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OBSTRUCTIONS TO EMBEDDING AND ISOTOPY
IN THE METASTABLE RANGE

LAWRENCE L. LARMORE

1. Introduction.

1.1. Preliminary definitions and summary. Throughout this paper,
“manifold” means differentiable manifold (closed or open) without
boundary, with a countable base. “Differentiable” means infinitely dif-
ferentiable, and “embedding” means differentiable embedding.

Suppose V and M are manifolds of dimension k and n, respectively,
V compact, and f:V — M is a differentiable map. An embedding
homotopy of f (abbreviated e-homotopy) shall be defined to be a
homotopy of differentiable maps, f,: V — M, for 0= ¢=1, such
that f, = f and f, is an embedding. We say that e-homotopies
{fo.} and {f,,} are isotopic if there exists a 2-parameter homotopy
of differentiable maps f,,: V. — M, for 0= 7, t = 1, such that f,, = f
and f, , is an embedding for all . Let [f;] denote the isotopy class
of {f;}, and let [V C M]; denote the set of all isotopy classes of e-
homotopies of f.

It is not difficult to show that if f is an embedding, [V C M],
naturally has the structure of an Abelian group with identity [f]
(where {f} is the constant homotopy), provided 2n > 3(k + 1).
However, this construction is not within the scope of the present paper;
we refer the reader to J. C. Becker [1] for the case when M is a
Euclidean space. [V C R" ;becomes E(V, n), the so-called embedding

roup.
i We consider three problems in this paper. The first is existence of
an e-homotopy of f, i.e., whether [V C M];is nonempty; the second is
enumeration of [V C M]g; more precisely, whether two given e-
homotopies are isotopic. The third question deals with the function
A:[VC M];— [VC M],where[V C M] is the set of isotopy classes
of embeddings of V into M, and where, for any e-homotopy {f;} of f,
A[f] = [fi], the isotopy class containing f;. As we see in §3.5,
there is an action of 7 (MY, f) on [V C M]; whose orbits corre-
spond to the image of A, where MV is the space of differentiable
functions V. — M with the compact-open topology. In §3.8, we discuss
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that action in the special case that k = 2, V = Sk, the k-sphere, n =
2k + 1, and f is inessential.

We translate the problem of existence and isotopy of e-homotopies
of f into a lifting problem, using Haefliger’s results [4]. In §3.1, we
define a 2k-manifold R*V with boundary PV, the total space of the pro-
jective bundle associated with the tangent bundle of V. R*V has the
homotopy type of the reduced deleted product of V, (VZ— Ay)/T,
where Ay is the diagonal and T exchanges coordinates. In § 3.2 we
define a pair of spaces (Y',Z') and amap my' : (Y', Z') — (R*V, PV)
such that 7y’ and 7y ' |Z' are both fibrations, and for each
e-homotopy {f;} of f we define a specific section of 7y ', ®[f] :
(R*V,PV) = (Y',Z’). The function ¢ : [M C V], — Sec(my ') which
sends each [f;] to [®[f]], the class containing ®[f;] (where
Sec (my ") is the set of homotopy classes of sections of my ', two
sections being homotopic if they are connected by a homotopy of
sections) is onto if 2n= 3(k + 1) and one-to-one if 2n > 3(k + 1)
(see Theorems 3.3.1 and 3.3.2). The obstruction theory for sections
of fibrations of pairs, developed in §2, can then be applied.

The first obstruction to finding an e-homotopy of f lies in
HYR*V; m,_,), and higher obstructions lie in H"*R*V;r,,; ) for
i= 1, where 7,,;_; is a sheaf of Abelian groups over R*V which is
not generally even locally a product sheaf, for i=0. (When
restricted to either PV or R*V — PV, however, n,,; | is locally
trivial, i.e., locally a product sheaf.) The first obstruction to isotopy
of two e-homotopies of f lies in H"~!(R*V; 7,_,); higher obstructions
lie in H**+i-Y(R*V; 7, ;) fori = 1. )

Thus (cf. Theorems 2.5.1 and 3.3.2), [V C M]is in one-to-one corre-
spondence with H**(R*V;my) if k= 2 and n = 2k + 1. This corre-
spondence is canonical if f is an embedding; [ f] then corresponds to
0. Identifying the two sets in that case, we then say that [V C M],is
an Abelian group.

1.2. Applications. Suppose now that V= Sk for k=2, and n=
2k + 1. Let x € M be a basepoint, and let f: Sk — M be a base-
point-preserving embedding. Define d:7 (M, x) = Z, to be the
orientation homomorphism, i.e., the kernel of d is the image of the
fundamental group of the orientation covering space of M.

Tueorem 12.1. [SKC M]; is generated by elements (g) for all
g € m,(M, x), subject only to the following relations:

(i) (1) = 0, where 1 is the identity of m (M, x).

(il) (g~1) = (—1)k*Y(=1)%eXg) forall g € m (M, x).

The reader can easily verify that if 7, (M, x) = 0, the evaluation on
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the basepoint of Sk, MS* — M, induces an isomorphism 7,(M$, f)
— (M, x), provided f is inessential; we identify these groups for
convenience.

TrHeorREM 1.2.2. Suppose f is small, i.e., f(S%) is contained in a
single chart of M, and m. (M) = 0. The action of w{M,x) on
[SKC M), is given by ({g), h)r>(—1)*®<h-Igh) for all g,
h € m (M, x).

In the following applications, 0 will be a small embedding, 7, will
be the fundamental group of the space into which we are embedding
Sk,

Tueorem 1.2.3 (Hacon [3]). For k=2, [SkC S! X §2K], is iso-
morphic to the direct sum of countably many copies of the integers,
and the action of ) = Z is trivial.

Suppose now that k= 2, and P, is a real projective r-space, for
k+2=r=2k+ 1 Let G= [SKC P, X R%*~+1],,

Tueorem 1.2.4. Case 1. If k and r are even, G = Z, and the action
of m is trivial. Case II. If k and r are both odd, G = Z, and the action
of m, is trivial. Case III. If k is even and r is odd, G = Z and the
action of m; is trivial. Case IV. If k is odd and r is even, G = Z and
the action of m, = Z, is nontrivial; the generator of w, takes every
element of G to its inverse.

Theorems 1.2.3 and 1.2.4 follow immediately from 1.2.1 and 1.2.2,
as the reader may easily verify.

1.3. Embeddings in a Euclidean space. Let V be a compact k-
dimensional manifold, as before, and let M = R». Our obstruction
theory then reduces to a simpler theory. The first obstruction to em-
bedding V in R" lies in HY(R*V; Z ), where Z = Z if n is even and <
is the twisted integer sheaf (sometimes called Z7) if n is odd. Higher
obstructions lie in H"*{R*V; Z @ ;) for i = 1, where #; is the stable
i-stem in the homotopy of spheres. The first obstruction to isotopy
of two embeddings lies in H"~!(R*V; Z ); higher obstructions lie in
Hr+i-Y(R*V; Z @ m;) for i= 1. V embeds in R" if and only if all ob-
structions vanish, provided 2n = 3(k + 1); two embeddings are isotopic
if and only if all obstructions vanish, provided 2n > 3(k + 1) [7],
[8].

2. Fibrations of pairs.

2.1. Preliminary definitions. Throughout this section, we let (K, L)
be an oriented simplicial pair, (Y, Z) another pair of spaces, and

7 : (Y, Z) = (K, L) a map of pairs such that # and # | Z are both fibra-
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tions. We say that « is a fibration of pairs over (K, L). Ifc: (K, L) —
(Y, Z) is a map of pairs such that 7 ¢ is the identity on K, we say
that c is a section of 7. We say that two sections of 7, ¢y and ¢, are
homotopic if there is a homotopy c;, for 0 = ¢ = 1, of sections of 7.
For each cell 0o CK, let E,=n"'o if o { L, and let E, =
7~lo N Zifo C L. Letw, : E, — o be the restriction of  to E,.

We can immediately pose two questions. First: When does 7 have
a section; and second: When are two sections homotopic? Suppose
A is a subcomplex of K, and h is a section of 7 over A, i.e., a map of
pairs h: (KM A, LN A) - (Y,Z) such that w° h is the identity.
The relative versions of our questions are: When can h be extended
over K, and when are two such extensions homotopic rel A?

2.2. The sheaf of homotopy groups. We shall define a sheaf =, =
ma(m) = (G, p) over the space K, which we call the sheaf of nth homo-
topy groups of 7 for any n= 1, provided that E, is n-simple for all
cells o. As a set, & will be defined to be the union, over all cells
o CK, of Into X m,(E); and p(x,a) = a for all o, all x € Into,
and all ¢ € #,(E,). The stalk of 7, over x we identify with 7,(E,).
In order to describe the topology of & it is only necessary to describe
continuous sections over open stars of cells, where, if o is a cell of
K, St o, the open star of o, is the union of the interiors of all cells
of which o is a face. We then say that a section f:Stoe — G is
continuous if for any cell 7D o and any x € Int7, f(x) = (x, i £00);
where i: E, — E, is the inclusion, x, is the barycenter of o, and
ay = f(xo). We can thus immediately identify the group of con-
tinuous sections of & over Sto with m,(E,), by evaluating each sec-
tion at x.

For any subcomplex AC K (not necessarily L) let C*=
(C*(K, A;m,), 8) be the graded differential complex of degree 1 where
CK(K, A; m,) is defined to be the set of all k-cochains, i.e., functions ¢
whose domain is the set of k-cells of K, where c(o) € m,(E,) for
each k-cell o, and where c(o) =0 if e C A. If ¢ € CKK, A;m,) is
any k-cochain, we define §c € C**!(K, A;7,) as follows: For any
(k + 1)-cell 7, let &c(r) = D [0;7]c(o), where the sum is over all
k-cells ¢ C 7, and where [o;7] = =1 is the incidence number.
According to Theorem 5.1 of [6], we may identify H*(K, A; 7,) with
the homology of the graded complex C*. If A is empty, we write
Ck(K; m,) for CK(K, B m,), etc.

2.3. The obstruction cochain. Let f: (K", L") — (Y, Z) be a sec-
tion of 7 over K» = K» U A, where K is the n-skeleton of K. We con-
sider the question of extension of f to the (n + 1)-skeleton. Let
c'tl = c*t1(f), an element of C"*(K, A;w,), be defined as fol-
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lows: If 0o C K is an (n + 1)-cell and if ¢ : S* — do is the standard
homeomorphism (whose degree is determined by the orientation of
o), we let c"*Y(o) € m,(E,) be the homotopy class represented by
the composition fe¢:S" — E,. As in the usual obstruction
setting, we have some theorems, which we state without proof (see
Hu [5, Chapter 6]).

Tueorem 2.3.1. The obstruction cochain c"*!(f) is an invariant
of the homotopy class of f rel 4, ie., if f,: (K* L") — (Y, Z), for
0=t=1, is a homotopy of extensions of h, then c"*!(f,) =

C”+l(f1).

TueoreM 2.3.2. An extension of f over K**! exists if and only if

et 1(f) = 0.
TueoreM 2.3.3. ¢+ !(f) is a cocycle.

We may thus define y"*!(f) € H**Y(K, A;7,) to be the co-
homology class of c"*+1(f).

Tueorem 2.34. y**(f)=0 if and only if f|K*~! can be
extended to Kr+1,

2.4. The difference cochain. Suppose f, and f, are sections of =
over K" which are extensions of h, End that g,, fo_r 0=t=1,isa
homotopy of extensions of h over Kr-!, g;= f,|K*~! for i=0,1.
Let d" = d"(fo, f1; g&) € C*K, A;w,) be defined as follows.

Let 7 X 1:(YX ILZX I) > (KX I,L X I) be the obvious fibra-
tion pair. We define a section F of # X 1 over Krx aIU K1 X [
as follows:

_ J(flx),t) ift=_0orl, forallx € K",
Flx, ) {(g,(x), f) ifx € R\ forallt € L
Now c¢"*{(F) & C**Y (KX I, AX IUK X dI; m,(w X 1)). But that
group is isomorphic in an obvious way to CY(K, A; m,,), since m,(m X 1)
= p~lr,, where p: K X I — K is the projection. Let d" be the image
of c"*1(F) under that isomorphism. We state without proof analogues
of the usual theorems on difference cochains.

TueoreM 2.4.1. d"(fo, f1; g:) is a homotopy invariant.

TueoreM 2.4.2. {g,} can be extended to a homotopy of f, with
f1 ifand only if d"(fo, f1; g) = 0.

TueoreM 2.4.3. 8d™(fo, f1; &) = c"*(f1) — " (fo)-

Thus, if f, and f; can both be extended to K**!, d"(f,, fi; g
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is a cocycle; let 8"(fy, fi; g&) € HYK, A; m,) be its cohomology
class.

TueoreMm 2.4.4. If k, 0=t=1, is a homotopy of fil | Kr=! with
f2 |K*~!, where f, is another extension of h over Kr, then
fo,fg, r) = d" (fo,fl, g) + dv(fi, fo; ki), where r, = g5, if 0=t =

re=rky if1i=t=1

TueoreM 2.4.5. If fy and f, can both be extended to K**!, then
g | Kr=2 can be extended to a homotopy of f, with f; if and only
if 8"(fo, fi;8:) = 0.

TueoreM 2.4.6. For any f, and any homotopy g,, as before, and, for
any d € C(K, A;m,), there exists an extension f;' of g, such that
d"(fo, fi's &) = d

2.5. A classification theorem. Suppose that 7 is (n — 1)-connected,
i.e.,, each E, is connected, and 7y = 0 for all k < n, for some integer
n= 1. Suppose also that dim K= n. Let [K, h;7] be the set of rel A
homotopy classes of extensions of h over K. (If A is empty, write
[K;7].)

TueoreMm 2.5.1. [K, h; @] can be put into one-to-one correspon-
dence with HYK, A; m,).

Proor. By successive application of Theorem 2.3.2 on the skeleta of
K, we can choose a section f, of 7 such that f, | A= h. Now let f
be any other extension of h over K. By Theorem 2.4.2, f, | K»~! and
f| Kr—'are homotopicrel A. Pickahomotopy {g,}. Let [ f] € [K h;7],
the homotopy class of f, correspond to the difference cohomology
class 8"(fo, f: g). By Theorems 2.4.1, 24.2, and 2.4.3, this corre-
spondence is well defined; by Theorem 2.4.5 it is one-to-one, and by
2.4.6 it is onto.

3. Existence of embeddings and isotopies.

3.1. The space R*M. Let M be any n-dimensional manifold, for any
integer n. Let SM and PM be the total spaces of the sphere bundle
and the projective bundle, respectively, associated to the tangent
bundle of M. Let RM = M? — Ay, the deleted product of M, and let
R*M = RM|T, where T is the map which exchanges coordinates.
We call R*M the reduced deleted product of M. Let¢: RM U SM —
RN X RN X SN~!be the map where

$(x. y) = (g~. gy, (gx — gy)lllgx — gyl)
for all (x,y) € RM, and ¢(v) = (gmv, gmv, gyo|g4v| ") for any unit
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tangent vector v € SM, where g: M — RY is any distal embedding of
M in any Euclidean space, and 7 : SM — M is the projection. Let
RM be the topological space (RM U SM, T ), where T is the unique
topology which makes ¢ an embedding. RM also has the structure
of a differentiable manifold with boundary SM; we leave verification
to the reader. Let T:SM — SM also denote the antipodal map on
each fiber of #; T then acts continuously on RM; we define R*M to
be the quotient space RM/T, also a 2n-manifold, with boundary PM.
We remark that RM and R*M have the same homotopy types as
RM and R*M, respectively, since if we remove the boundary of any
manifold, it does not change the homotopy type.

If V is another manifold and if f: V — M is an embedding, maps
Rf: RV — RM, R*f: R*V — R*M, Rf: RV — RM, and R*f:R*V
— R*M are naturally defined. Rf(x,y) = (fx, fy), etc.

Let R~ = the union of RV, for all N= 1, with the weak topology.
We then define R(M X R®), R¥(M X R~), S(M X R*), P(M X R~),
R(M X R~), and R*(M X R*), to be the unions of the corresponding
constructions on M X RN, over all integers N= 1, with the weak
topology.

3.2. The obstructions to embedding and isotopy. Let M be an
n-dimensional manifold. We replace the inclusion of pairs (R*M, PM)
C (R*(M X R*), P(M X R~)) with a fibration of pairs my : (Y, Z) —
(R*(M X R~), P(M X R~)) of the same homotopy type. Specifically,
letY= {« € R"(M X R*)! |(1) € R*M}, and

Z= {a € Y|a(t) E P(M X R%),all t},

where R¥(M X R>)! is the space of all paths in R*(M X R*) with
the compact-open topology. We let 7y (a) = a(0) foralla € Y.

Let V be a compact manifold of dimension k, and f:V > M a
differentiable map. Choose, once and for all, an embeddingi: V— R".

Let (Y', Z') be the pullback, as in the diagram:
P
(Y"z"h) ————— (v, 7)

(3.2-1) iy M
(R*vV, PV) _Res | (R*(M x R%), P(M x R™))
Specifically, we let Y' = {(r,a) € R*V X Y | R*(f,i)(r) = «(0)},
and Z'=Y' NPV XZ ay'(rra)=r and py(r,a) = a for all
(rna) €EY'.
Now if fis homotopic to an embedding, 7" has a section; specifi-
cally, if {f;} is an e-homotopy of f, let ®[f](r)= (r,a) EY’
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forallr € R*V,where, forany0 = t = 1,a(t) = R*(far, i)(r) if 0 S t =3,
a(t) = R¥(f,, (2 — 2t))i(r) if 1 =t=1 If {f} and {g:} are e-
homotopies of f which are isotopic, ®[ f] and ®[g,] are homotopic
as sections of 7),'. The converses of these two statements are true in
a suitable metastable range, as we shall see in the next paragraph;
the obstructions to finding a section of 7, ’, and to finding a homotopy
of two sections, as defined in §2, we call the obstructions to embedding
and isotopy, respectively. We let 7; denote the sheaf of homotopy
groups m;(my ') for each integer i = 1; the first obstruction to finding
an embedding of V in M homotopic to f lies in HY(R*V;m,_,);
higher obstructions lie in H"*{(R*V;m,,; ) for i= 1. The first ob-
struction to finding an isotopy of {f;} and {g,} (which can also be
thought of as the first obstruction to finding an isotopy of f; with
g, which is homotopic to {r,}, where r,= f, 5 if 0= t=1, r,=
go_y if 3 = ¢t=1) lies in H*"(R*V; 7,_,); higher obstructions lie in
Hnr+i-l (R*V, 7Tn+i—l) fori é 1.
3.3. The restatement of Haefliger's results.

Tueorem 3.3.1. Suppose 2n= 3(k + 1). Then f is homotopic
to an embedding if and only if wy,' has a section. Furthermore, if ®
is a section of my', f has an e-homotopy {f,} such that ®[f,] is
homotopic to ®.

Proor. If {f;} is an e-homotopy of f, ®[ f] is the desired section.
Suppose @ : (R*V,PV) — (Y',Z’) is a section of 7)'. Consider the
diagram

R¥V x 1 ~—LxXL gy —LxL L2
P* @ l(;[ﬂ

1 1

%

R*(M x R™) e R(MxR®)— & M2

where ¢q and ¢’ are the quotient maps, Q =1Ur: RV— V2, and
Q' is the composition (p;)*° (1 Um), where p,: M X R* - M is
projection to the first factor. The map ¢* is defined by ¢*(r, t) = of(t)
for all (r,t) € R*V X I, where ®(r) = (r,a) € Y'. G[®] and ¢ are the
unique maps which make the diagram commute and which satisfy
the equation ¢(r, 0) = R(f, i) (r) for all r € RV. Now let g,: Vo — M,,
for all 0 = ¢t =1, be the homotopy where g,(x, y) = G[®] (x, y, t) for
all (x,y) € V2. Then {g,} is an equivariant homotopy; that is, T g,
= g,o T for all ¢, and g, is isovariant, i.e., g,! Ayy = Ay. According
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to Theorem 1(a) of Haefliger [4], f is homotopic to an embedding of
Vinto M.

Examining the details of Haefliger’s proof, however, we observe that
it is possible to construct an e-homotopy {f:} of f and a 2-param-
eter homotopy h,,: V2 - M2 0=r7,¢t=1, such that hy, = g, and
hy.= f2 for all t; h, o = go and h, , is isovariant for all 7; and h,, is
equivariant for all 7, ¢. Using {h,,}, we may show that ® is homotopic
to®@[ f,]; we leave the details to the reader.

TueEOREM 3.3.2. Suppose 2n > 3(k + 1). Then two e-homotupies of
£, {f:} and {g}, are isotopic if and only if ®[f] is homotopic to
P[gl.

Proor. If {f,,} is an isotopy of {f;} with {g,}, then {® [f. J}o==1
is a homotopy of ®[f,] with ®[g]. Conversely, suppose ®,, for
0 =7 =1, is a homotopy of sections of ' such that ®;, = ®[ f;] and
®, = ®[g,]. Foreachr, let G[®,] : V2 X I —» M2 be the map as con-
structed in the proof of 3.3.1. Leth,,: V2 — M2, for 0 = 7 = 1, be the
2-parameter homotopy where h, ,(x,y) = G[®,] (x,y, t) for all (x,y)
€ V2. Note that h, o = f2 and h, , is isovariant for all 7; hO, = fo,2
and h), = g, for all 0=t =}, and hy, = f,2 and h,, = g,2 for all
3 = t=1; and h,, is equivariant for all 7,t. Thus h, |, for0=7=1,
is an isovariant homotopy of f;2 with g, which is equwarlantly
homotopic, rel f,2 and g, to the homotopy ,2: V2 > M2 0=7=1,
where 1, = f|_, f 0=S7=3, gy, , if {S7=1 Haeﬂlgers con-
struction [4, Theorem 1 (b)] then gives us an isotopy of f; with g,
which is homotopic to {r,}. The construction of the isotopy of { f,
with {g,} is routine, and left to the reader.

3.4. The structure of the sheaf m,_,(my). In this paragraph, we
insist that n = 2.

Lemma 3.4.1. Theinclusion RRM X R*) — (M X R>)%isa homotopy
equivalence.

Proor. Let h,: R* — R”, for 0 = t = 1, be the isotopy where hg
is the identity and where, for any integer m = 1 and any (m + 1)~!
=t=m-L h(x), %, - ) = (Y1, Yo, ), where y; = «x; for all
1=i<m, y;=x,_, for all i>m+1, and y, = x,cos6 and
Ym+1 = Xy, SIN G, where 6 =iw(t(m® + m) — m). Note that h; is a
homeomorphism of R” to the hyperplane H, of all points in R* with
first coordinate 0. Let g,: R* — R~, for 0=t =1, be the isotopy
where gy(x), x5, )= (x; + ¢, x5, - - ), ie., translation along the
x;-axis. We define a homotopy r.:(M X R*)2 —» (M X R~%)?,
0=t=1,asfollows:
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(x, hav, y, how) ifO=t

=
(x, v, y, g3 W) ifist=

1
r(x,v,y, w) = { 1
for all x, yEM and v, w € R*. Note that ry is the identity,
r(M X R=)2C R(M X R~), and r,(R(M X R*)) C R(M X R~) for all
t; thus r, is a homotopy inverse of the inclusion, and we are done.
Let Q = 1U w : RM — M? be the quotient map, wheren : SM — M
= Ay is the projection. Let e: R — M?2 be a fibration replacing Q,
i, R= {(r, ) E RM X (M?)! |Q° a(l) = r}, and let e(r,a) = o{0).
Let S= {(r,a) € R|p,° a is constant}, where p, : M> - M is pro-
jection to the first factor. We pick a basepoint x € M and a local
orientation of M at x, which we represent by a homeomorphism
w:S""! = SM,, SM, being the set of unit tangents of M at x. For
each loop o of M, we define a map X[o]:S""'— R,, where
R,= e \(x,x), as follows: X[o](v)= (w(v),a), where aft)=
(x, aft)), for all v € S"~!. The homotopy class of X[c] clearly de-
pends only on the homotopy class of o, hence if [o] = g € 7,(M, x),
we define X(g) to be the homotopy class of X[o] .

LEmma 3.42. As an Abelian group, m,._\(R,) is freely generated
by the set of all X(g), for g € (M, x).

Proor. Consider the commutative diagram

\
I I‘I
\
1(" 1

IR —_ . Al

where ay = (x,y) for all y E M, M," = (M — {x}) U SM,, with the
topology which makes b = @ U 7 an embedding, where U = {(r,a) €
MX M'|gea(l)y=r}, and py(r,a)=r, e(r,a)= a0), and
c(r,a) = (br,B) for all (r,a) € U, where B(t) = (x,a(t)) for all t.
Now since p,: M> > M and p,° Q are both fibrations with fibers
M and M., respectively, and since p,: U — M,” and p,: R - RM
are homotopy equivalences (as the reader can easily check), the in-
clusion S C R is a homotopy equivalence. Also (where U, = (') 'x),
¢ maps U, homeomorphically to S,= R,M S, which is of the
homotopy type of R,.

Let A: M — M be a universal covering of M, and pick x € A~ !x.
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Let M,° and U be the pullbacks, as in the diagram

M

M

M is simply connected. By a Serre spectral sequence argument, we can
show that the fiber of e (hence also that of e) is of the homotopy type,
through dimension n — 1, of the loop space of the cofiber of q, which
is a wedge of n-spheres, one for each element of 7,(M, x). We leave the
remaining details to the reader.

LemMma 343, If n(M)=0 for all 1 <r=m for some integer
2=m=n, then m,,m-2(R:) is isomorphic to m, (R ® mp_,,
where w,, _, is the stable (m — 1)-stem in the homotopy of spheres.

Proor. Let m,_;(R)®mn_y > Tpim-o(R:) be the homo-
morphism which sends each g ® h to g° h. We refer the reader to
the proof of Theorem 3.4.2 above. Since M is m-connected, R, has
the homotopy type of the loop space of a wedge of n-spheres up
through dimension n + m — 2; we omit the details.

We henceforth express elements of 7, ;(R,) as formal sums of
the X(g) for values of g € (M, x).

Let p:m,_(Ry) X m;(M? (x,x)) = m,_1(R,) be the usual (right)
action of the fundamental group of a base on the homotopy of a fiber.
We shall identify =,(M?2, (x, x)) with 7,(M, x) @ 7 (M, x) in the usual
way.

LemMa 344. If g, h€x (M, x), then uX(g), (h,1)) = X(h~'g),
where 1 € 7,(M, x) is the identity.

Proor. Let o be a loop in M which represents g, and 7 a loop
which represents h. Consider a map »:S8""! X I — S defined as
follows: ¥(v, t) = (w(v), @) forallv € S*~!and all t € I, where

olu) = (x,7(—@+ Du+1t) HO=u=tit+1),
(x,o((t + 1)u — ) iftft+ 1)=u=1

Note that [v(,0)] =X(g), [¥(,1)] =X(h~lg), and [v( ,¢)] E
ma_1(e"Y7(t), x)) for all ¢ € I, and we are done.
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Lemma 345 If g, h€m(M,x), nX(g).1,h) = (—1)4*X(gh),
where d is the orientation homomorphism (cf. 1.2) and w is the usual
action of the fundamental group of the base on the homotopy of the
fiber.

Proor. Let o and 7 be loops in M representing g and h, respec-
tively. Let w,:S""! — SM,,), for 0=t=1, be a homotopy such
that wy = w. Note then that w;, = w° €, where €:8"" ! — §*! is
a map of degree (—1)¢". We define £: 8"~ 1 X I — S as follows:
&(v,t) = (wy(v), a) for all v € S~ !and t € I, where

_ f(xo(+ th)) f0=u=(1+1)L
ofu)= {(x, 1+ tu—1) fQ+)1=u=1

Our proof is complete, since [&( ,0)] = X(g).
[€(,1)] = X(gh)[e] = (—1)*"X(gh),
and
[&, )] €Em,_y(e (x,7(t))) foralltE L

As before, let T: M2 — M2 and T: RM — RM be as defined in
§3.1. Let T operate on the path space (M2)! by composition. Now R
is an invariant subspace of RM X (M?2)! under T, but S is not.

Lemma 3.46. Ifg € 7 (M, x), TuX(g) = (—1)%(—1)%exX(g ).

Proor. Let 7 be a loop in M which represents g, and let w,: S"~!
— SM, be the homotopy as defined in the proof of Lemma 3.4.5
above. Let {:S"~! X I — R be the homotopy where, for all v € S"~!
and tE€ I, {(v,t) = (v, a), where a(u) = (t(ut), 7(1 — u + ut)) for
all 0=u=1 Now {(v,t) ER, for all (v,¢t); thus [¢(,1)] =
[£( . 0)] = X(g), while

[T+ 4(, 1] = X(gDle]
= (=1~ 1yex(g ),

where € = T° w,° wy~!, T being the antipodal map on S"~!. We
are done.

Let Q' =1U#:R(M X R*) = (M X R*)? be the quotient map.
Let W= {(r,r) ERX R(M X R~) |e(r)= (p,2° Q')r}. Since T
acts on R, M2, and R(M X R*), and Tee=e> T and Te p,2° Q'
=p2eQ'eT, T also acts on W. Let W*= W/T. Consider
diagram (3.4-1) below, in which W is the pullback:
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REM Yo W+ w__ "t R~ RM

~

DR

R¥(M x R™)y—— R(M x R"’)——* M?

where, for any a € Y, ie., a: I - R¥(M X R*) and (1) € R*M, we
let @: I — R(M X R~) be one of the two paths where 7 > @ = a; we
then define y(a) to be the unordered pair

(1), pi2° Q" ° @),a(0)), (Te (1), Topi®° Q' ° @), T°ax(0)) E W,

Since by Lemma 3.4.1, p,2° Q' is a homotopy equivalence, y is a
homotopy equivalence.

Pick v € S(M X R*) to be a unit vector at (x,0) E M X R*. Let
v*¥*= {v, —v} EP(M X R”), and let Y, =mp~Ww*CY. Let W,=
(po) "' CW and W, 3*= (p,*)~lv* C W* Now (p,enm~ley):
Y, > R, is a homotopy equivalence; we define Y(g)=
(premloy)s~X(g) for all g €Em(M,x); m,_y(Y,) is freely gen-
erated by the Y(g).

Let U,=UNY, Welet 6:5" !X I —SMX R%), be any
map such that (w, 0) = vand 6(w, 1) = w(w) for all w € S*~!, and let
1:S8""1 > U, be the map where, for all w € S*~!, n(w) = a with
a(t) = m° 6(w,t)forall0 =t = 1,where 7 : S(M X R*)—> P(M X R~)
is the covering map. Since S(M X R*), ) = S~, 6 exists and is unique
up to homotopy rel S*~! X dI, hence n exists and is unique up to
homotopy. Let ¢ € m,_,(U,) be the class containing .

Lemma 3.4.7. m,_1(U,) = Z and is generated by §.
Proor. Let U' = {a €E P(M X R"),,, | o(1) € PM,},and consider

the commutative diagram
i

U
NN

>
! n—1

U’ PM_ —  .pm —T oM
1i lg [
P(M x R™) ) L PMxR™ LT o

where each map labeled “” is an inclusion and b(a) = a(1) for all
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a € U. Now b and b |U’ are both homotopy equivalences, PM, and
P(M X R*) 0, (which are, respectively, homeomorphic to real pro-
jective spaces P,_, and P.,) are the fibers of 7 and p, ° 7, respectively;
thus the inclusion U’ C U, is a homotopy equivalence. U’ is of the
homotopy type of S"~L, the fiber of the inclusion P,_;, C P.; and
n: S"~! — U’ is a homotopy equivalence. The result follows.

Tueorem 348. (i) (pren~ley)s:m,_(Uy) = mu_1(R,) maps
Y to X(1), where 1 € 7 \(M, x) is the identity.

(i) ¥, ()= Y(1).

Proor. (i) We routinely verify that p,°cz~leyen=X[0],
where 0 is the trivial loop at x € M. Part (ii) follows immediately
from (i).

Define functions p:7;(R¥M X R®), v*) -7, (M,x)® 7,(M,x)
and & : 7 (R¥M X R%), v*) - Z,, as follows: If

g Em(R*(M X R*), v*%),

pick a loop o representing g and let 7 be the path in R(M X R~) such
that 70) =vandwe7r=0. Let §(g) =0 if r(1) = v, 1 if 7(1) = —v.
Now Q'v= Q’'(—v)= (x,0), so p;2° Q’'°7 is a loop in M? let
p(g) be the homotopy element represented by that loop.

We remark that § is a homomorphism but p is not; in fact, if
g, h €Em (RNM X R*), v*), p(gh) = p(g)(T*@®p(h)), where T ex-
changes coordinates.

Let G[M] be the local system of Abelian groups (i.e., locally trivial
sheaf) over R*(M X R~) such that for each r € R*(M X R*), G[M], =
To_i(mpy~ 7). Let G= G[M]», and let u: G X 7 (R*(M X R~), v*)
— G be the usual (right) action of the fundamental group of a space on
the stalk of a local system at the basepoint. We summarize the results
of §3.4 in the following theorem.

Tueorem 3.4.9. (i) G is freely generated by {Y(g) |g € m,(M, x)}.
(ii) If g E 7 (M, x) and h € w (R*(M X R>), v*), let p(h) = (h,, hy).
Then

— J(=1)4"N(h,~ghy) ifs(h) = 0,
m(Y(g), h) {(-—l)d(ghz)(_ll)ﬁy(zz_lg—lhl) if8(h) = 1.

(iii) m,_,(my) is the unique subsheaf of G[M] such that m,_(wy),
= G[M], if r QE P(M X R®), m,_\(mp)o+ is the subgroup of G
generated by Y(1), and m,_y(mwy) | (M X R*) is locally trivial, i.e.,
locally a product sheaf (isomorphic to Z), provided M is connected.
(iv) If, for some integer 2=r=n— 2, 7(M,x) =0 forall 2= i=r,
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Tnir—o(y) = Tp_1(my) ® m,_y, where 7,_, is the stable (r — 1)-stem
in the homotopy of spheres.

3.5. Action of m (MY, f). Let us reconsider diagram (3.2-1).
Suppose that {f;} is a differentiable self-homotopy of f, i.e., fo=
fi= f and each fe is differentiable. We define a map of pairs
INFAE — (Y',Z") such that my, " ° T'[f;] = mp’ as follows. If
(r, @) E Y wherer ER*V anda: I — R*(M X R")is a path such that
al0) = (f z)(r) and a(l) € R*M (cf. §32), let T[f] (rna)=
(r,B), where B(t) = R*(f,_o, i)(r) f 0=¢t= § and B(¢) = a2t — 1)
ifi=t=1

We say that twomaps [p, [} : (Y', Z') = (Y', Z') such thatmy, ' ° T
=my' for i=0, 1 are homotopic if we can find a homotopy T, :
(Y',Z") > (Y',Z'"), for 0= t =1, such that 7' ° T, = 7’ for all ¢.
The proofs of the following remarks are routine homotopy arguments,
which we omit.

Remark 3.5.1. If {f,'} is another differentiable self-homotopy of f
which is homotopic to {f,} rel f,T'[ f;'] is homotopic to T'[ f].

Remark 3.5.2. If {g;} is another differentiable self-homotopy of f
and if {h} is the self-homotopy such that h, = f,, if 0=t = § and
hi= go— if § =t=1, then I'[h] is homotopic to T'[g] ° T'[f].

Remark 3.5.3. If fe=ffor all ¢, then T'[f;] is homotopic to the
identity.

We can thus define a right action y:Sec(my') X 7,(MY, f) —
Sec(my ") as follows: y([c], [f]) = [T[f] ° c] for any section ¢ of
7nm’' and any differentiable self-homotopy {f;} of f, where [f] is
the corresponding element of the fundamental group of MV. Let
m; = mi(my ') for any integer i = 1. We have a right action of 7;(MV, f)
on the sheaf;, namely y, : w; X 7;(MVY, f) — m; where, for any r € R*V
and g= [f;] €Em (MY, f), v« ,g) is the automorphism T[f]#
on the stalk 7y(my '), We also let y_: H¥R*V; m;) X m,(MY, f) —
H*(R*V; ;) be the action obtained by applying vy, to the coefficient
sheaf.

The following remark follows immediately from a simple naturality
argument:

Remark 3.5.4. If g € m (MY, f) and if ¢, ¢, are sections of m, " over
(R*V)™, the m-skeleton of R*V, for some m = 0, and if b, for0 =7 =1
is a homotopy of sections of 7y’ over (R*V)m-! such that h; =
c¢; | (R*V)m~1fori = 0and 1, then

y*(d™(co, ¢1; hy), g) = ™[ fi] ° co, T[fi] ° ci;T[f] ° hy)
where {f;} is any self-homotopy of f which represents g.
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Now letys : [VC M]; X (MY, f) = [V C M];be the right action
defined as follows: If {g,} is any differentiable self-homotopy of f
and if {f;} is any e-homotopy of f, let y«([£], [g]) = [hd,
where {h,} is the e-homotopy: h,= g, o if 0=t=), h =
faer if 3 =t=1. The actions y, and y» are consistent, ie., if
¢: [VC M];— Sec(my ) is the function defined in §1.1, y+(¢e, g) =
d(y«(e, g)) foralle € [VC M]g g €E 7w (MY, f).

Deriniion 3.5.1. Let G be a group and A an Abelian group. We
say a function a: A X G — A is a right affine action of G on A if

(i) foralla € Aand g, h € G, afa, gh) = o(a(a, g), h);

(ii) foralla € A, a(a, 1) = a, where 1 € G is the identity;

(iii) foralla, bE Aand g€ G, ala + b, g) = a(a, g) + b, g) —
a0, g).

Sugppose now that k= 2 and n = 2k + 1, and f is an embedding.
By Theorem 2.5.1, we may identify [V C M]; with H2XR*V; 7y),
where [ f] corresponds to 0. The following theorem follows imme-
diately from 2.5.1 and 3.5.4:

TueoreM 3.5.5. If f is an embedding and n= 2k + 1, then
v#: [MC V] X7 (MY, f) > [M C V]is a right affine action.

In general (without any dimensional restriction on V and M) let
A:[VC M];— [VC M] be the function which takes [ f;] to [ fi]
for each e-homotopy [ f;] of f, as defined in §1.1.

Tueorem 3.56. If h:V — M is an embedding homotopic to f,
A-1[h] is precisely an orbit of [V C M| under the action y=.

Proor. Choose an e-homotopy {f;} of f such that f; = h. Suppose
that {g,} is a differentiable self-homotopy of f. Then y«([f], [g])
= [k], where k;,=g, 5 if 0=¢t=3 and k,= f,,_, if } =S t=1.
Alk] = [k,] = [h]. Conversely, suppose that {r,} is another e-
homotopy of f such that r; = h. Let {s,} be the self-homotopy of f
where s, =1y if 0St= 14 and s,= f, 5, if 3 =t=1 Then
v+ (LA ) = [l

3.6. Embeddings of Sk in M?*!. Suppose now that Sk is the k-
sphere, for k = 2, and that M is a connected manifold of dimension
n= 2k + 1. The space RSk is of the homotopy type of Sk, while
R*Sk has the homotopy type of real projective k-space, P;.

DerinrTion 3.6.1. If & is any sheaf over R*SK, let G° C & be the
subsheaf where &,°=0 if r$PS", and = g, if r¢PS".
We remark that H¥(R*Sk; §°) = H*(R*Sk, PS%; &) [2].

DeriniTion 3.6.2. If A is an Abelian group and ¢: A — A is an
automorphism such that ¢2 = 1, the identity, let [A, ¢] be the sheaf
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over R*S* obtained from the product sheaf RSk X A by identifying
(r, a) with (Tr, ¢a) for all r € RSk and a € A.

Let E:Z®Z —>Z® Z be the “exchange” automorphism, i.e.,
E(x,y)= (y,x)forallx,y € Z.

Consider the sheaf =, ,=m,_(my')= (R*(f,i)) ' 7p-1 (mn’)
over R*Sk, where f:Skx — M is any differentiable map, and i:S
— M is any embedding. We shall assume that S* and M have base-
points s, and my, respectively, and f(sg) = my,.

RSk is simply connected, so m,_; breaks up as a direct sum (cf.
Theorem 3.4.9); in fact m, |, =Z® Y, Z% where Z is the trivial
integer sheaf, and the sum is over all g € 7, = 7 (M, m,) not equal to
the identity. We define sets AC 7, and B C 7, as follows: A con-
sists of all g Ex, such that g# 1, g2=1, and d(g)=0, and B
consists of all g € 7} such that g2=1 and d(g) = 1, where d: 7, —
Z, is the orientation homomorphism. Let ® and A be the sets of un-
ordered pairs in 7, as follows: @ consists of all unordered pairs {g, g~}
such that g2# 1 and d(g) = 0, and A consists of all {g, g~!} such
that g2# 1 and d(g) = 1. Using the action of 7(R*Sk)=Z, on
the stalk of 7,,_;, we obtain directly, from Theorem 3.4.9,

Lemma 361 7, = [Z,-1] @ SA[Z -11° D DpZ° &
Y. [ZOZ -EI°®Y, (26 Z E]°

It is sufficient to compute the cohomology of R*Sk with coefficients
in each of the direct summands.

LemMma 3.6.2. H2K(R*SK; [Z, —1]) = 0.

Proor. R*S* is of the homotopy type of a coniplex of dimension
k < 2k, and [Z, —1] is a local system.

LemMma 3.6.3. H2%(R*Sk; [Z, —1]9) is isomorphic to Z if k is odd
Z, if kiseven.

Proor. H2R*Sk [Z, —1]°) = HZK(R*Sk PSk [Z,—1]). Now
R*Sk is a 2k-manifold with boundary PS*, which is oriented if k is even
and unoriented if k is odd. In the even case, the generator of
H?(R*S¥; [Z, —1]°) may be taken to be the top class.

LemMa 3.6.4. H2¥(R*Sk; Z°) is isomorphic to Z if k is even, Z, if k
is odd.

Proor. The proof is similar to that of Lemma 3.6.3, above. We
leave the details to the reader.

Lemma 3.6.5. H2XR*Sk, [Z D Z, E] %) = Z.
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Proor. We consider two cases; k even and k odd. We have exact
sequences of sheaves

e:0>27Z=1[Z1]>[ZBZE 5[z -1] -0,
e:0—>[Z,—-1]B[ZDZESZ=[Z1] -0,

where the maps a, B, y, and € can be defined on the underlying
groups as follows: ax = (x,x) and yx = (x, —x) for all x € Z, and
Bx,y)=x—y and e(x,y)=x+y for all x,y EZ (Note that
a, B, v, and € all respect the appropriate actions; ie., Ecy =
v° (—1), etc.) Note that € ° a is multiplication by 2. Corresponding
to e, and ey, we have exact sequences in cohomology, where §, and
8, are the Bokstein homomorphisms

(e1)y: > Z ™5 HXR*S% PSK[Z@ Z E]) 53 7, -0,
(e2)s: 3 Zy = HHR*SK PS%; [Z& Z, E]) 5 Z —0,

where €, ° a, is multiplication by 2. General algebraic considera-
tions show that e, must be an isomorphism, and we are done. If k
is odd, the proof is the same with the roles of the sequences e, and e,
reversed.

LEmMA 3.66. H2K(R*Sk;, [Z@® Z, —E]Y) = Z.

Proor. Analogous to e; and e, in the proof of Lemma 3.6.5, above,
[Z® Z, — E] may be expressed both as an extension of Z by [Z, —1]
and as an extension of [Z, —1] by Z. We proceed as above.

From Lemmas 3.6.1 through 3.6.6, we immediately obtain

Tueorem 3.6.7. [Sk C M|, is isomorphic to 3 4Z @ ¥,5Z; Y, ¥ Z
ifkisodd,andtoEAZZEBEBZGBEGUAZifkiseuen. oun

3.7. Explicit geometric construction of [Sk C M]; We retain the
notation of §3.5, and assume that f:S* — M is an embedding,
where f(sg) = x; 8o is the basepoint of Sk Recall that we let
v € S(M X R*) such that 7v = (x,0). We can insist that i: S* - R
be an embedding where i(sy) = 0.

Let o be a 2k-cell of R*Sk such that, for some w* € PSk, w* € oo
and R*(f, i)(w*) = v*={v, —v}E P(M X R*). Pick a cell 1 C RSk
such that 77 = ¢ and w € 97 such that 7w = w* Choose any
ordered pair (s, s;) € Int7, and let N; and N, be closed ball-shaped
neighborhoods of s; and s,, respectively, such that N; X N; C Int7.
Let a:1 — 7 be a path such that a0) = (s}, s5), (1) = w, and
oft) EInt7 for all t<1. Then, for all 0=¢t=1, oft) = ((t),
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ay(t)), where a;: I — Sk is any path from s; to sy, for i =1 and 2.
Pick any g € m, = (M, x). Let B:1 — M be a simple smooth path
such that B(0) = f(sp), B(1)= f(s;), and the loop (f° sy~!)
*B(fe 8,7 !) represents g. Let B be a neighborhood of B(I) homeo-
morphic to a (2k + 1)-ball such that BN f(Sk) = f(N;) U f(N,).
Let f,: Sk > M, for 0=t=1, be any homotopy of differentiable
maps such that fo=f f|(Sk— = f|(S* — N,) for all ¢ and
fi(Ny) C B for all ¢, and where the map F:S*X I - M X I, where
F(s, t) = fy(s) for all s€ Sk and 0=¢=1, has just one double
point; namely F(s), 1) = F(sy,3), and F(S* X I) meets itself transverse-
Iy at (f(s,), } ).

The liftings ® [f;] and ®[f] are certainly homotopic on the
(2k — 1)-skeleton of R*S%; in fact we may define g, : ((R*S*)2-1,
PS¥) — (Y',Z') for 0=u=1, explicitly, using the homotopy
{f:} (we omit the details; {g,} is essentially the ®-construction (cf.
3.2) restricted to the (2k — 1)-skeleton). Now consider the difference
class:

d* = d*@[ ], D[ fi]; g) € CHR*SK ma).

We can identify the stalk of 7o over w* with that of wg(my) over v¥,
and we have

Lemma 3.7.1. d*(o) = =Y(g) and d?*(c’') =0 for any 2k-cell
o' # 0. Furthermore, we may insist d?*o) =Y (g), by redefining
{f:} if necessary.

Proor. Using the ®-construction, we may extend the homotopy
{gu.} over ¢’ for any o' # o, hence d*(o’')=0. Now (cf. 2.4)
d?k(o) is represented by a map h:d(c X I) = Y such that, for all
(g, )€ 9o X Nandall0=u=1,

_ [R*ful@),d) if0=u=
ha, t) = {R*(f,2 ) (2 — 2u)i) iflsus

whose composition with p; e 7~1ey (as in diagram 3.4-1) is homo-
topic to £Y(g). The sign is ambiguous, because there are essentially
two ways an r-manifold can intersect itself transversely in a 2r-
manifold. Both ways are possible in this case, hence we are done.

We now define (g) € [Sk C M],to be [ f;], where {f;} is described
above. Theorem 1.2.1 then follows immediately from Theorem 3.6.7.

3.8. Free isotopy classes. In this paragraph, we assume that
f:8% — M is a small embedding, i.e., f(S¥) lies in a single chart of
M. Again, we assume that k= 2 and n= 2k + 1. We now investi-
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gate the affine action of 7 (M$, f) on [S¥C M]; Let s, € Sk and
my € M be basepoints, and assume that f is basepoint-preserving.

DerniTion 3.8.1. Let {f;} be a differentiable self-homotopy of f.
We say that {f;} is small if f,(S*) lies in a single chart of M for
each t, and we say that {f} is large if f,(s)) = m, for all ¢.

We remark that the subsets Ly and S; of 7,(MS", f) represented by
large and small self-homotopies of f, respectively, are subgroups, and
that Ly=m, (M, my) and S;=m (M, my). L; is normal, and
7 (MY, f) is a semidirect product of L; with S; we leave this fact
as an exercise.

TueoreM 38.1. If x E 7 (M, f) is represented by a small self-
homotopy {f;}, then y({g), x) = (—1)™(h~Igh) for all g€ 7w ,(M, m,),
where h is the element of w,(M,my) represented by the loop
{f:(s0)}-

Proor. (g) is represented by a homotopy which extends a pseudopod
out from f(S¥), around a loop o representing g, then linking f(S*)
with linking number 1. The action of x drags the entire image f(S*)
around the loop a, where oft) = f(s,) for all t; the pseudopod is
now forced to follow the loop a~'oa and link with linking number
(—1)d,

Tueorem 3.8.2. If x € Ly then y((g), x) = (g) + y(0,x) for all
g (S 7TI(M, mo).

Proor. Since x is represented by a large self-homotopy {f.}, we
may assume that {f;} leaves a neighborhood of s, N, fixed; we can
insist that N= BN U,f(S*), where B is the (2k + 1)-ball used
to construct {(g) in §3.7. Our theorem follows, because the difference
cochain may be evaluated separately on N and Sk — N, and the results
added.

Theorem 1.2.2 follows directly from Theorem 3.8.1; we may extend
this result slightly, using 3.8.2, as follows:

Tueorem 3.8.3. If f:Sk — M is a basepoint-preserving small
embedding, then the subset of [Sk C M] consisting of those isotopy
classes homotopic to f can be put into one-to-one correspondence
with the set of orbits of the cokernel of a homomorphism
E: e (M, mg) = [S*C M]; by a right action of m (M, my); pro-
vided k = 2 and dim M = 2k + 1.

Proor. Let o :m (M, my) = 7 (M, f) be the monomorphism
onto L; induced by the map Sk+! — QS*, and let E be defined by:
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E (x) = y(0,,(x)). By Theorem 3.8.2, E is a homomorphism. We can
easily check that the action of Sy= 7 ;(M, my) on [S*C M]; is con-
sistent with the usual right action of the fundamental group of a space
on a higher homotopy group, via 5. We leave the details to the
reader.
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