EXCHANGEABLE EVENTS AND COMPLETELY MONOTONIC SEQUENCES

CLARK H. KIMBERLING¹

1. Introduction. We investigate the probability theory of an infinite sequence of events, all having the same probability, and we assume the events are exchangeable. That is, for each positive integer n, each pair of n-fold intersections of events have the same probability. In the familiar game of tossing a coin forever, the events "heads" provide an example of a sequence of exchangeable events. A less trivial example is provided by Pólya's urn model. (See, for example, Feller [1, p. 226].)

We show in Theorem 1 that a sequence of events of common probability is exchangeable if and only if the sequence of real numbers whose *n*th term is the probability common to the *n*-fold intersections of events is a completely monotonic sequence. Theorem 2 asserts that for such events, Kolmogorov's Strong Law of Large Numbers holds if and only if the events are independent. Theorems 3, 4, 5, and 6 describe probabilities of unions and intersections of exchangeable events of common probability.

We recall now preliminaries from Feller [1, p. 225], Widder [4, p. 108 and p. 12], and Hardy [2, pp. 279-282]. For a sequence μ_0, μ_1, \cdots of real numbers, we denote by $\Delta^m \mu_q$ the sum

$$\sum_{k=0}^{m} (-1)^k \left(\begin{array}{c} m \\ k \end{array} \right) \mu_{q+m-k}$$

and define μ_0, μ_1, \cdots to be completely monotonic if

$$(-1)^m \Delta^m \mu_q \geq 0$$
 for $m, q = 0, 1, \cdots$,

and minimally completely monotonic if for every $\mu < \mu_0$ the sequence $\mu, \mu_1, \mu_2, \cdots$ is not completely monotonic.

A fundamental theorem of Hausdorff is that μ_0, μ_1, \cdots is completely monotonic if and only if there exists a bounded nondecreasing function α from [0, 1] into $[0, \infty)$ such that

Received by the editors June 28, 1971 and, in revised form, March 20, 1972.

AMS (MOS) subject classifications (1970). Primary 39A05, 60G05, 40-01; Secondary 26A48, 60-01.

¹The author is grateful for support from the University of Evansville and from NSF Grant GY5595.

$$\boldsymbol{\mu}_n = \int_0^1 t^n d\boldsymbol{\alpha}(t) \quad \text{for } n = 0, 1, \cdots.$$

We always take α to be the unique normalized function of Widder [4, p. 100] and refer to α as the distributor for μ_0, μ_1, \cdots .

The essentials of the proof of the next theorem, referred to in the sequel as Hardy's theorem, may be found in Hardy [2] and Widder [4]. Suppose μ_0, μ_1, \cdots is a completely monotonic sequence with distributor α . Then the following are equivalent:

(i) There exists μ such that the sequence μ , μ_0 , μ_1 , \cdots is completely monotonic.

(ii) $\sum_{i=0}^{\infty} (-1)^i \Delta^i \mu_0 < \infty$.

(iii) There exists a distributor γ such that

$$\boldsymbol{\alpha}(t) = \int_0^t s \, d\boldsymbol{\gamma}(s);$$

in this case, γ is the distributor of μ , μ_0 , μ_1 , \cdots .

(iv) $\int_0^1 (1/t) d\alpha(t) < \infty$.

That μ for which μ , μ_0 , μ_1 , \cdots is minimally completely monotonic, when such a μ exists, is

$$\sum_{i=0}^{\infty} (-1)^{i} \Delta^{i} \mu_{0} = \int_{0}^{1} \frac{1}{t} d\alpha(t).$$

2. Main results. We define a sequence of real numbers $\mu_0, \mu_1, \mu_2, \cdots$, where $\mu_0 = 1$, to be admissible if there exists a probability space (Ω, \mathcal{A}, P) and events A_n in \mathcal{A} such that

$$P(A_{n_1}\cdots A_{n_m})=\mu_m$$

whenever

$$1 \leq n_1 < \cdots < n_m$$
 for $m = 1, 2, \cdots$.

We say that the events A_n and their indicators I_n are exchangeable with respect to μ_0, μ_1, \cdots .

THEOREM 1. Let μ_0 , μ_1 , \cdots be a sequence with $\mu_0 = 1$. Then the sequence μ_0 , μ_1 , \cdots is admissible if and only if it is completely monotonic.

PROOF. Granted admissibility, complete monotonicity is immediate by de Finetti's theorem (see, for example, Feller [1, p. 225]).

To prove the converse, we define for $m = 1, 2, \cdots$ an *m*-place function $F_{1,\dots,m}$ by

566

$$F_{1,\dots,m}(x_1,\dots,x_m) = \begin{cases} 0 & \text{if min } \{x_1,\dots,x_m\} < 0, \\ \mu_{m-j} & \text{if min } \{x_1,\dots,x_m\} \ge 0, \\ & \text{if exactly } m-j \text{ of these} \\ & \text{coordinates are in } [0,1) \text{ and} \\ & j \text{ coordinates are } \ge 1. \end{cases}$$

For each finite collection $n_1 < \cdots < n_k$ of indices, define F_{n_1, \cdots, n_k} marginally, viz.,

$$F_{n_1,\dots,n_k}(x_1,\dots,x_k) = F_{1,2,\dots,n_k}(1,\dots,1,x_1,1,\dots,\dots,1,x_k),$$

where x_j occupies the n_j th place for $j = 1, \dots, k$. For each permutation $\lambda_{n_1}, \dots, \lambda_{n_k}$ of n_1, \dots, n_k , define

$$F_{\lambda_{n_1},\cdots,\lambda_{n_k}}=F_{n_1,\cdots,n_k}$$

Then

$$F_{\lambda_1,\cdots,\lambda_k} = F_1, \cdots, K$$

for every set of k distinct indices $\lambda_1, \dots, \lambda_k$.

The collection

 $\mathfrak{F} = \{F_{\lambda_1, \dots, \lambda_n}: \{\lambda_1, \dots, \lambda_n\}$ is a finite collection of positive integers $\}$

clearly satisfies items a, b, c, e, and f of the hypothesis of the Kolmogorov theorem, as presented in Tucker [3, p. 30]. We proceed with an inductive argument to show that item d is also satisfied. Letting $\mu_{F_1,\dots,m}$ be the probability measure induced on \mathbb{R}^m by $F_{1,\dots,m}$, we wish to show that for every *m* dimensional cell $(a, b] = ((a_1, \dots, a_m), (b_1, \dots, b_m)]$, we have

(1)
$$\mu_{F_1, \dots, m}(a, b] = \sum_{k=0}^m (-1)^k \sum_{\delta \in \Delta_{k,m}} F_{1, \dots, m}(\delta) \ge 0,$$

where δ ranges through the set $\Delta_{k,m}$ of $\binom{m}{k}$ vertices of (a, b] which consist of $k a_i$'s and $m - k b_i$'s, for $m = 1, 2, \cdots$.

For m = 1, (1) is just $F_1(b) - F_1(a) \ge 0$. Now fix m > 1, and suppose that (1) holds in \mathfrak{F} for all cells (a, b] of dimension m - 1. For q = m, we shall write just F for $F_{1,\dots,q}$. Let

$$(a, b] = ((a_1, \cdots, a_m), (b_1, \cdots, b_m)]$$

be an arbitrary *m* dimensional cell.

LEMMA. Suppose that for some j satisfying $1 \leq j \leq m$, one of the following is true:

$$a_j \leq b_j < 0, \quad 0 \leq a_j \leq b_j < 1, \quad or \quad 1 \leq a_j \leq b_j.$$

Then we see that (1) holds with equality, since the terms in the sun in (1) can be paired as

$$F(x_1, \cdots, b_j, \cdots, x_m) - F(x_1, \cdots, a_j, \cdots, x_m),$$

and each such difference is equal to zero.

Now let q be the number of components b_i of b such that $b_i < 1$ If the hypothesis of the lemma does not hold, we have $a_i < 0$ for thos *i* satisfying $b_i < 1$.

Case 1. If the remaining $m - q a_i$'s satisfy $0 \le a_i < 1$, then

$$F(\delta) = \begin{cases} \mu_q & \text{if } \delta = b, \\ \vdots & \\ \mu_{q+k} & \text{if } \delta \text{ has exactly } k \text{ nonnegative } a_i\text{'s,} \\ \vdots & \\ \mu_m & \text{if } \delta \text{ has } m - q \text{ nonnegative } a_i\text{'s,} \\ 0 & \text{otherwise, since in all the remaining cases, at least one component of } \delta \\ \text{is negative.} \end{cases}$$

If $0 \le k \le m - q$, then $(m_{\overline{k}}^{q})$ is the number of vertices having exactly k nonnegative a_i 's, so that

$$\sum_{\boldsymbol{\delta} \in \Delta_{k,m}} F(\boldsymbol{\delta}) = \binom{m-q}{k} \mu_{q+k}$$

Thus,

$$\begin{split} \sum_{k=0}^{m} & (-1)^{k} \sum_{\delta' \in \Delta_{k,m}} F_{1,\cdots,m}(\delta) = \sum_{k=0}^{m-q} (-1)^{k} \sum_{\delta \in \Delta_{k,m}} F_{1,\cdots,m}(\delta) \\ & = \sum_{k=0}^{m-q} & (-1)^{k} \begin{pmatrix} m-q \\ k \end{pmatrix} \mu_{q+k} \\ & = (-1)^{m-q} \sum_{k=0}^{m-q} & (-1)^{k} \begin{pmatrix} m-q \\ k \end{pmatrix} \mu_{m-k} \\ & = (-1)^{m-q} \Delta^{m-q} \mu_{q} \geqq 0. \end{split}$$

Case 2. If the lemma does not apply and if for some k satisfying $1 \leq k \leq m$, we have $b_k \geq 1$ and $a_k < 0$, then we define

$$a' = (a_1, \cdot \cdot \cdot, a_{k-1}, a_{k+1}, \cdot \cdot \cdot, a_m)$$

and

$$b' = (b_1, \dots, b_{k-1}, b_{k+1}, \dots, b_m)$$

and claim that

$$\mu_{F}(a, b] = \mu_{F_{1, \dots, m-1}}(a', b'],$$

this second expression being nonnegative by the induction hypothesis. To see that

$$\mu_{F}(a, b] = \mu_{F_{1, \dots, m-1}}(a', b'],$$

define for each vertex δ of (a, b] the vertex δ' of (a', b'] formed by removal of the *k*th component of δ . Then

$$F(\delta) = \begin{cases} F_{1,\dots,m-1}(\delta') & \text{if the } k\text{th component of } \delta \text{ is } b_k, \\ 0 & \text{if the } k\text{th component of } \delta \text{ is } a_k. \end{cases}$$

Now decomposing $\Delta_{k,m}$ into

$$\Delta(b) = \{ \delta \in \Delta_{k,m} : b_k \text{ is the } k \text{th component of } \delta \}$$

and

$$\Delta(a) = \{ \delta \in \Delta_{k,m} : a_k \text{ is the } k \text{th component of } \delta \},\$$

we have

$$\sum_{\boldsymbol{\delta} \in \Delta_{k,m}} F(\boldsymbol{\delta}) = \sum_{\boldsymbol{\delta} \in \Delta(b)} F(\boldsymbol{\delta}) + \sum_{\boldsymbol{\delta} \in \Delta(a)} F(\boldsymbol{\delta}) = \sum_{\boldsymbol{\delta}' \in \Delta_{k,m-1}} F_{1,\cdots,m-1}(\boldsymbol{\delta}'),$$

so that

$$\sum_{k=1}^{m} (-1)^{k} \sum_{\delta \in \Delta_{k,m}} F(\delta) = \sum_{k=1}^{m-1} (-1)^{k} \sum_{\delta \in \Delta_{k,m-1}} F_{1,\dots,m-1}(\delta')$$
$$= \mu_{F_{1,\dots,m-1}} (a', b'].$$

This completes a proof that item d of the hypothesis of the Kolmogorov theorem is satisfied by the collection \mathfrak{F} . Applying the Kolmogorov theorem, we now conclude that there exist a probability space (Ω, \mathcal{A}, P) and random variables ξ_n over Ω whose distribution functions and joint distribution functions are, with corresponding indices, those in \mathfrak{F} . In particular

$$F_{\xi_n}(x) = \begin{cases} 0 & \text{if } x < 0, \\ \mu_1 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x \ge 1 \end{cases}$$

and letting $A_n = \xi_n^{-1}(-\infty, 0]$, we have for every positive integer *m*, and indices $n_1 < \cdots < n_m$,

$$P\left(\bigcap_{j=1}^{m} A_{n_j}\right) = P\left(\bigcap_{j=1}^{m} \xi_{n_j}^{-1}(-\infty, 0)\right)$$
$$= F_{n_1,\dots,n_m}(0,\dots, 0) = F_{1,\dots,m}(0,\dots, 0) = \mu_m.$$

Therefore, the sequence μ_0, μ_1, \cdots is admissible.

THEOREM 2. Let μ_0 , μ_1 , \cdots be a sequence admissible with respect to indicators I_1, I_2, \cdots . Then there exists a constant random variable c such that the sequence

$$I_{1,\frac{1}{2}}(I_{1}+I_{2}), \cdots, (I_{1}+\cdots+I_{n})/n, \cdots$$

of arithmetic means converges in probability to c if and only if the indicators I_1, I_2, \cdots are independent, in which case the random variable c is given by

$$c(\boldsymbol{\omega}) = \boldsymbol{\mu}_1 \quad \text{for all } \boldsymbol{\omega} \in \boldsymbol{\Omega}.$$

PROOF. It is well known (for example, Tucker [3, pp. 123–124]) that if the I_n are independent, then the arithmetic means converge not only in probability to μ_1 , but, *a fortiori*, with probability one.

To prove the converse, let α_n denote the distribution function of the random variable $\zeta_n = (I_1 + \cdots + I_n)/n$ and assume that for some constant random variable c, we have

$$\lim_{n \to \infty} P[|\boldsymbol{\zeta}_n - \boldsymbol{c}| \ge \boldsymbol{\epsilon}] = 0 \quad \text{for every } \boldsymbol{\epsilon} > 0.$$

Then

$$\lim_{n\to\infty} P[c-\epsilon \leq \zeta_n \leq c+\epsilon] = 1,$$

so that

$$\lim_{n \to \infty} P[\zeta_n \leq t] = \begin{cases} 0 & \text{if } t < c, \\ 1 & \text{if } t \geq c. \end{cases}$$

570

This shows that

(2)
$$\lim_{n \to \infty} \alpha_n(t) = \begin{cases} 0 & \text{if } t < c, \\ 1 & \text{if } t \ge c. \end{cases}$$

Now let α be the distributor of the sequence μ_0, μ_1, \cdots . As proved in Feller [1, p. 223],

$$\lim_{n\to\infty}\alpha_n(t)=\alpha(t)$$

at each point t of continuity of α . As a nondecreasing function, α has at most countably many points of discontinuity. Letting ρ be an arbitrarily small positive number, we can therefore find points p_1 and p_2 of continuity of α such that $c - \rho < p_1 < c < p_2 < c + \rho$. It follows from (2) and our normalization agreement for distributors that

$$\alpha(t) = \begin{cases} 0 & \text{if } t < c, \\ \frac{1}{2} & \text{if } t = c, \\ 1 & \text{if } t > c. \end{cases}$$

Thus, from the representation

$$\mu_n = \int_0^1 t^n \, d\alpha(t),$$

we obtain $\mu_n = c^n$. But this means that if *m* is any positive integer and $n_1 < \cdots < n_m$ any *m* indices, then

$$P(A_{n_1}\cdots A_{n_m})=P(A_{n_1})\cdots P(A_{n_m}).$$

Therefore, the sets A_1, A_2, \dots , and consequently, the corresponding indicators I_1, I_2, \dots , are independent.

THEOREM 3. Suppose μ_0 , μ_1 , \cdots is admissible with respect to a probability space (Ω, \mathcal{A}, P) , sets A_n in \mathcal{A} , and distributor α . Then the A_n satisfy the converse of the Borel-Cantelli Lemma (as in Tucker [3, p.70]) if and only if $\alpha(0+) = 0$. In fact, $P[A_n i.o.] = 1 - \alpha(0+)$.

PROOF. Since

$$P\left(\bigcap_{j=m}^{n} A_{j}^{c}\right) = \int_{0}^{1} (1-t)^{n-m+1} d\alpha(t)$$

we obtain

$$\lim_{n\to\infty} P\left(\bigcap_{j=m}^n A_j^c\right) = \alpha(0+).$$

Now,

$$P[A_n \text{ i.o.}] = P\left(\bigcap_{m=1}^{\infty} \bigcup_{j=m}^{\infty} A_j\right)$$
$$= \lim_{m \to \infty} P\left(\bigcup_{j=m}^{\infty} A_j\right) = 1 - \lim_{m \to \infty} P\left(\bigcap_{j=m}^{\infty} A_j^c\right)$$
$$= 1 - \lim_{m \to \infty} \lim_{m \to \infty} P\left(\bigcap_{j=m}^n A_j^c\right)$$
$$= 1 - \lim_{m \to \infty} \alpha(0+) = 1 - \alpha(0+).$$

THEOREM 4. Suppose μ_0, μ_1, \cdots is admissible with respect to sets A_1, A_2, \cdots and distributor α . Then

$$P\left[\bigcup_{n=1}^{\infty} A_n\right] = P[A_n i.o.].$$

Thus, with probability one, if a point lies in any A_n , then it lies in infinitely many A_n 's.

Proof.

$$P\left[\bigcup_{n=1}^{\infty} A_n\right] = P(A_1) + P(A_2 - A_1) + P(A_3 - (A_2 \cup A_1)) + \cdots$$
$$= P(A_1) + P(A_2A_1^c) + P(A_3A_2^cA_1^c) + \cdots$$
$$= \sum_{n=1}^{\infty} (-1)^{n-1} \Delta^{n-1} \mu_1$$

by de Finetti's theorem

$$= 1 - \alpha(0+)$$

by Hardy's theorem

$$= P[A_n \text{ i.o.}]$$

by Theorem 3.

THEOREM 5. If $P(\bigcup_{n=1}^{\infty} A_n) = 1$ and $P(\bigcap_{n=1}^{\infty} A_n) = 0$, or, equivalently, if $\alpha(0+) = 0$ and $\alpha(1-) = 1$, then with probability one, a point

572

of Ω lies in infinitely many A_n 's and in infinitely many A_n c's.

Proof. If

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = 0,$$

then

$$P\left(\bigcup_{n=1}^{\infty}A_{n}^{c}\right)=1.$$

By Theorem 4

$$P[A_n^c \text{ i.o.}] = 1.$$

Also by Theorem 4

$$P[A_n \text{ i.o}] = 1,$$

since

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = 1.$$

THEOREM 6. Suppose μ_0, μ_1, \cdots is a minimally completely monotonic sequence with $\mu_1 < 1$, with respect to sets A_1, A_2, \cdots . Then for every finite collection $A_{i_n}, \cdots, A_{i_n}, P(\bigcup_{j=1}^n A_{i_j}) < 1$, while for every infinite collection $A_{i_1}, A_{i_2}, \cdots, P(\bigcup_{j=1}^n A_{i_j}) = 1$. That is, no finite collection of A_i 's covers Ω , while every infinite collection does cover Ω , with probability one.

Proof.

$$P\left[\bigcup_{j=1}^{n} A_{i_{j}}\right] = \sum_{i=0}^{n-1} (-1)^{i} \Delta^{i} \mu_{1}$$
$$< \sum_{i=0}^{\infty} (-1)^{i} \Delta^{i} \mu_{1} = \mu_{0} = 1,$$

while

$$P\left(\bigcup_{j=1}^{\infty} A_{ij}\right) = \sum_{i=0}^{\infty} (-1)^i \Delta^i \mu_1 = 1$$

by Hardy's theorem.

C. H. KIMBERLING

References

1. W. Feller, An introduction to probability theory and its applications. Vol. II, Wiley, New York, 1966. MR 35 #1048.

2. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949. MR 11, 25.

3. H. G. Tucker, A graduate course in probability, Probability and Math Statist., vol. 2, Academic Press, New York, 1967. MR 36 #4593.

4. D. V. Widder, *The Laplace transform*, Princeton Math. Series, vol. 6 Princeton Univ. Press, Princeton, N. J., 1946. MR 3, 232.

UNIVERSITY OF EVANSVILLE, EVANSVILLE, INDIANA 47701