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HOMOTOPY-ALGEBRAIC STRUCTURES
F.D. WILLIAMS

In topology, there are many objects of study that consist of a space
together with an “operation” on it. One may think of a topological
group structure, an H-space structure, a homotopy self-equivalence,
etc. One wishes to classify such operations up to homotopy and to
consider the possible relations such an operation may satisfy. In this
paper we provide a general framework to study these questions in
terms of the Postnikov system of the space in question. Our model is
the well-known fact that a space is an H-space if and only if its Post-
nikov invariants are primitive, and we are inspired by the work of
Stasheff, [7].

The spaces we shall consider will be connected CW-complexes with
basepoint. Let X be such a space, with x, its basepoint. Denote the
cartesian product of n copies of X by X" and let T',"(X) be the subspace
of X" consisting of all points at least one of whose coordinates is the
basepoint.

DeriniTioN 1. An (n-ary) operation on X consists of a pointed con-
tinuous function ¢ : X» — X.

Let 9X denote the (Moore) free path-space of X, i.e., the set of all
pairs (A, 7) such that r= 0 and A : [0, ] — X is continuous. We have
two projections of FX onto X, 7y and 7 ., given by 7o(A, r) = A(0) and
T o(A, 7) = A(r). The basepoint of 39X is taken to be the pair (A, 0)
such that A(0) = x,.

DeriniTioN 2. If ¢, ¢ : X® — X are operations, a relation between ¢
and ¢ is a homotopy R: X" — 9X such that mp°c R=¢ and 7.~ R

RemMagk. Since T',"(X) is retractile [3] in X", if ¢ and ¢ agree on
T,*(X), then R may be chosen to remain fixed on T,"*(X).

DeriniTION 3. Suppose that ¢ : X®— X and ¢, : X;"— X, are opera-
tions. A map f:X-— X, is called a (¢, ¢,)-map provided that there
exists a homotopy H:X"— 9X, such that mo° H=¢,° f* and
Twe H= fo¢.

Observe that 39X is a functor in X, i.e., that given f: X— Y we
may define Ff: IX— Y by Ff\)[f] = f(A(¢)).
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DeFINITION 4. Suppose that R: X"— 9X and R, : X,"— 9X, are
relations between operations ¢, ¢ : X"— X and ¢, ¢, = X;"—> X,
respectively. A map f:X— X, is called an (R, R,))-map provided
that there exists a secondary homotopy D : X"— F(9X;) such that
mo°c D= R,° frandr.°D= f° R

Note that if H= 9ry° D and G= 97.° D, then H and G are
homotopies that make f a (¢, ¢;)-map and a (Y, ¢,)-map, respec-
tively.

Given (A, ) in 93X, define A(t) = \(r) if t= r. There is a product
p: (IX)— F(X) given by

""(()‘l’ 1‘1), T ()\m Tn)) = ()" max(’h Y 1‘"»,

where A(t) = (A((f), * * , A (8)). Let PX be the subset of FX consist-
ing of all (A, r) such that A(0) = x, and let (X consist of all (A, r) in
PX such that A(r) = xo. Let AC 9X X 9X consist of all pairs
(A, 71), (Ag,79)) such that A;(r;) = Ay(0). Then we obtain an addi-
tion, + : A—> 9X, by

I ¢ ¥107) o=t=rn)
(()‘1’ 1‘1) + (A2? 7‘2))[t] {Az(t _ 7'1> (7‘1 é té r + 72)-
Clearly OX X QX C Aand OX + QX C QX.
Henceforth, consider the situation

Qx, = QX
l l
E e _(/DXI
Ip I 7o
X i) X, ,
where the left-hand column is the fibration induced from the right-
hand column. Thus E = {(x,A) | f(x) = m«(A)}. Suppose that there
are operations ¢: X"— X and ¢,:X,"— X, and that there is a
homotopy H:X"— 9X, that makes f a (¢, ¢;)-map. Construct an
operation ¢, : E* — E by

¢2((xl’)\l)7 Y (xn,)\n)) = (d’(xl’ o "xn), 9¢1 ° I*"()\l’ Y An)
+ H(xy, * - -, x,)).

Observe that ¢, is well-defined and that P : E— X is a (¢, ¢,)-map.
The operation ¢, is said to be induced by ¢, ¢,, and H.

Suppose that ¢, ¢ : X»— X and ¢,, ¥, : X," — X, are operations and
that there are relations R: X*— X and R, : X;"— X, between the



HOMOTOPY-ALGEBRAIC STRUCTURES 447

pairs ¢, ¢ and @, ¢, respectively. Then there is induced in similar
fashion a relation R, : E*— SE.

We wish to consider the existence of operations and relations on a
space by examining the stages of its Postnikov system. Thus we
examine the situation

E
p

x3 kG m+ 1)

where 7 (X) = 0(k = m). We want to determine necessary conditions
for the existence of operations and relations on E in terms of X and 6.

Suppose we have an operation ¢,: E* — E. By the naturality
of Postnikov systems [4] there are induced ¢:X* - X and
¢, : K(G,m + 1)"—> K(G, m + 1) such that 6 is a (¢, ¢;)-map and p
is a (¢, ¢)-map. The homotopy classes of ¢ and ¢, are uniquely deter-
mined. We need to know more, however, to conclude that ¢, induces
operations on X with prescribed values on T,*(X).

Proposition 1. Let n= 2. Suppose that ¢, : E"— E and ¢ : T1(X)
— X are such that po ¢, = ¢° p* on T\"(X). Then there exists an
extension ¢ : X" — X of ¢ such that p is a (¢y, $)-map.

ProrposiTioN 2. Let ¢y, Yy: E*> E, ¢, ¢ :X"—> X, and ¢,
Y1:K(G,m + 1)"— K(G,m + 1) be operations such that p is a
(¢, @)- and (Y3, ¥)-map and 0 is a (¢, $,)- and (Y, Y ,)-map. Let
R,: Er— 9E be a relation between ¢, and ¥, Let R: T,(X)—
39X be a homotopy between the restrictions of ¢ and ¢ to T ,*(X).
Then R extends to a relation R between ¢ and ¢ such that p is an
(Rg, R)-map. Furthermore, there exists a relation R, between ¢, and
Y, such that @ is an (R, R;)-map.

Proposition 3. (cf. [9, pp. 38-40]). Suppose that ¢ : X — X and
¢, : K(G,m + 1)"—> K(G, m + 1) are operations and that H:X"—
9K(G, m + 1) is a homotopy that makes 6 a (¢, d;)-map. Suppose
that , : T\"(E)— E is given by

&2((:‘:1’)\1)’ T (xm )‘n)) = (¢(x1’ o '7xn)a Sld’l ° /J'()\l’ Y )\n)
+ H(x,, - - -, x,)).

Then any extension b of ¢, that makes p a (¢, ¢)-map is homotopic
to one of the form

(52((xl7)\1)> Y (xm An)) = (¢(xl’ T ',X,,), 9¢1 ° “‘(AI’ t ")‘n)
+ H(xla o "xn)) ’
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for some homotopy H between 6° ¢ and ¢, ° 0" that agrees with
H on T(X).

ProposiTioN 4. Suppose R:X"— 99X and R,:K(G,m + 1)"—
9K(G,m + 1) are relations and that D:X"— F(IK(G,m + 1))
makes 0 an (R, R,)-map. Suppose that R, : Er— 9E is induced by
R, Ry, and D. Then any Ry : E*— 9E that makes p an (R, R)-map
is hon_zotopic to one induced by R, R,, and D, for some D that agrees
with D on T »(X).

Propositions 1 and 2 are modelled on those of [7]. Propositions
3 and 4 are proved using obstruction theory, cf. [6]. See also [1].

The above techniques have been used to study H- and HAH-struc-
tures in [1], [7], [8] and [12]; HC-structures in [10] and
[12]; and QC-structures in [11]. In order to make calculations
we need to examine the image of [ —; QK(G,m + 1)] - [—; E]. We
illustrate the type of calculation necessary in two examples.

ExampLE 1. We enumerate the H-equivalence classes of multiplica-
tions on real projective 3-space P;. (Two multiplications m and m’
are H-equivalent if there exists an H-map f: (X, m)— (X, m’) that
is a homotopy equivalence. According to [5] there are 768 homotopy
classes of H-space multiplications on P;. We wish to determine which
of these are H-equivalent to each other.

Begin by observing that there are two homotopy classes of homotopy
equivalences of P; with itself. For, in the short exact sequence of
groups

0—> [P3; 8% ¥ [Py; Py] — [Py K(Zy, 1)] 0

obtained from the fibration S°— S3— P;, we see that [P;; P;] is an
extension of Z, by Z, and the only elements of [Pg; P5] that induce
isomorphisms of integral cohomology are 1 and 1 — [7° p] for p
an appropriately chosen generator of [ Pg; §7].

Now consider the bottom stage of a Postnikov system for P;. We
have

E,

K(Z, 1) k(Z, 4,

There is one self-equivalence on K(Z,, 1), there are two on K(Z, 4),
and 6, is a map for each pair of these, since 6,* takes both generators
of H¥Z, 4; Z) to the non-zero element of H¥(Z,, 1; Z). Differences in
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homotopies H : K(Z,,1)— 9K(Z, 4) for 6, lie in
[K(ZQ) 1)7 QK(Z7 4)] = HG(ZZ7 1; Z) = 0

Thus we obtain two classes of self-equivalences for E;, which are
easily seen to lift to the two classes on P,

We now count the multiplications on E,. There are unique multi-
plications on K(Z,,1) and K(Z, 4), respectively, and 6, must be an
H-map with respect to these. The classes of multiplications on E,
therefore, are determined by elements of the group H*K(Z,,1)
N K(Zy, 1); Z) = Z,, so there are at most two classes of multiplications
on E,.

We may regard P; as a loop space QBSO(3), and consequently may
consider the spaces and maps in its Postnikov system to be loop spaces
and loop maps. Let m denote the loop addition on E,. If we can
show that m is not homotopy-commutative, then the two classes of
multiplications on E; must be those determined by m and m ~ T.

Let us write E, = QF,’, K(Z,,1) = QK(Z,,2), K(Z, 4) = QK(Z, 5),
and 6, = Q6,’. Forany space Ylete : 3QY— Y denote the evaluation
map. It is easy to see, cf. [12], that the composition

H5(K(Zy, 2) A K(Z,,2)) € N€)* H5(3K(Z,,1) A SK(Z,, 1))
~ H3K(Zy, 1) \ K(Zy, 1))

takes the obstruction to 6,' being an H-map to an element of the
obstruction set to 6, being an HCH-map. This latter obstruction set is
a coset of the subgroup (T* — 1*)(H3(K(Z,, 1) A K(Zj,1))). By use of
the Kiinneth theorem we see that this subgroup is trivial and that
(e \ €)* is an isomorphism in this dimension. Thus 6,’ is an H-map
if and only if 6, is an HCH-map. But it is shown in [2] that 6,’ is
not an H-map. Thus no multiplication on E; can be homotopy-
commutative.

Let ¢ denote the non-identity self homotopy-equivalence on E,.
We may represent ¢ by ¢(a) = —a. (Here —(a,r) = (—a, r) where
—oft)=ar—1t).) Then ¢om(aB)=—(a+B)=(-8)+(-a)
whereas m o (¢ X ¢) (@, ) = m(—a, —B) = (—a) + (—f). Thus
me (¢ X ¢) is not homotopic to ¢ ° m. Let ¢, denote the nonidentity
self homotopy-equivalence of P;. Since any multiplication m; on Pj
is a lifting of either m or mo T, then ¢, 'om ° (¢, X ¢,) must
be a lifting of the other. Hence ¢, is not an H-map between any
multiplication and itself, so the 768 homotopy classes of multiplica-
tions on P, reduce to exactly 384 H-equivalence classes.



450 F.D. WILLIAMS

ExampLE 2. We compute the number of classes of homotopy self-
equivalences of the special unitary group, SU(3). The first stages of
a Postnikov system for SU(3) may be written

[
s
E; = E¢ ——K(Z5,9)

E, = E, = K(Z 3)—% . K(Z,6)

To construct and classify the equivalences on E,, we consider the
Serre exact sequence (coefficients in 7,,(SU(3))):

- HH(K(r, n)) = HN(E,) < HY(E, _,) & H< (K, n).

Note that H"~Y(E,_,)— H"~Y(E,) is isomorphic and H"(E,_,)—
H"(E,) is monomorphic. Thus, HY(E,) = H*(SU(3)) and H"*Y(E,)
injects monomorphically into H"*1(SU(3)). Since H"(SU(3)) is an
exterior algebra with two generators in dimensions 3 and 5, H*(SU(3))
=0 (n#0, 3, 5 and 8). Thus if n=8, HYE,) = 0= H"*\(E,).
We observe further that if n= 8, 6,* o : H*(K(7,,n))—> H**Y(E, _,)
is an isomorphism, whence 6,*: H"*{(K(w,,n + 1)) > H"*{(E,_)) is
isomorphic. Further examination reveals that 6,* is an isomorphism
in dimension n+ 1 for all n>5. Thus any self-equivalence of
E,_, (n>5), induces a unique one of K(m,, n + 1) such that 6, is a
map of these structures. There are two self-equivalences each on
K(Z,3) and K(Z,6) and 65 is a map for each of the four pairings of
these, since 05*: H8(K(Z,6): Z) = Z— H%K(Z,3) : Z) = Z,. We now
need to count the various liftings of these structures from E,_, to E,.

According to Proposition 3, we need to look at elements of
H"(E,_,; m,(SU(3))) and determine which of them define different
operations on E,; precisely, we examine the image of the composition

HA(E, 13 o(SUG) B8 [Eai QK(ma(SUG)). n + 1) 5 [Eys E,J

where i: QK(7,(SU(3)); n + 1) > E, is the inclusion of the fiber. We
have already seen that p,,* is monomorphic in this dimension.

Let n=>5. Then H5E,; Z)= H5K(Z, 3); Z) = 0. Consequently
each pair of equivalences on K(Z, 3) and K(Z, 6) determines a unique
equivalence of E5. Thus Ej has four self-equivalences.
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The group HY(Es; Zg) injects into H(SU(3); Zg) = 0, so that Eg
possesses four self-equivalences.

Finally let n = 8. We observe, by use of the cohomology ring struc-
ture, that pg*: H¥E;; Z,,) > H%(Ey; Z)5) = Z,, is an isomorphism.
Consider the diagram

[ Es; QK(Zg,6)] = H>(Eg; Z)

| s

[Eg; QE;] —> H3(Eq; 12) [Es; Eg]

0= HYEg; Z)—> [Eg; QEs] - H%Eg;, Z) = 0.

We see that i, is onto. Consequently we may look at the compositions
H3(Eg; Zg) — [ Eg; QE;] — H¥Eg; Z),). This is induced by a co-
homology operation K(Zg, 5) — K(Z,,,8). Any such operation is zero
in the cohomology of SU(3) (it must be “essentially” Sq°) and so must
also be zero in Eg. Thus i, is injective and so each equivalence of
E, lifts to twelve of E;5. We conclude that Eg (and consequently SU(3))
possesses 48 classes of homotopy self-equivalences.
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