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OPTIMAL STOPPING AND FREE BOUNDARY PROBLEMS 
PIERRE VAN MOERBEKE 1 

Consider a random situation or a game where at each moment a 
gambler is to make one of two decisions: quitting or pursuing the game 
purely on the basis of present information; his only opponent — so to 
speak —is randomness. Both decisions are not equally favorable, but 
their efficiency depends on the unknown outcome of the game. A 
reward function measures this efficiency: the higher its value, the 
better the situation from the gambler's viewpoint. Hence he has to 
decide whether the future gain will outweigh the loss due to stopping 
or further unfavorable moves. We aim at studying the decision rules 
or strategies yielding the best possible average gain. The purpose of 
this lecture is to show the relationship between the optimal stopping 
problem and a free boundary value problem for the heat equation. 
The study of this connection has led to a deeper grasp of various 
natural questions about the problem and to a more qualitative de­
scription of its solutions, opposed to a discrete approach which of 
course would lend itself much better to numerical results. 

This is not a streamlined, but rather a cursory and leisurely account 
on the subject; proofs and further details may be found in the author's 
papers [46, 47]. Several excellent books and articles written on this 
theme have encouraged me to omit other interesting aspects. These 
are the recent books by H. Robbins and D. Siegmund [37] and A. N. 
Sirjaev [42] and the articles by L. Breiman [8] and H. Chernoff [11, 
12,13,14] . 

1. Introduction. During the last decade, various authors have ad­
dressed themselves to such problems in the context of statistical de­
cision theory, operations research and game theory. We mention here 
a few of these problems: 

1. There is the well-known "secretary problem", which made its 
debut with D. V. Lindley [30] and received a rigorous treatment from 
Y. S. Chow, S. Moriguti, H. Robbins and S. M. Samuels [15]. 

Let n secretaries apply for a job. They are to be graded according 
to quality from the best (1) to the worst (n). There is only a single 
position available and the interviewer can compare the present appli-
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cant only to the ones he has seen to date. After each interview, two 
alternatives are open to him: he can accept the candidate or he can 
reject him or her and proceed to the next interview. It is understood 
that no one rejected can be recalled. What will be the optimal strategy 
so as to maximize the expected ability of the secretary so chosen? 
Moreover, what will be the expected rank of the candidate selected in 
this way? 

In this problem, the random quantities y{ to be considered are 
tji= 1 + the number of previous candidates better than the one seen 
at the ith interview. The variables y{ are independent, because if you 
have picked already i — 1 numbers xY • • • x{_x out of the set 
{1, * • *, n} and ify ou have placed them in order xk < xk < • • • < xki_v 

then the probability that the ith number chosen will sit between, say, 
xk and % + j is 1/i independently of the order in which you have taken 
the i — 1 first numbers. Given y{ = j , a simple combinatorial argument 
gives the average rank of the candidate selected at the ith interview, 
namely, 

n + 1 
ITT* 

Hence the optimal strategy T is the one which minimizes 

it is described by a sequence of numbers (sl9 • • -,sn), and the rule is: 
hire as soon as tji = s{. 

Where do these numbers come from? They result from a backward 
induction procedure. Here is the idea of this induction: hiring some­
one is required, so at the last interview the average rank is the mean 
quality of the n possible secretaries. At the previous interview, the 
interviewer is facing two alternatives: hiring at once or waiting for 
the next interview. Hence for each value of yn-\, he compares the 
quality of the candidate selected with the average quality in case he 
would go on. The first value of yn-\ for which proceeding to the next 
interview is disadvantageous determines sn_Y. The determination of 
5n_2 is similar, etc. 

For instance, if n = 4, the optimal strategy is to always reject the 
first candidate, to appoint the second, if he or she is better than the 
first and to appoint the third one, if at most one previously interviewed 
is better; finally, in the last interview, you always appoint, since you 
have to appoint someone. The expected rank of the candidate selected 
using this strategy is 1.875. 
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Evidently, the selection strategy will depend on the total number n 
of candidates. But the expected rank of the candidate selected in this 
way has the surprising virtue never to be worse than 4. In fact, when 
the number n of candidates tends to oo, the optimal expected rank 
increases to 

n(^) 
i/(i+i) 

= 3.8695. 

2. An urn contains white and red balls. We must predict which is 
the dominant color by drawing balls one at the time with replacement. 
For each ball drawn we must pay one dollar and we are to receive 
A dollars for a correct guess and nothing for an incorrect guess. The 
aim is to maximize our payoff. What is the optimal strategy? 

To see how this problem may be solved, first consider a random 
walk on the lattice of Figure 1 according to the rule: jump one step 
upwards or one step to the right according as the color of the ball 
drawn is red or white. A bayesian hypothesis is needed to determine 

r e d 

F i g . 3 

the a posteriori probability of drawing a ball of a certain color given 
the sample already obtained. This probability is the transition prob-
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ability of the random walk. The optimal policy can be described as 
follows: sample as long as the walk remains inside a certain pear-
shaped region; stop when it hits the boundary. Then decide white or 
red according to the majority at that time. This example is taken from 
S. Moriguti and H. Robbins [34]. They also consider the behavior 
of the pear-shaped curve when A and the total number (a, of white; b, 
of red) of balls tend to infinity in such a way that: 

q + b 
A 2 / 3 

and 
a — b 

Ai/3 

remain finite. It is natural to think of the limits of these ratios as time 
(t) and position (x). Taking such a limit, the random walk tends to a 
diffusion and the pear-shaped curve is replaced by a continuous curve 
x = ± s(t) as pictured in Figure 2. 

I t ) x = s ( t ) 

(1) 

F i g . 2 

Moriguti and Robbins prove that for large t 

7 s<«=i-ifc + -960f ytf<*. 

J. A. Bather [2] has considered the problem of deciding the sign 
of a normal mean with known variance. As expected an appropriate 
limiting procedure leads to the same continuous problem. 

In a series of papers, Chernoff [11, 12, 13] and Breakwell and 
Chernoff [7] dealt with the problem of guessing from continuous ob­
servations the sign of the (constant) drift coefficient /x of a brownian 
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motion bt -f /ui, 1 being the cost per observation and 1 the cost of an 
incorrect decision. Introducing the appropriate bayesian hypothesis, 
they prove that the estimated drift evolves according to the diffusion 
of Moriguti and Robbins, or approximately so. The asymptotic expan­
sion of the optimal sampling curve, calculated immediately from the 
continuous problem, gives the same result as (1) for large t. ChernofF 
[12] also performed an asymptotic expansion on the optimal 
sampling curve for small t and obtained 

s(t) ~ V * ( 3 log -J- - log ^ - ) , t\0. 

We refer the interested reader to an excellent review paper by H. 
Chernaff [14]. 

3. In an unlimited fair coin-tossing game, a head contributes one 
dollar to your fortune and a tail makes you lose one dollar. However, 
inflation depreciates your initial stake of one dollar to a value cn < 1 
dollar at time n and cx> c2> ' ' ' > cn decreases to 0 as n / < » . 
After the nth toss you have two alternatives: either take your chances 
and continue the game one more time, or quit the game and collect 
your gain to date, namely, cn(xi + • • • + xn), in which xk = ± 1 is 
the outcome of the fcth toss. 

When will you decide to quit the game in order to achieve the 
highest expected gain? If you wait too long and the depreciation rate 
of your currency is very high, you may lose everything. On the con­
trary, if you toss the coin only a few times, the game may not be in 
your favor. 

In the case of cn = 1/n, Y. S. Chow and H. E. Robbins [16] have 
proved the existence of an optimal stopping rule. A. Dvoretzky [ 19], 
H. Teich er and J. Wolfowitz [45] proved the existence of an opti­
mal stopping rule, when the X; are independent identically distributed 
random variables with zero mean and variance 1: there is a series of 
specific constantsß{ < ß2 < ' * * < ßn < • * *, such that the best policy 
is to quit the game as soon as Sn = 2^=1 ^ — ßn- Dvoretzky proves 
that 

0.32 • • • ^ -~ ^ 4.06 • • •, 
Vn 

for n large enough, and he conjectures that 

lim —7=?-
n î - v n 
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exists. This conjecture was proved independently by H. M. Taylor 
[44], L. H. Walker [48] and L. A. Shepp [41], who found 0.839 
as limiting value. They point out that considered for large n's this 
problem and the brownian analogue must be equivalent. The 
brownian analogue is to maximize 

f + T 

over all non-anticipating random times r, where xT denotes brownian 
motion starting at x0 = 0 evaluated at time r. Shepp proves that the 
best policy is to stop as soon as 

xs ^ a Vt + s , 

where a is the same as the limiting value of j3n/Vn in the discrete 
problem. In the case where cn= e~n, the optimal policy is to stop as 
soon as Sn ^ C, for some appropriate constant C. The brownian 
analogue here is to maximize 

ExTe Ht+T) 

over all random times r. The best policy is to stop as soon as xs è 
1/V2. 

Shepp's or Walker's approach to the continuous version of the 
former problems is by discretization. It may be solved more advan­
tageously by the so-called "smooth-fit" property, to be explained 
below. The idea was already in the air since D. V. Lindiey [30]. 
There is indeed a vast class of problems leading to parabolic optimal 
boundaries which are easily treated by this method, as we shall discuss 
later; much of our attention is therefore devoted to this phenomenon. 

4. H. P. McKean [33] and P. A. Samuelson [39] consider the 
problem of rational pricing of stock warrants. A warrant is a contract 
conferring the right to purchase a common stock at a fixed unit price 
at any time previous to some date of expiration. Both the expiration 
date (which may be infinite for "perpetual warrants") and the unit 
price are stipulated in the contract. Samuelson's model for the stock 
price fluctuations is a logarithmic brownian motion, e**^*8*, where 
x(t) denotes the ordinary brownian motion and a and Ô are con­
stants. In this problem too, the optimal buying policy can be worked 
out. We shall come back to it in § 3. 

2. A Brief Excursion Through the Theory. What is the essence of 
all these problems? They involve a time t and a position x measuring 
the "state of affairs" such as the quantity \j{ in the "secretary problem", 
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or the number of red and white balls in the sample, or the fortune in 
the coin-tossing game or the current price of the stock in the warrant 
problem; in each of these problems, x fluctuates in a Markovian fashion. 
For the sake of simplicity we deal only with the case in which x moves 
according to a brownian motion, or approximately so. This is not so 
special a problem, as it may seem; it is in fact typical and most of 
the problems studied to date either exhibit a brownian behavior, 
genuine or transformed, or can be so approximated by a suitable 
scaling, provided only that the number of trials is very large. 

The game is now specified by fixing the "reward function" g = 
g(x, t), with the following meaning: if the gambler decides to quit at 
time t when his state of affairs is x, his reward will be g(x, i). Contrari­
wise, if he decides to play for a possibly random period of time r, his 
average reward would be 

Eg(x + xTyt + r ) , 

where x(i) is the brownian motion starting at x(0) = 0. Notice that 
(x + xs, t + s) is the customary space-time brownian motion starting at 
(x, t); it is the graph of the usual brownian motion, as in Figure 3. 

U , t ) 

— I ^ » 
' x 

F i g . 3 

Of course, it is not permitted to the gambler to foresee the future. 
This is built in by allowing only "stopping times" r, by which you will 
understand that the event r ^ t depends upon the brownian motion 
up to time t only and not upon what it does afterwards, e.g., the first 
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hitting time of 1 is a stopping time as opposed to the least leaving from 
0 before time t = 1, which depends on the future. 

Henceforth, we will refer to two kinds of games, one where the 
playing time is bounded above by some T < oo (games with a finite 
horizon) and games where one can play for ever (games with an 
infinite horizon). 

Unless specified otherwise, we assume g and all its partials to be 
continuous for t < T and to have limits, as t/T; a discontinuity at 
t = T is permitted, if T < oo, but h(x) = g{x, T) - (x, T- ) is to be 
infinitely differentiate, except perhaps for a few isolated jumps 
(g(x, T— ) means the left limit of g(x, t) at t = T); h will be called the 
final gain. You may assume h(x) = 0; the motivation is that if h(x) < 0 
in an interval, it is more favorable to stop the game a little before 
hitting the final horizon t = T. 

The optimal reward g(x, t) starting at time t and with a state of 
affairs x is now obtained by maximizing 

Eg(x + xT, t + T) , 

over all stopping times T, if the horizon is infinite and over all stopping 
times T â T - Hn a game with finite horizon T. The optimal strategy 
is the stopping time T achieving this maximum. 

2.1 ALTERNATIVE CHARACTERIZATIONS OF g. 

(a) g is the smallest excessive function exceeding g. A function / , 
bounded below, is called excessive in an open domain of R2 if 

(i) Ef(x 4- xT, t + T) = f(x, t) for every stopping 
time T not exceeding the first exit time rD from D. 

(ii) Ef(x + xTn, t 4- rn)/f(x, t) for every sequence 
of stopping times rn < TD such that P ( r n \ 0 ) = 1. 

Notice that, if / is moreover continuous, excessivity is actually a local 
property and, if / is sufficiently differentiate, excessivity in the 
domain D is the same as 

dt 2 dx* - ' 

for all (x, t) in D. 
(b) The backward induction for the discrete problem, as indicated 

in the "secretary problem" in § 1, is adapted to the present case in the 
form 

g(x,t)= supgn(:M)> 
n 

where g0 = g and 
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gn(x, t) = s u p E g ^ ^ x + xs, t + s). 
s m 

The proof that g = sup gn is in one line: you have g ̂  sup gn = g and 
then you check that sup gn is excessive and use (a). 

Both versions of the optimal stopping problem were already investi­
gated by L. Snell [43], in the context of martingales. 

2.2 THE APPELL TRANSFORMATION. Except for the examples, this 
paper deals chiefly with finite horizon games, as the latter can be 
mapped into the former by the Appell transformation, all desired 
properties being carried over automatically. P. Appell [1] pointed 
out that if M satisfies the heat equation, then 

v(x,t)= * Kt tJ 

^ï ï i -P( -* 2 /2<) 

satisfies the backward heat equation. 
This transformation is applied as follows: if g is a reward function 

with infinite horizon, then 

g'ix- " = V lÉ^f exp<-*W - ,))g ( r=l ' rr-, ) • >s T 

is a finite horizon game; T is introduced in this expression as an arti­
fact. Then the optimal reward g* is related to g, as follows: 

The proof of this identity is based on the connection between the 
Appell transformation and Doob's [18] //-processes or constrained 
processes. 

2.3 THE TYCHONOV CONDITION. For future convenience, we impose 
upon g a growth condition, called the Tychonov condition; it is quite 
reminiscent of the Tychonov bounds for the uniqueness of solutions to 
the heat equation. We distinguish between the finite and infinite 
horizon case. 

(a) T < oo . 
If the functions 

dg dg d2g d2g d3g 
g> ~dt' ~dx ' "dx* ' dxdt ' ~dx*~ 

J 7 dh d% ,a3 / i 
and n, -— , ——, and-dx ' dx2 ' dx3 
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are bounded by e0^ when |x| tends to oo? uniformly in any strip of 
finite depth [t, T] , then g is said to satisfy the Tychonov condition. 

(b) T = oo . 
g satisfies the Tychonov condition if 

1 T* = — ex1 p(-*2/2(-*))g ( ^ , ^ ) , * < o , 
b (2TT(-*)) 1 / 2 

satisfies the condition under (a) with T = 0. 
The Tychonov condition implies that g {sfinite and continuous. 

2.4 THE PAYOFF-RATE. Throughout this paper, the payoff-rate per 
unit time 

da 1 d2P 

dt 2 dx 2 

plays an important role. The discrepancy between what you get if 
you would play for a period of time T and what you get by not playing 
at all can be expressed only in terms of H and the final gain h. Indeed, 
f o r r ^ T- t 

Eg(x + xT,t + T) - g(x, t) 

= Eg(x + xT,t + T - ) - g(x, t) 

+ E(g(x + XTJ + T ) - g(x + xT, t + T - ) ; t + T = T); 
by Ito's lemma, 

(2) g(x + xT, * + T) - g(x, t) 

= r -ß- (x+**> *+*) * + r H ( X + x S 5 * + s ) ds. 
J o dx Jo 

But since g satisfies the Tychonov condition, you have 

CT-t I dc 
E 

fT-' I dg I 
-r2- (« 4- xs, * + «) ds < » 9 Jo I dx I 

which implies that the expectation of the first term on the right-hand 
side of (2) vanishes (cf. H. P. McKean [32], § 2.3.5). Hence, 

Eg(x + xT, t + T) — g(x, t) = E H(x + xs,t + s) ds 

+ E(h(x + xT, t + T); t + T = T). 

Using the Appell transformation, the same formula is shown to hold for 
T = oo 9 except that then the term containing h is absent. 



OPTIMAL STOPPING AND FREE BOUNDARY PROBLEMS 5 4 9 

2.5 THE CONTINUATION AND THE STOPPING REGION. NOW we dis­
tinguish two regions: a continuation region C where g > g, i.e., where 
it pays to play the game (which is open, since g is continuous) and a 
stopping region S where g = g, i.e., where quitting is best. The 
boundary separating these two regions is the optimal (stopping) 
boundary. Thanks to the Tychonov condition on g, the optimal 
strategy is to play as long as you remain in the continuation region and 
stop as soon as you hit the optimal boundary. If T0 denotes this hitting 
time, this means that 

(3) g(x,t)= Eg(x + xT0,t + T0). 

From the previous section, it is obvious that one never stops at points 
where H > 0, as proceeding a little while improves one's gain. Often 
stopping at points where H = 0 is also unfavorable; for instance, when 
dH/dx 7̂  0 at such points, or when dffldx = 0 and 

\ dt 2 dx2 / 

etc. • • •. 

2.6 A FREE BOUNDARY PROBLEM FOR THE BACKWARDS HEAT EQUA­

TION. Evidently the ultimate aim is to find the optimal stopping 
boundary. So far we know that if g satisfies the Tychonov condition, 
then stopping as soon as you enter the stopping region is optimal. But 
this merely describes the boundary in an implicit and somewhat 
circular way, in terms of g, which we do not know yet. We now turn 
to analytical characterizations of g in order to provide an effective 
way of computing the boundary. 

The problem of finding g and the optimal strategy is to be con­
verted into a free boundary problem for the heat equation. Why a 
free boundary problem? From (3), it follows that g is parabolic in the 
C-region. This means that 

(i) g is excessive and 
(ii) that g has the mean value property, i.e., Eg(x + xT{jy t + TV) 

= g(x, t), where TV is the first exit time from any open set U 
with compact closure. 

Parabolic functions are shown to be C00 and to satisfy the backwards 
heat equation; conversely, solutions of the backwards heat equation 
which are bounded below are all parabolic functions. Hence, you 
have 
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(5) g = g at the boundary of C , 

(6) andg(*,T) = g(*,T). 

Recall also from the previous section that H ^ 0 in the S-region. 
At this point we must assume that the continuation region C has a 

continuously differentiable boundary x = s(t), except for a few isolated 
points where \s\ may blow up. (The proof of this fact will actually be 
sketched in § 4 for rewards of the type g = T — t, t < T and = h(x), 
t = T). Under this assumption, g's optimality implies that also the 
derivatives match, i.e., 

(7) 
-^(s(t),t) = lim ^f{y,u), 

(y,u)GC 

at points (s(t), t), where \s\ < oo. This should come as no surprise, be­
cause a moment's reflection shows that if this was not true you would 
always be able to improve your gain by playing a bit longer. 

We are facing an initial and boundary value problem with two 
boundary conditions. This problem is overdetermined unless you 
agree to keep the boundary "free". So it seems plausible that (4), (5), 
(6) and (7) will determine the boundary s(t) and the optimal reward 
g. The relations (6) and (7) will be called the smooth fit relations. 

What is perhaps more important, since it gives us a recipe to com­
pute examples, the converse of this statement is true (which is stated 
for T < oo ). 

THEOREM I. Let C be an open set in t^ T < oo with a continuously 
differentiable boundary curve x = s(t), except possibly for a finite 
number of isolated points where s blows up. Let a Tychonov-type 
function u satisfy 

du . 1 d2u A . n 

dt 2 dx2 

u = g at (x, t) = (s(t), t\ u(x, T) = g(x, T), 

^ = ^at(x,t)=(s(t),t\if\s\<«>, 

u> g in C, u = g elsewhere, and H = 0 in the complement ofC. 

Then u is actually g and s(t) the optimal stopping boundary. 
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2.7 THE INTEGRAL EQUATION FOR THE OPTIMAL BOUNDARY. The free 
boundary problem (4), (5), (6), and (7) can be converted into a Stefan-
type problem by considering instead of g the function v = 
dldt(g — g). It is easily checked that 

dv , 1 d2v *i 
(8) 

dx2 

v(s(t),t) = 0, 

dv 

BH 
dt 

(x, t) in C, 

dx 
(s(t), t) = 2H(s(t), t)s(t), 

and v(x, T) = - \ ^ % x ) - H(x, T- ) , for (x, T) G C. 

F i g . h 

For conversation's sake, take the continuation region to be bounded 
on one side (say, the right side) by a curve x = s(t). The free boundary 
value problem (8) yields an integral equation for the boundary by 
applying Green's formula in the shaded part of the continuation region 
(as in Figure 4) to a form involving the Gauss kernel and the solution 
v, to obtain 
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H(s(t), t)s(t) = - I"1" ' dr . 
J o 

f(r-r) BH s(t) - £ r (s(t) - & -, 

_ rr-t s(t) - s(T - T) r («(f) - 5(r - T ) ) 2 -I 

Jo (2TT(T - t - T))3'2 e X P L 2 ( T - t - T ) J 

(9) tf(s(T - T), r - T)S(T - T) dT 
_ per) -a(t) - è r (*(*) - i)21 

J — (2TT(T - *))3 '2 eXp L 2 ( T - t ) J 

If the continuation region would be bounded on two sides by x = 
Si(t) and x = s2(t), (9) would become a system of two integral equa­
tions in Si(t) and s2(t). Moreover, the right-hand side would acquire 
an additional term. 

2.8 RELATION TO THE ICE-MELTING OR -FREEZING PROBLEM. Con­
sider the special reward g= T — t for t < T and = h(x) for t = T. 
Let W(X,T) = —v(x, T — r) and a(r) = s(T — r). Then the free 
boundary problem (8) simplifies to 

dw 1 dhv 
ST 2 dx2 i n C 

W(<T(T), T) = 0, (<T(T),T) = — 2a(r), and 
ax 

u > ( x , O ) = - | - 0 - - l , f o r ( * , O ) G C . 

w satisfies the heat equation, vanishes at the boundary; its flux through 
the boundary is proportional to the rate of change of the boundary 
and (l/2)(d2/i/dx2) — 1 stands for the initial temperature. If you 
will visualize the interval x < a(0) as filled with water at tempera­
ture w(x, 0) and x = a(0) with ice at zero temperature, then the 
boundary x = CT(T) is the curve described by the interface between 
water and ice. 

If the initial temperature w(x, 0) = (H2)(d2hldx2) - 1 > 0, then 
the ice can only melt and it is obvious that the boundary CJ(T) must 
be increasing as in Figure 5. If w(x, 0) is negative, then one must con­
sider the water as being supercooled, i.e., below 0°C. Then the water 
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F i g . 5 

can only freeze and the boundary a(r) must be decreasing. This can 
be substantiated using the strong maximum principle. 

3. Some Further Examples. 
3.1. Let g = k(x)e~ßt. That vertical lines x = constant are the only 

admissible boundaries is clear, because maximizing Ek(x + xT)e~ß{t+r) 

= e~ßtEk(x + xT)e~ßT over all stopping times is in effect independent of 
t. Consequently, in the continuation region g is to be a linear combina­
tion of the functions exp(±xV2/3 — ßi). In view of Theorem I the 
problem of finding the optimal reward g reduces to finding one or 
several vertical strips C outside of which H ^ O and a linear combina­
tion of exp(±xV2/3 — ßt) exceeding g and fitting smoothly with g 
on the sides of C. Then, according to Theorem I, g equals this linear 
combination in C and equals g outside C. 

For conversation's sake, let us specialize to the case where 

*-(T-£-<*) -ßt 
< 0, f o r x > 0, 

> 0, f o r x < 0. 

Then the optimal strategy is either to keep playing for ever, or to play 
in the region x < x0 until first hitting x0, where x = x0 is the unique 
solution (in the region H < 0) to the equation 
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-^logk(x)= V2ß; 

in the latter case 

g = k(x0)exp [ (x - x0)(2ß) u* -ßt], for x < x0, 

= k(x)e~ßt, for x ^ x0. 

3.2 Let g = t-ßl2k(xlVt). We shall solve this problem by con­
sidering first the reward function 

(10) f(y,s) = e-"k(y), 

for the Ornstein-Uhlenbeck process with generator 

* - 2 ^ y By' 

The same discussion holds as in § 3.1: the optimal boundary consists of 
one or several vertical lines; in the continuation region g must be a 
linear combination of the functions 

-r 
J o 

exp[± ky - k2l2]\P-ldk, 

which are respectively the increasing and decreasing solutions of the 
equation cAg = ßg. The transformation 

x = yes, t = e2s, 

maps the Ornstein-Uhlenbeck process into brownian motion, the 
reward function (10) into the one announced under § 3.2 and the ver­
tical boundary y = a into the parabola x = aVt Hence the function 
under §3.2 permits only parabolic optimal boundaries. 

As in 3.1, consider the case where H < 0 for x > 0 and H > 0 for 
x < 0; then we have the same dichotomy: either the boundary does 
not exist and playing for ever is best, or the boundary is a parabola 
x = aVt, where y = a is the unique solution (in the region H < 0) to 
the transcendental equation 

dy ä gß+(y) 

Let us further specialize to Dvoretzky's problem g = xlt (cf. § 1), 
which has the shape given under §3.2. Its optimal boundary is a para­
bola x = a\Tt, where a satisfies the equation (11), which simplifies to 
Shepp's transcendental equation 

(12) a = (1 - a2) | °° exp [ka - X2/2] dk. 
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Moreover 

g = sup E X %r = (1 - a2) f " exp[Ax - kHI2] dk, x < aVt, 
T t T" T JO 

= — , x è a Vi. 

At this point, everyone would be tempted to try using the same 
recipe for other diffusions; namely, take such a stationary reward for 
an arbitrary diffusion and map it back into brownian motion. You may 
expect in this way to obtain new shapes for the optimal boundary. 
But to our regret, the only time-independent diffusions which can be 
mapped into brownian motion using a space-time deterministic trans­
formation are the Ornstein-Uhlenbeck process and their scale changes. 
This follows from a result by Cherkasov [ 10]. Therefore, this 
method will never give anything more but parabolas or vertical 
boundaries. 

3.3 SOME PARABOLIC GAMES WITH FINITE HORIZON. Consider a 
reward function of the type 

g(x, t) = (r - t)"V (vrzTj)» t < T> 

= d|x|", x < ( U = r, 
= C2x", x ̂  0, t = T, 

where <p is positive and sufficiently differentiable. Moreover, you 
must assume that 

lim (T- tyify ( , X ) 

exists, in which case it will take on the form C / l x ^ for x < 0 and 
C2 'x

ß for x ÜÜ 0, with Q = Q ' = 0. Then, as a consequence of the 
brownian scaling property, g can be shown to have only parabolic 
optimal boundaries x = a V T — t. 

Assume s(t) consists of just one parabola a V T — t with the continua­
tion region to the left of it; for short, call 

"W-ïI 
d2<p d<p 

E(y)=-^D(y)+i^r{y), 

F{y) = 1 [ S " + y~^~ ~ß(p + (Ci " c',)ßiß - l^-y^~2 ] 
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Then a satisfies the transcendental equation 

fa 1 r a2 — a)2 -i ß~2 

This equation is obtained by substituting aVT — t for s(t) in equation 
(9) and by making a couple of changes in variables. 

Let us now consider some special cases. 
(a) Take a game where you pay one dollar per unit time, as long as 

you play. You are never rewarded, except at the end where you re­
ceive kx2 if x = 0 and nothing otherwise, with k > 0. Here 

g=T-t, t<T , 

= kx2, t= T,x^0, 

= 0 , t = T, x ^ 0. 

This game has the shape under §3.3. Hence, the optimal boundary is 
a parabola x = ay/T — t, with a satisfying the transcendental equation 

(13) aT exp[ \a - X2/2] d\ = k - 1. 

(b) In a gambling machine, a device initially at zero position jumps 
one step to the left or to the right with probability 1/2 after pulling 
the arm; the gambler wins one dollar each time the device is to the 
left of its equilibrium position and he loses one dollar otherwise. The 
maximum number of times N he wishes to play is optional, but it must 
be decided in advance. For each N, how much entrance fee is the 
casino going to charge in order to break even (on the average) against 
a clever gambler? 

Let X0 be the initial position of the device, which in this example 
is zero but which may be chosen to be any integer in general. Let 
Xi = ± 1 for i > 0, each with probability 1/2 and let e(x) = 1 if x ^ 0 
and = — 1 if x > 0. The gambler's gain will be 

i«(s„), 
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if he decides to play 0 g p = N times; agree on putting 5)n=i = 0 
for p = 0. The entrance fee to this game equals the maximal expected 
gain he can achieve, i.e., 

P 

sup E ]g e(Sn). 
O^piâN n = l 

Using the markov property and provided p = 1, 

E £ e(Sn) = EeiSJ + E £ e(Sn) 
n = l n=2 

= \ €(X0 + 1) +{E 5 1 e(S„') +^€(X0 
n = l 

where Sn ' = (X0 + 1) + 2<n-i X* a n d Sn" 
Therefore 

p 

sup E Y <Sn) = i \*(Xo + 1) + €(X0 - 1) 
OSpgN n = 1 * L 

+ sup E i € (S B ' )+ sup E £ e(Sn") 1 ! 
O â p g f r - 1 n : 1 o ^ p ^ N - 1 n : 1 J 

where A+ — max(A, 0). This simple recurrence relation expresses the 
entrance fee for the option N in terms of the entrance fee for the option 
N — 1. The entrance fees are given by Table 1. In this example the 
optimal stopping curve as a function of N is given by the largest 
integer S0 with zero entrance fee. 

The continuous analogue of this game is one where the gambler 
pays the amount of time the brownian motion spends in the right half 
plane and earns the amount of time it spends in the left half plane (cf. 
Figure 6). How is he going to maximize his gain, if his only choice is 
between playing until time T or stopping before? A naive gambler 
would stop as soon as he enters the lose region. But it may pay to lose 
a bit now in order to win in a more remote future. The problem 
amounts to maximizing 

E H(x + xs,t + s) ds , 
' o 

over all stopping times T ^ T — t, where 

H = - 1 , x > 0 , 

- 1 ) + | E Ç e ( S n ' ' ) , 
n = l 

" X0 — 1 + 2Lfi=i Xi-

= 1, x S 0. 
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t = T 

l o s e vx=aV/T-t 

F i g . 6 

In view of the result in § 2.4, this problem can be reduced to a game 
with reward 

g* = T - t, x > 0 , ^ T , 

= T- t+ 2x'2, x^0,t^T. 

A simple argument shows that g* = g, where g is the game under (a) 
with k = 2. Hence the optimal policy is to stop as soon as the brown-
ian motion enters the region x ^ aVT — t, where a satisfies 

J o 
e x p [ \ a - k2l2]dk = 1. 

(c) Consider a long, well-insulated tube with water on one side at 
initial temperature k — 1 and ice on the other at zero temperature as 
in Figure 7. With the aid of § 2.8, it is elementary to check that this is 
exactly the Stefan problem corresponding to (a). Hence the interface 
between water and ice describes a parabola x = a V r with the param­
eter a satisfying (13). If k — 1 > 0, then a > 0 and the ice melts; if 
k — 1 < 0, then a < 0 and the water freezes, because of being super­
cooled. 

It is interesting to observe from (13) that when the initial tempera­
ture k — 1 decreases to —1, the parameter a tends to — a>, i.e., the 
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k - 1 ° 

w a t e r 

F i g . 7 

liquid phase will freeze faster and faster. One can extrapolate that at 
temperature — 1, the water freezes instantaneously. 

Each of these settings (a), (b), and (c) shows the three different 
aspects which optimal stopping problems present. 

3.4 ABOUT THE WARRANT PRICING PROBLEM. AS you recall from § 1, 
a warrant is a contract conferring the right to purchase a common 
stock at a prescribed unit price at any time prior to some expiration 
date T. Samuelson's model for the stock price fluctuations is a logarith­
mic brownian motion £«*(')+#, where x(t) denotes the ordinary brown-
ian motion starting at x(0) = 0 and a and 8 are positive constants. Its 
generator is given by 

d . a 2
 2 d2 ,/<T2, fi\ d 

*y 
and the expectation ofy(t) by 

Ey(t) = exp[(**l2 + 8)t] , 

where a2/2 + 8 measures the appreciation rate of the stock. More­
over, the warrant appreciates at a rate ß. Also fix the unit price at 
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If the warrant holder decides to purchase the common stock at time 
r not exceeding the warrant's lifetime T (which may be infinite) and if 
the current price is y, then his expected gain relative to the unit price 
will be 

E y = 1 ^ ^ - % T - i ) + , o ^ r ^ r . 

Hence the actual or "rational" price of the warrant is given by 

(14) sup E y = 1 ^ ^ - % T - 1)+. 

So g(y,t) = eß(T~t)(y — 1)+ is the reward function and g, given by 
(14) satisfies 

in the continuation region, together with the final condition 

g(y, T) = (y- 1)+ , 

and the two smooth fit relations at the boundary r(t) of the continua­
tion region. In the case of an infinite horizon the final condition is 
absent. 

It is obvious that the optimal boundary must belong to the region 
where g > 0, i.e., where y > 1; in the latter region 

= * - " ( ( * + ^ ' ß ) y + ß )' 

Unless the appreciation rate ß of the warrant exceeds the appreciation 
rate a = a2/2 -f 6 of the stock, the solution to the problem is trivial, 
because then H ^ 0 in the region y > 1: the optimal strategy is to 
wait as long as you can before purchasing the stock. Then if T = 
oo 9 g = oo and, if T < <», 

1 " a I• ^5(Hr eXP [ - W=T) (ÌiT ' '} 

So the interesting case is ß > a. Consider first an infinite horizon 
T = » . The translation invariance of the reward function g (up to 
an exponential e~ßt) in the vertical direction suggests that the optimal 
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boundary must be time-independent. This fact combined with the 
smooth fit condition shows that to maximize your gain you must wait 
until the current price of the stock exceeds 

yi 

/ 82 \ m 8 

/ g2 \ l / 2 * 

and to the left of yly the optimal reward equals 

Q 5 ) (2e-ßtyll<r(VB2l<T2+2ß-8l<r) 

where C is an appropriate constant expressed in terms of ßy 8 and cr. 
For future use, let g«, stand for (15). 

However, for a finite warrant, the optimal buying curve depends 
explicitly on the time. Moreover, the optimal boundary r(i) belongs to 
the vertical strip between 

/ 82 \ m 8 

ß „ ( j r + » ) -Î 
ß-,-a12 """»'-/.Si )'n-A-, 

\ a2 / a 

because on the one hand it must belong to the region where H ^ 0, 
i.e., where y = t/o a n d o n the other hand to the region where g < g«, 
i.e., where y < yx. The boundary r(t)(t < T) can be shown to be de­
creasing and continuously difFerentiable; see Figure 8. Also near the 
date of expiration T, r(t) behaves like 

t/o + aVT - t, 

where a satisfies the transcendental equation 

(16) 

fa 1 GL ~~* (i) 

= — a2 — = — — -exp[ — w2/2] d<a 

+ !-". ^ e x P [ - ^ 2 ] ^ -

Finally, when T tends to infinity, i.e., when you have plenty of time 
left before the warrant expires, r(t) approaches y1 at an exponential 
rate (for fixed t). This is done by comparing r(t) with the optimal 
boundary for a game where the only other strategy besides quitting is 
to continue the game until hitting the horizon or the line t/ = y1. 



562 P. VAN MOERBEKE 

A 

At 

t = T 

y = r ( t ) \ 

1—"' 
^ 0 ^ 1 

F i g . Ö 

3.5 A BOND-SELLING PROBLEM. W. M. Boyce [6] has considered 
the problem when to sell "Brownian" bonds. The price of a bond con­
verges to its face value near maturity, which is achieved by imposing 
an appropriate drift on the brownian price fluctuations. When is the 
owner going to sell his bonds in order to have the maximal capital 
gain? For tax or other reasons the owner may want to sell before 
expiration, i.e., before a certain date T prior to the expiration date. 
Here again we ask how to sell optimally. In the latter case the prob­
lem is not well posed, unless some information is available about the 
price distribution at the ultimate selling date T. But the experienced 
investor may be able to guess or predict the price's mean m and vari­
ance a 2 at that moment. In fact, the most random distribution fitting 
these requirements is a normal distribution N(m,a2). 

In both problems, agree to choose T = 1. H. Fölmer [23] shows 
that a diffusion ys starting at y0 = y constrained to have a normal 
distribution N(m, <T2) at time s = 1 is governed by 

(17) ~i + J^ + ̂  + mh^i,'s=1' 
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where 

« W = i + ^ - l ) a n d & < s > = 1 + s'a* - 1) • 

This includes both problems, because for the first one m is the face 
value and (7 = 0. Without loss of generality you may assume m = 0. 
The reward function is g(y, s) = y, because y is the gain you make by 
selling the bond at price y. consequently, the problem amounts to 
maximizing 

Ey,s(yr) > 

over all stopping times not exceeding 1 — 5. The payoff-rate 

H = 
y ( < r 2 - i ) 

1 + s(a2 - 1) 

vanishes for a = 1, is negative for y > 0 when a < 1 and positive 
for y < 0 when a > 1. The fact that for a < 1, if is negative in 
x > 0 implies that the continuation region will be unbounded to the 
left and bounded to the right. For a > 1, the situation reverses 
completely. Of course for cr = 1, the problem is vacuous because 
then g itself is parabolic with respect to the generator (17). Notice that 
for or = 0, 

r(s) = a V l — s > 

where a satisfies the transcendental equation (12). This is easily seen 
from the transformation 

and 

x = 1 + S((T2 - 1) ' 

which maps the motion governed by (17) into brownian motion and 
the reward function g into 

For a > 0, a j£ 1, the boundary can be shown to behave approxi­
mately like 

t / = a ( l - s ) 1 ' 2 , 
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for small 1 — s, where a > 0 (for 1 > a > 0) and —a > 0 (for a > 1) 
satisfy the transcendental equation (16). Boyce's numerical calcula­
tions show that the optimal boundary is the farthest to the right for 
cr = 0, that it decreases to a non-trivial limiting curve when c r ^ l , 
that it jumps to the quadrant y < 0 when a passes through 1 and that 
it increases thereafter; see Figure 9, D. S. Griffeath and J. L. Snell [25] 
have obtained a similar result with the discrete version of the prob­
lem. This phenomenon can be proved by observing that the optimal 
boundary for the reward function 

g(y,s) = y X sign of (1 - cr), 

decreases with respect to or; a continuity argument does the rest. 

< 

X =j- q 1 - s I 

» 1 \ ^ 
o= 1 + a = °° 

i s 

S = 1 

\ x = a y l - s \ 

0 = 1 o = 0 

3.6 ABOUT HOLES IN THE CONTINUATION REGION. In this section, we 
provide an example, showing how a small continuous modification 
will suffice to generate a hole in the continuation region. In fact, this 
procedure can be generalized so as to get as many holes as you wish. 

(1) Consider the following game 

g= (T-t) (a + 31og T
l_t Y i<T, 

= a delta-function with pole at zero, t=T. 

Its optimal reward is explicitly computable (cf. Figure 10); indeed, 

(18) g = A(x* + (T - t)) + 
V2ff(r - 1 ) 

exp[-x 2 /2(T- t)] , 
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in the continuation region — s(t) < x < s(t), where 

(19) S(t)= ( 2 ( r - t ) i o g A _ 1 

A is chosen such that 

(20) 

2VMr - tft2 

\ 1/2 

/ ; 

3 + 2l0§^2T = ö-

F i g . 10 

These expressions are derived from considering a one-dimensional 
heat flow problem with initial temperature u(x, 0) = Ax2 + a delta 
function centered at zero; then its temperature at time T — t equals 

(21) u(x, t) = A(x2 + (T - t)) + 1 e x p [ - x 2 / 2 ( T - t)] ; 
V2TT(T - t) 

but u as a function of x has two minima, which describe in the (x, t) 
plane the curves x = ±s(t). So, it satisfies the heat equation and the 
second smooth-fit relation: 
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The other one 

u(s(t), t) = g(s(t), t), 

determines A as a function of a, as expressed in (20). Since u > g in 
the interval [ —s(t), s(t)], Theorem 1 implies (18) and (19). 

(2) Let g be as in (1) except that now the final gain h is the sum of 
two delta-functions with poles respectively at — a and a. Choose a 
to be large. You would expect the continuation region to be composed 
of two separate blobs, each one rather like the original picture (Figure 
10) but slightly distorted due to the presence of the two delta-functions. 
In fact, this is not so: each of the two connected components is an 
exact replica of the original continuation region as in Figure 11. The 
smooth fit relations and Theorem I are the key to this somewhat sur­
prising fact: the function (18) centered at — a, resp. -ha, fits smoothly 
with g and at t = T it reduces to a delta-function with pole at — a, 
resp. -ha. So as long as -ha is such that the two blobs do not overlap, 
they remain unchanged. 

J 

- a 

,: 'J 
1 

+ a 

X 

F i g . 11 

(3) As soon as the blobs overlap so as to be linked, a deformation 
takes place because the brownian particle can move freely from the 
one into the other; the picture will look like Figure 12. In fact that 
part of the continuation region ahead of tx (cf. Figure 12) will remain 
unchanged irrespective of a. 
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F i g . 12 

(4) In the final step, you smoothen h somewhat by replacing it by 

—±== exp [ - (x + a)2l2] + — s = « x p [ - (x - a)2/2] 
V27T6 V2TT€ 

with e > 0 small. Now h > 0 everywhere which adds to the picture 
a narrow strip of continuation points near the horizon. In this fashion 
you get a hole of stopping points in the interior of the continuation 
region (cf. Figure 13). By making a small or e large, the hole will 
shrink down to a point and finally disappear. Obviously this con­
struction can be repeated so as to get as many holes as you wish. 

4. Some Final Remarks. In this final section we will comment on 
the shape of the continuation region for a reward function of the type 

g = T - t , t<T, 

(22) = h(x) > 0, t = T, - a<x<a, 

= 0, t=T, \x\^a, 

where h(x) is a C3-function in [ — a, a], subject to the lateral conditions 
dhldx(±a) = 0 and | d2h/8x2(±a) = - H = 1. These assump­
tions will be in force throughout this section. 

THEOREM II. If j>d2hldx2 has at most two zeros and \d2hldx2 — 
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1 at most a finite number of zeros in [ — a, a], then the continuation 
region is a connected bounded region, whose boundary x = s(t) is a 
continuously differentiable function as long as £=£«,>—°°,£oo 
being the relative minimum of the continuation region; see Fig. 14. 
Moreover, the number of zeros of s cannot exceed the number of zeros 
of-x

2d
2hldx2 + 1. 

REMARK. The lateral conditions for h at the points ±a are essential 
to give the boundary a nice start at t = T. Otherwise the boundary 
may behave in a very singular way near the horizon. 

As to the zeros of id2hldx2, we could have assumed only a finite 
number of them, in which case this number would have appeared to 
be an upper bound to the number of critical points. 

OUTLINE OF THE PROOF. We shall make the simplifying assumption 
that h(x) is an even function; then the continuation region is symmetric 
in x. We will now give the main ingredients of the proof. 

1. Local Result: Starting from the finite horizon, s does not blow 
up for a little while. This is achieved by proving the existence of a 
continuously differentiable solution to an integral equation in s(t) 
(similar to (9)) in a small time interval (T — €,T], using a fixed point 
method. This solution turns out to coincide with the optimal boundary 
in that time-interval. The length ofthat interval merely depends on 

I d3h I 
sup I I . 
\x\<a I OX3 I 

Subsequently, you extend the boundary down to a point t0 where s 
ceases to exist. If s(t0) = 0, you would have reached the bottom of C 
(see Fig. 14) and since h is even, the proof would be finished. So 
s(t0) > 0 is the interesting case. All the effort of Theorem II is put into 
proving that s(t) can be extended a bit below t0 in a continuously dif­
ferentiable way under the assumption that the boundaries have not 
yet intersected. This extension is possible provided \s\ is bounded in 
(t0, T] ; the reason for this will be explained in 2. 

2. Why does the boundedness of \s\ in (t0, T\ suffice to guarantee 
its extension beyond t0? From (8) we deduce that 

I)!-«*), «)=«(*). 
Since \s\ is bounded and since d3gldx3(x, T) = d3h/dx3 is also 
bounded, the maximum principle tells you that d3g/dx3 is bounded 
throughout the continuation region between t0 and T. Choose an 
arbitrary horizon Tx between t0 and T and define 
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g i (* , t )= Tx- t, iovt< Tl9 

= hx(x) = g(x, TO - g(x, TO, for t = Ti. 

It is plain that g/s optimal boundary denoted by s1(f) is the same as 
s(f) below the level Tx. But now 1. applies to g\{x, f) and it tells you 
that the optimal boundary is continuously difFerentiable in a time 
interval (Tì — e, TJ , whose length depends on 

I d3hi I 
SUp ; 

\x\K8iTtf I OX3 I 

the latter is bounded above by 

SUP ~ T T (x>*) \ < °°> 
t0<t^T I dxó I 

independently of Tx. Hence, the length € of the interval is actually 
independent of Tv Therefore, by choosing 7\ > t0 close enough to 
£0, the optimal boundary is seen to be differentiable below t0, as ad­
vertised. 

3. Moreover, \d2gldx2 remains strictly positive in a strip around 
the boundary. The function \d2gldx2 is continuous in —s(t) â x = 
s(t) for t0 < t ̂  T and it satisfies the boundary value problem, defined 
by 

/ d , d2 \ , d2i 
(23) ("är+^)2lJ- = 0> -*(*)<*<*(0,«o<^r, 

(24) i"3-(±*(*)»*)= 1, 

and 

! a2g ! d2h 
2 ax2 (x' } 2 ax2 ' 

The key to the whole problem is the following conservation law: the 
total " amount of heat", 

(25) Ci^(*>*)*-{(%«*)>*)-%(-*).*))=<>> 
remains zero, because of the smooth fit conditions. This fact com­
bined with the boundary condition (24) implies that there has to be 
at least one zero and by symmetry exactly two zeros, since by assump­
tion d2hldx2 has at most two zeros. Hence, the "root" curves 

file:///x/K8iTtf
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2 d2g/dx2 = 0 will extend downwards and they can only intersect 
the boundary at the very moment all the "heat" has disappeared, i.e., 
at t« (see Figure 15). Otherwise, either (25) or the maximum principle 
would be violated. As a bonus you find that the continuation region 
has to close down at the bottom. 

' 
3 x 2 

1 \ 

/ \ \ 

\ \ — 
\ 2^ 

\ \ 

I t 

s* i 

y i ) 

i / 

,2 ' / 

/ / 
/ / 

/ / 

/ x 

t = T 

X 
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4. The boundary can be extended as long as \ d2gldx2 > 0 in a 
strip around the boundary. The reader familiar with Kac's [28] 
"principle of not feeling the curvature" knows that a brownian ob­
server close enough to the boundary will feel it only as a straight line, 
to a first approximation. This idea is now adapted to the space-time 
brownian motion so that the boundary can actually be replaced by a 
tangent line near the point under consideration. The estimates, ex­
pressing the optimality of g, performed in this simplified region, pro­
vide an upper bound for s, while the integral equation for s(t) yields 
a lower bound to s. The latter estimate relies on the local monotonicity 
of the boundary; this is so, because the number of zeros of s is bounded 
above by the number of zeros of \d2h/dx2 — 1. This finishes the 
proof of Theorem II. 

In view of the conservation law, cited above, it is of special interest 
to draw the analogy between the game defined by (22) and the ice-
melting or ice-freezing problem. As was pointed out in § 2.8, the 
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functions W(X,T) = —d/dt(g — g)(x, T — T) and a(r) = s(T — r) 
satisfy 

dw l d2W . r / x / M 

U;(±OT(T) ,T) = 0 , 

dw 

dx 
( ± < J ( T ) , T ) = + 2<T(T) , 

The curves ± <T(T) represent the position in time of the interface be­
tween water and ice, water at temperature W(X,T) in the region 
\x\ <<T(T) and ice at zero temperature in the complementary region. 
Of course, you permit the temperature of the water to be negative, i.e., 
supercooled, and positive in different areas. Observe that 

fO-(T) fo-(T) / T 32P \ 

W(X,T) dx= (\ —S- - 1 \ dx = -2a(r), 
-a(r) ' -a(r) \ Z OX2 I 

and, in particular, 

w(x, 0) dx =«= — 2a; 
J —a 

this means that at each moment r, the total amount of heat equals the 
total amount of heat needed to freeze all the water. That for optimal 
stopping problems this is valid is an important fact: it is responsible 
for the compactness of the continuation region and for the fact that the 
continuation region closes down at the bottom. 

It is instructive to observe what occurs when (26) is not valid: 
(a) First assume that the total amount of heat would exceed the 

amount necessary to freeze the liquid: 

i.e., the liquid would not be sufficiently supercooled to become com­
pletely solid. Then there always would be a residual amount of un­
frozen water and it is intuitively obvious that this residual amount 
equals the excess amount of heat which would have to be extracted 
from the system to achieve complete freezing (cf. Figure 16). In view 
of § 4.3, this case corresponds to the situation where the root curves of 
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d2g/dx2 meet each other before meeting the boundary. Then the 
boundary can be extended indefinitely, as a result of the argument 
in Theorem II. 

x = - a ( x ) 

F i g . 16 

(b) Next suppose that the total initial amount of heat would be less 
than the amount necessary to freeze the liquid: 

(27) 
dx2 < 0 , 

i.e., the liquid would be too cold. Then one expects a swift freezing of 
the water. But the smaller the distance between both pieces of ice, 
the smaller the temperature gets in view of the fact that an inescapable 
amount of cold (negative heat) will remain. But the maximum prin­
ciple does not allow the water to decrease its temperature below the 
minimum of its initial temperature. Therefore at some stage something 
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drastic must happen (see Figure 17). But as long as the root curves 
of d2g/dx2 do not intersect the boundary, the arguments of Theorem 
II show that the boundary can be extended downwards in a smooth 
way. At the very moment the root curves of d2g/dx2 meet the 
boundary (as it must, because of (26)), the solution ceases to exist, 
because the boundary condition 

dx2 (±<T(T) ,T)) , = 1, 

cannot be satisfied any more; one may think of this as a sudden and 
instantaneous freezing of all the water. 

r ^ 
1 ;

/x\̂ ___ 

\ H=° 

X = - O ( T ) \ / 

} 

3 2 h 

S 1 ^" 

2 - / / 

H^ / 
3 x \ / 

K I / s 
\ 1 x=a( j ) 

FT 

F i g . 37 

This argument suggests once more that if the ice-melting picture 
is to come from an optimal stopping problem, you must actually have 
the conservation law (26). 

It is interesting to discuss the analogy between Stefan's problem and 
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optimization with regard to the appearance of holes in the continua­
tion region exposed in § 3.6. Let 

g = T-ty t< T , 

= h(x), t= T , 

where h(x) has strong enough peaks to generate a hole in the con­
tinuation region. The behavior of the water-ice interface is straight­
forward before the instant TX the hole appears (cf. Figure 13). At this 
moment, someone puts an ice-germ at x = 0, after which all proceeds 
freely: this germ of ice grows, shrinks and finally disappears. Again 
at time r2 man's intervention is needed, after which things evolve 
again according to nature. 

THE SHAPE OF THE BOUNDARY NEAR THE CRITICAL POINT. Here we 
assume g as in (22) and in Theorem II; moreover, let h(x) be even. 
Then it follows from the integral equations for s(t) (similar to (9)) that 

lim s(t) = 0; 
U toc 

so, in this case, the boundary exhibits a cusp at t = t «,. 
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