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SOME REPRESENTATION THEOREMS 
A. DE KORVIN AND R. J. EASTON 

1. Introduction. Much has been written concerning integral repre­
sentations of continuous linear transformations on spaces of functions. 
See, for example, [2], [3], [4], [5], [6], [7], [8], [9], [10] 
and [11]. In all of these articles the functions were defined on a 
compact Hausdorff space. In [1], the following representation 
theorem is given. Let H be a normal topological space and let 
CB*(H, R) denote the dual of the space of all bounded continuous 
real-valued functions defined on H. Then, if <1> G CB*(H> K), <&(/) 
— IH f du, where u is a finitely additive, regular, bounded, real-
valued measure defined on the field generated by the closed subsets 
of H. The purpose of this paper is to obtain a similar representation 
theorem in the vector valued setting of [2], [3], [4], [7], [9], 
[10] and [11]. The functions are defined on a normal topological 
space ff, with their range spaces being totally bounded subsets of 
a linear normed space X. The map 4> is bounded and linear from this 
space of functions to a linear normed space Y and the measure K 
has values in B(X, Y**), the space of all bounded linear maps from 
X to the bidual of Y. 

In the second part of the paper, results similar to those of R. J. 
Easton and D. H. Tucker in [2] are obtained. A Lebesgue type 
theory is developed and a representation theorem is obtained. 

The authors point out that these techniques would yield similar 
results in the setting of Goodrich [5] and [6] and Swong [8]. 

The authors would also like to thank the referee for his comments., in 
particular those which allow us to state Theorem 3.2 in its present 
form. 

2. Notations. Let H be a normal topological space and let X and 
Y be linear normed spaces; let CB{H, X) denote the space of all 
X-valued, continuous, and bounded functions defined on H. Let 
CTB(H> X) denote the functions of CB(H, X) which are totally 
bounded, i.e. their range is a totally bounded subset of X, F denotes 
the field generated by the closed subsets of H, and SF(H9 X) denote 
the simple functions, over F, from H to X. The dual and bidual of 
Y will be denoted by Y* and Y** respectively. 
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3. Representation theorems. If E G F, we denote the characteristic 
function of E by XE, and for x G X, the X-valued function XE 'x(t) 
= XE(£) x. Similarly, f-x is defined for any real-valued function / , 
and any x in X. 

Let / * be any element of CB*(H, X) and let / be any element of 
CB(H, R). Define* in CB*(H, R) by the equation 

•(/)=Af-*)> 
for x in X. We now make use of the representation theorem on p. 
262, Theorem 2 of [1], to obtain a unique regular, finitely additive, 
bounded, real-valued measure defined on F, which we denote by 
uXy/*, suchthat 

*(/) = jE fdux,r-

Define 

XE,x(f*)=Ux^(£). 

Then 

sup \XEAf)\ 
lirici 

and since 

K / * l l = 11*11 = sup |d>(/)| = sup \f(f-x)\^\\x\\ 
IWlsi MISI 

if ||/*|| =? 1, we have ||X£,*|| = ||*||. Furthermore, XE,X is clearly 
linear on CB*(H, X) and hence XE,X G C**(H, X). 

We now identify the simple function XE -X with the element XE, % 
of CB**(H, X) since this identification is an isometric isomorphism. 
See [11], for more detail. From this point on we will not distinguish 
between the simple function XE X and its corresponding element 
XE, x in CB** 

LEMMA 3.1. If {eb e2, ' ' % en] & U*M/ partition of H, with e{ G F 
and Xj G X, i = 1, 2, • • -, n, £/ien 

I l n II 
S x<i'*< ^max||xi| |x. 

Ili=i He** i 

PROOF. Consider/* G CB*(H, X), with ||/*|| g 1. Then 

IK,?,*.-"»)«*»!!-!,?, " « I 

= sup K,/*(£)! = sup ||wx,r|| 
iifii^i illusi 

(variation of wx,y*) 
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where u, = Ux,j* Each Ui is a regular, finitely additive, measure on 
F with finite variation. Hence for each i there exists a closed set 
d C ßi such that 

H R * ~ Ci) < 6/3n. 

Since H is normal there exists disjoint open sets Oi such that Ci C o* 
and 

N|(o< - Ci) < €/3n, 

also there exist closed Gô sets e* ' such that 

C((Z Ci' G Oi. 

Therefore 

| Ì m(*)- 2 «,(<*') I 

I n n I I n n I 

S «*<(*«) " S Wi(Ci) I + S Ui(Ci) ~ S Wi(°i) 
i = l i = l • • i = l i = l • 

+ 1 2 «to) + 2 «*(«•') | = « 

2 «<(ei)^e+ 2 «*(<*')• 
t = l t = l 

Since H is normal and each Ci is a closed Gs, pick a sequence {fk,i} 
of continuous real-valued functions such that Oêfki(t)ê 1 for all 
t and fkti(t) = 1 on a', the support offk., supp/fc. C oh and fk,i\

kXcl, 
for each f. Then 

| 2 «ite') I = I lim 2 \H kidui\, 

since 

[„ \fk,i- X . ; l = f \fKi-Xc,\d^i 

S2|M|(ufc|-c') 
where ufc D supp /fci and the uk may be chosen such that 

HK«k, ~ c ' ' ) < 1/fc- We have 

Hence 
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jHfkidUi=f(fki-xi\ 

and so, 

=iHn7 II £ fki-Xi | | ^ T t a sup K fki(t)-Xi\ 
fe M i=l II fc t 6 H ' i = i 

^ lim sup S lf fc |(t)lN| 
* f G H i = l 

^ lim sup J ) [£.(*)| max ||x<||. 
k tGH » = 1 « 

But, since the supp/fe f are disjoint and 0 ^ ^,i(£) = 1, 

Hence 

Thus 

S A W ^ l foralU G H. 

I n I 

2 "*(<*'.) ^ max ||xj||. 
f = l • i 

( S X e | - x j ) ( / * ) ^ 6 + max| |x, | 

for all € > 0 and for all/*, |[f*|| g 1, so 

2 Xej-xf g max||xi||. 
i = l M i 

As before X and Y are linear normed spaces and B(X, Y**) will 
denote the space of all bounded linear transformations from X to 
Y**. Let K be any finitely additive set function defined on F with 
values in B(X, Y**). 

DEFINITION 3.1. The set function K is said to be weakly regular 
if for each x in X and t/* in Y*, the real-valued set function y*K( -)x is 
regular. 

DEFINITION 3.2. The set function K is said to satisfy the Gowurin 
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property if there exists a constant F such that for any partition 
ei, e2, • • •, en of H, with e{ in F and for any choice of x* in X, the 
following holds: 

II J Kiejxill g P - maxll^llx. 
Il t=i II y** * 

The greatest lower bound of the constants F is called the X-Gowurin 
constant for K. 

DEFINITION 3.3. A function / from H to X is said to be integrable 
with respect to K if for each € > 0 there exists an €-partition of H 
with respect to / , and there exists a point y** in Y** such that for 
each d > 0, there exists a partition F of H into elements of F, such 
that if ei, e2, ' * ', en is any refinement of F, with e{ in F, then for 
any choice of U in eif 

|| y**- £ K(ei)f[ti)^^<d. 

We denote the point y** by /# dK •/ 
Note. It is clear that any function of the form 5)"=1 XE, • x*, F» in F? 

and Xj in X, is integrable and 

[ „ « « ( £ XE, ^ ) = i K(Ei) ' *• 

Now let T denote a continuous linear transformation from CB(H, X) 
toY. 

LEMMA 3.2. For each such T, there exists a finitely additive, 
weakly regular, Gowurin set function K, defined on F with values in 
B(X, Y**), given by 

K(e) • x = r**(X* • x), 

for each e in F and x in X. 

PROOF. Consider a partition {eh e2, * * •, en} of H, with e* in H 
and Xi, x2, • • •, xn in X. We have 

lll,«HHh*(l,x^)L 
S imlll J X.,-^11 a | T | | m a x W , 

II i = i II CB** t 
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from Lemma 3.2. Now for y* in Y* and x in X, let X(e) = y*K(e) x, 
then 

k(e) = y*K(e)-x = y*(T**QCe'x)) = (X,-x)(T*(t/*)) 

= Ux,T*(y*)(e) 

where uXi T*iy*} is regular. 

LEMMA 3.3. For fin CB(H, R) and x in X,f-x is integrable. 

PROOF. Consider e > 0. Since / is bounded and continuous there 
exists an e-partition P = {eu e2> * * ', en} of H with respect to fi 
with ei in F for each i. Hence let y** = T**(f-x) and let {£i, E2, 
- - -, Em} be any refinement of F, with Ej G F. Then if Xj Œf'x(Ej), 
Xj = rj-x where rç Çzf(Ej). Therefore, 

m 

= || T**(f'x) - T** ( J XE /rrx)| 

II i=i II cB* 

Consider c* in CB* such that ||c*|| ^ 1, then since 

XE • dUç*, r x = ?j ' XEj * duc*, x 

we have 

|.(/'x- 5 V'"*) (c*) 

= J f'dUc*iX - f XEi'rjdu(*^ ^ € - | | x 

The previous lemma along with Lemma 3.1 gives us the following 
Riesz representation theorem. 

THEOREM 3.1. Let T be a continuous linear transformation from 
CB(H, X) to Y, then there exists a unique weakly regular, finitely 
additive, B(X, Y**) valued, Goumrin set function defined on F, such 
that 

[T(f-x)]**=\HdK(f-x) 
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for all fin CB(H, R) and all xin X. 

PROOF. The existence of K follows from Lemma 3.1, and from 
Lemma 3.3, we have that for a l l / in CB(H, R) and x in X, 

T**(j.x)= [T(f-x)]** = | dK(f-x). 

The uniqueness will follow from the same technique as we will 
use in Theorem 3.2. 

THEOREM 3.2. Let T be a continuous linear transformation from 
CB(H, X) to Y, then there exists a unique, finitely additive, weakly 
regular, Gowurin set junction defined on F, with values in B(X, Y**) 
such that every f in CTB(H, X) is integrahle with respect to K. 
Moreover, 

T**(f)= \H dK-f 

forallfinCTB(H,X). 

PROOF. From Lemma 3.2, let K be the finitely additive, weakly 
regular, Gowurin set function, defined on F, which is given by the 
equation 

K(e)'x=T**(Xe-x). 

From Theorem 3.1 it will follow that each / in CTB(H, X) is 
integrable with respect to K, and that 

T**(f) = jH dK -f, 

once it is shown that the collection of functions of the form {f * x}, 
fin CB(H, R) and x in X, are dense in CTB(H, X) in the uniform norm. 
This is shown as follows: given fin CTB(H, X), and e > 0, there exists 
a finite cover N(f(ti), c/2) of the range off Let 

V i = { t | | l / ( * ) - / ( * ) | | < e } , 

and 

W , = { t | | l f ( t ) - / ( * ) | | < e / 2 } , 

then 

Ü Wi D H and W{ C V<. 
i = l 

Let Hi be the union of all the Wt contained in V*. By Urysohn's 
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lemma there exists {gi} continuous with 0 a gi â 1, gi = 1 on H^ 
and g = 0 off Vi. Let 

hi = gi, h2 = (1 - gx) • g2, • • ', 

K = (1 - gi)(l - g2) ' * ' (1 - g»-i)g», 

then 

hx + fc2 H- • • • 4- hn = 1, and /ii = 0 off V*, 

and 

2 hiXi - f 
i = l 

<€ 

where x{ = f(t{). 
Now suppose K' is any other weakly regular, finitely additive, 

Gowurin, B(X, Y**) valued set function defined on F such that 
indK - /exists for all / in CTB{H, X). Then for / in CB(H, R) and 
x in X, we have from Theorem 3.1 for y* in Y*? 

(T(f-x),y*)= (\H dK'(f-x),y*). 
Therefore 

(T(f • x), y*) = < / •* , T*(y*)) = ^ fdux, ,,<„.,. 

Since 

t/x, T*(,*)(e) = (X, • x, r*(y*)> = (T**(Xe • x), t/*> 

= (K(e) -x9y*)9 

let 

A(e) = (K'(e) -x,y*>. 

Then by showing that 

J H f ' d k = \Hfdu*>T*(y*î 

for all / in CB(H, R), since X and ux, T*(y*) are regular, we conclude 
from the uniqueness of the measure in [1, p. 262], that A = ux^ r*(y*y 

Consider Xe, e in F, then 

\H Xedk = k(e) = <K'(e) • x,t/*> = ( JH dK'(Xe ' x),y* ) . 

Hence, 

j „ M = (jHdK'(/--*),y*), 
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and since 

{\HdK'(S-x),y*)=\Hfdux,T^), 

we have X = uX} r*(y*>. Thus 

(K(e) - * , y * > = (K'(e) •*,*/*> 

for all x in X and t/* in Y*, and therefore K = K '. 

4. DEFINITION 4.1. A function/from H to X is said to be integrable 
with respect to K, over a set E in F, if for each e > 0, there exists an 
€-partition of E with respect to f and there exists a point t/** in 
Y** such that for each d > 0, there exists a partition F of E into 
elements of F, such that if e1? e2, ' ' ', en is any refinement of F, with 
e» in F, then for any choice of ti in ^ , 

II«/**- ± K(eO-/(*) | |^<d. 

We denote j / * * by JE rfK • / 

LEMMA 4.1. Consider E in F. If K is qny finitely additive set 
function defined on F with values in B(X, Y**), which satisfies the 
Gowurin property over H, then for any two partitions {Piy F2, • • *,Fn} 
and {Qi, Q2, ' ' > Qm} of E, with P{ and Q, in F, and for any choice 
of Xi, x2, ' ' *, xn and yÌ7 y2, ' * •, ym in X, then 

II ± K(Pi) • Xi - § K(ô) • j J I ^ W max ||x, - j ^ , 
II i = i i = i IIY** U 

where W denotes a Gowurin constant for K. 

PROOF. This follows directly from the fact that if {eÌ7 e2, • • •, en} 
is a partition of E, {eu e2, • • -, £n, H — E} is a partition of H and 
the fact that K is Gowurin over H. 

THEOREM 4.1. If f is any K-integrable function over H and E 
is any element of F, then f is K-integrable over E. Moreover, 
JEdK-f= fHdK(XE • / ) . 

PROOF. Consider a sequence {€n} of positive numbers such that 
£n \ 0 a s n ~~* °° • For each n, there exists an €n-partition of E 
with respect to f If we denote this partition by F€ = {P\n, P2

n, 
• • -, Fr

n
(n)} and we let yn = St r=iK(ptn)/(^n) for a choice of Un in 
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?in, then from Lemma 4.1, {yn} forms a Cauchy sequence in Y** 
and hence converges to a y** in Y** since Y** is complete. Also 
from Lemma 4.1 it follows that the convergence to y** does not 
depend on the choice of tin in Pf. 

For the last part of the theorem we note that if we let Fr
n(n)+i 

= H - E, then 

yn=r{nJ£l KLPfjKE -f(tin) 

which converges to fH dK(XE ' f). 
From Theorem 3.2, we have: 

COROLLARY 4.1. Every f in CTB(H, X) U SF(H, X) is K-integrable 
over every E in F. 

DEFINITION 4.2. If G is a finitely additive set function defined 
on F with values in a linear normed space S, the semivariation of 
G over a set E in F is defined to be 

Ü ( G , E ) = sup | | i nCiei) 

where the supremum is taken over all finite partitions {e1? e2, • • -, en} 
of E, with ei in F, and over all finite collections {fi, r2, • • -, rn} of 
real numbers with |r» | = 1 for all i. 

We now denote P(H, X) = span (CTB(H, X) U SF(H, X)) and for 
/ in P(H, X) we let X/(E) = fE dK • f. Then A/ is a finitely additive 
set function from F to Y**. For f any bounded function from H to 
X, we will use the notation | | / | |c = sup,en|[f(£)||x- Hence for f 
in P(H, X) since K is Gowurin, 

||V(E)|| ^ WK | |/| |C 

where WK denotes the Gowurin constant for K over H. From 
Lemma 4, p. 320 of [1] , we conclude that 

V(XF, E) =Ì 2WK | |/ | |c 

for all E in F. 

LEMMA 4.2. For f in P(H, X), v(kf, H) = 0 if and only if SE dK - f 
= 0Y** for all Ein F. 

PROOF. The proof follows easily from the inequality 

[ dK / II gü(V,H). 
1 £ Il Y** 
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DEFINITION 4.3. If fÏ9 f2 €= P(H, X) we say that fa is equivalent 
to/2> fi~fe, if and only if/£ dK • fi = ÎE dK • f2 for all E in F. 

It follows from Lemma 4.2, that fi ~~ f2 if and only if Ü(X/J-/2 , H) — 0. 
Moreover, this relation is an equivalence relation on P(H, X), and 
we denote the equivalence class determined byf by [f]. 

DEFINITION 4.4. For fin P(H, X), we define 

Hfih=Hf]U = ^H). 
The fact that || * ||K *S a norm on the collection P(H, X) of equiv­

alence classes [f\, f in F(H? X) follows from Lemma 4.2 and the 
following easily established lemma. 

LEMMA 4.3. For fY and f2 in P(H9 X), if we denote k\(E) 
= JEdK-fl9 k2(E)= fEdK-f29 and (fc\i)(F) = SE dK- (kf), then 

(a) U(AI + À2, H) g v(kl9 H) + Ü(X2, H), and 

Q>)v(kkl9H)= \k\v(kl9H). 

DEFINITION 4.5. We define the space LK
l(H, X) to be the com­

pletion of P(H, X), the completion being in the norm || • ||K-

COROLLARY. The collection SF(H, X) is dense in the space LK
l(H9 X) 

in the norm || • ||K. 

PROOF. This follows directly from the inequality 

v(kfi H) g 2WK\\f\\c 

for a l l / in P{H, X) and for all E in F. 
REMARK. It is pointed out by the authors that the results of §3 in 

[2] could all be proved in this setting, the reader is referred to that 
paper for statements and proofs. 

5. A representation theorem. Consider K as above and suppose 
that G is any finitely additive set function defined on F with values 
in B(X, Z**), Z being a linear normed space. 

DEFINITION 5.1. The set function G is said to be strongly Lipschitz 
with respect to K if and only if there exists a constant F such that 
for any E in F, any partition {eÌ9 e2, • • -, en} of £, with ei in F, 
and any collection {xÌ9 x29 • • •, xn} of elements of X, then there 
exists a partition {EÌ9 E2, • • -, Em} of H and a collection {aÌ9 

<*2> ' ' *> otm} of real numbers with Ej in F and |cç| = 1, such that 

|| 2 G(ßj) • Xi || ZM ^ P || Y K(et n E , ) ^ | |^ 
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The greatest lower bound of the numbers P is called the strong 
Lipschitz constant for G with respect to K 

LEMMA 5.1. If K satisfies the Gowurin property and G is strongly 
Lipschitz with respect to K, then G is Gowurin over H. 

PROOF. The proof follows directly from the definition, the Gowurin 
constant for G being less than or equal to the product of the Gowurin 
constant for K and the strong Lipschitz constant for G. 

The representation theorem and its converse are now stated, the 
proofs being very similar to those in [2]. 

THEOREM 5.1. Let A be any continuous linear transformation 
from LK1(H, X) to a linear normed space Z, then there exists a finitely 
additive set function G, defined on F with values in B(X, Y**), such 
that G satisfies the strong Lipschitz condition with respect to K, 
and such that [A(f)]**= JHdG •/, for all f in LK

l(H, X\ the 
integral being defined as before. 

PROOF. We simply point out that A is continuous on LK\H, X) 
in the norm || • ||c, and refer the reader to [2] for details. 

THEOREM 5.2. Let G be any additive set junction defined on F 
with values in B(X, Z**), where G is strongly Lipschitz with respect 
to K. Then JH dG -f exists for all f in LK

l(H, X) and defines a 
continuous linear transformation from LK1(H, X) to Z**. 
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