E in F, if for each € > 0, there exists an
e-partition of E with respect to f, and there exists a point y** in
Y** such that for each d > 0, there exists a partition P of E into

elements of F, such that if e}, e;, * * *, e, is any refinement of P, with
e; in F, then for any choice of ¢; in e;,

<d.
Y**

v~ 3 K fie

We denote y** by [ dK - f.

Lemma 4.1. Consider E in F. If K is any finitely additive set
function defined on F with values in B(X, Y**), which satisfies the

Gowurin property over H, then for any two partitions { Py, Py, - - -,P,}
and {Q), Q2 * ", Om} of E, with P; and Q; in F, and for any choice
of x1,%g, " * *, % and Yy, Ya, * * *, Ym in X, then

| > K(P) x— Y KQ) 'yj”Y = W max [|x; — yjfx
i=1 i=1 ** ij

where W denotes a Gowurin constant for K.

Proor. This follows directly from the fact that if {e, ey, - -, €,}
is a partition of E, {e, ey, * ‘', e,, H— E} is a partition of H and
the fact that K is Gowurin over H.

Tueorem 4.1. If f is any K-integrable function over H and E
is any element of F, then f is K-integrable over E. Moreover,

IE dK 'f= fHdK(XE f)

Proor. Consider a sequence {€,} of positive numbers such that
€, \0 as n— ®©. For each n, there exists an e,-partition of E
with respect to f. If we denote this partition by P, = {P\", Py",

, Pry} and we let y, = D I™K(P" f(tm) for a choice of #" in
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P, then from Lemma 4.1, {y,} forms a Cauchy sequence in Y**
and hence converges to a y** in Y** since Y** is complete. Also
from Lemma 4.1 it follows that the convergence to y** does not
depend on the choice of t;* in P;".

For the last part of the theorem we note that if we let Pj,).,
= H — E, then

r(n)+1

Yn = K(Pi"Xg - f(t:")

i=]

which converges to [y dK(Xg - f).
From Theorem 3.2, we have:

CoroLrary 4.1. Every f in Crg(H, X) U Sg(H, X) is K-integrable
over every E in F.

DeFiNiTION 4.2. If G is a finitely additive set function defined
on F with values in a linear normed space S, the semivariation of
Gover a set E in F is defined to be

n
(G, E)=sup || > nGe;) S
i=1
where the supremum is taken over all finite partitions {e, e, * -, e,}
of E, with e; in F, and over all finite collections {ry, ry, - - -, r,} of

real numbers with |r;] = 1 for all i.

We now denote P(H, X) = span (Crp(H, X) U Sp(H, X)) and for
fin P(H, X) we let Af(E) = [z dK - f. Then As is a finitely additive
set function from F to Y** For f any bounded function from H to
X, we will use the notation |f|lc = sup:eu|f(t)|x. Hence for f
in P(H, X) since K is Gowurin,

IME)| = Wil|fllc

where Wyx denotes the Gowurin constant for K over H. From
Lemma 4, p.320 of [1], we conclude that

V(Ar, E) = 2Wk||f]lc
forall Ein F.

LemMma 4.2. For fin P(H, X), v(A; H) = 0 if and only if [p dK - f
= 0y.. forallEin F.

Proor. The proof follows easily from the inequality

[ x5 |),.. = v
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DeriniTioN 4.3, If fy, fo € P(H, X) we say that f; is equivalent
tofa, fi~fo, ifandonly if [p dK - fy = [gdK - fyforall Ein F.

It follows from Lemma 4.2, that f; ~ f, if and only if v(As, 4, , H) = 0.
Moreover, this relation is an equivalence relation on P(H, X), and
we denote the equivalence class determined by f, by [f].

DEeFinITION 4.4. For fin P(H, X), we define

AT = 10 Ik = o0y H).

The fact that || - [ is a norm on the collection P(H, X) of equiv-
alence classes [f], f in P(H, X) follows from Lemma 4.2 and the
following easily established lemma.

LemMa 43. For f; and f; in P(H, X), if we denote \\(E)
= JgdK-fi, M\(E)= [gdK-fo, and (kn))(E) = [g dK- (kf,), then

(a) v(A\y + A2, H) = v(A}, H) + v(Ay, H), and
(b) v(kry, H) = |klo(A,, H).

DerFiniTION 4.5. We define the space Lg!(H, X) to be the com-
pletion of P(H, X), the completion being in the norm || - |

CoroLLarY. The collection Sp(H, X) is dense in the space Lx'(H, X)
in the norm || - ||x.

Proor. This follows directly from the inequality
oA, H) = 2W|f]lc

for all fin P(H, X) and for all E in F.

Remagk. It is pointed out by the authors that the results of §3 in
[2] could all be proved in this setting, the reader is referred to that
paper for statements and proofs.

5. A representation theorem. Consider K as above and suppose
that G is any finitely additive set function defined on F with values
in B(X, Z**), Zbeing a linear normed space.

DeriniTION 5.1. The set function G is said to be strongly Lipschitz
with respect to K if and only if there exists a constant P such that

for any E in F, any partition {e;, e;, - - -, e,} of E, with ¢; in F,
and any collection {x;, x5, * ‘-, x,} of elements of X, then there
exists a partition {E;,, Es, *'*, E,} of H and a collection {aj,
ap, * * *, ay } of real numbers with E; in F and ;| = 1, such that
, 2 C(e,-) * X =P E K(e,- N Ej)ajx,-
1'=1 z** i,j Y**
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The greatest lower bound of the numbers P is called the strong
Lipschitz constant for G with respect to K.

LemMma 5.1. If K satisfies the Gowurin property and G is strongly
Lipschitz with respect to K, then G is Gowurin over H.

Proor. The proof follows directly from the definition, the Gowurin
constant for G being less than or equal to the product of the Gowurin
constant for K and the strong Lipschitz constant for G.

The representation theorem and its converse are now stated, the
proofs being very similar to those in [2].

THEOREM 5.1. Let A be any continuous linear transformation
from Lg'(H, X) to a linear normed space Z, then there exists a finitely
additive set function G, defined on F with values in B(X, Y**), such
that G satisfies the strong Lipschitz condition with respect to K,
and such that [A(f)]** = [udG - f, for dll f in Lg'(H, X), the
integral being defined as before.

Proor. We simply point out that A is continuous on Lg!'(H, X)
in the norm || - ||¢, and refer the reader to [2] for details.

TueoreM 5.2. Let G be any additive set function defined on F
with values in B(X, Z**), where G is strongly Lipschitz with respect
to K. Then [4dG -f exists for all f in Lg'(H, X) and defines a
continuous linear transformation from Lg(H, X) to Z**,
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