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HOMOTOPY-ALGEBRAIC STRUCTURES 

F . D. WILLIAMS 

In topology, there are many objects of study that consist of a space 
together with an "operation" on it. One may think of a topological 
group structure, an H-space structure, a homotopy self-equivalence, 
etc. One wishes to classify such operations up to homotopy and to 
consider the possible relations such an operation may satisfy. In this 
paper we provide a general framework to study these questions in 
terms of the Postnikov system of the space in question. Our model is 
the well-known fact that a space is an H-space if and only if its Post­
nikov invariants are primitive, and we are inspired by the work of 
StashefT, [7]. 

The spaces we shall consider will be connected CW-complexes with 
basepoint. Let X be such a space, with x0 its basepoint. Denote the 
cartesian product of n copies of X by Xn and let T1

n(X) be the subspace 
of Xn consisting of all points at least one of whose coordinates is the 
basepoint. 

DEFINITION 1. An (n-ary) operation on X consists of a pointed con­
tinuous function 0 : Xn —» X. 

Let ^ X denote the (Moore) free path-space of X, i.e., the set of all 
pairs (A, r) such that r §^ 0 and À : [0, r] —> X is continuous. We have 
two projections of ^ X onto X, TT0 and TT «,, given by 7r0(A, r) = X(0) and 
TT «(A, r) = k(r). The basepoint of QX is taken to be the pair (A0,0) 
such that A0(0) = x0. 

DEFINITION 2. If <f>y i// : Xn —» X are operations, a relation between <f> 
and \fß is a homotopy R : Xn -» QX such that TT0 ° fl = <j> and TT «, ° R 

REMARK. Since T1
n(X) is retractile [3] in Xn, if <f> and ip agree on 

T1
n(X), then R may be chosen to remain fixed on T ^ X ) . 

DEFINITION 3. Suppose that <f> : Xn —» X and <f>i : Xx
n —> Xx are opera­

tions. A map / : X—> Xx is called a (</>, (fr^-map provided that there 
exists a homotopy H : Xn —> ^Xj^ such that TT0 ° H = <j>x ° fn and 
7Too° H = / ° f 

Observe that QX is a functor in X, i.e., that given f : X—» Y we 
may define ^ / : <3X-» <3Yby <?/(À)[*] = /(A(t)). 
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DEFINITION 4. Suppose that R : Xn-> <3X and Rx : Xjn-> <9Xi are 
relations between operations fa t/j : Xn —» X and $1? i ^ = X ^ —» Xx 

respectively. A map /:X—>XX is called an (R, R^-map provided 
that there exists a secondary homotopy D : X n -* ^ ( ^ X ^ such that 
7To° D = R1o/nand7T ao°D = / o R. 

Note that if H = DTTQ ° D and G = ^TT» ° D, then H and G are 
homotopies that make / a (0?</)1)-map and a (^, 01)-map, respec­
tively. 

Given (X, r) in <?X, define X(£) = X(r) if f ̂  r. There is a product 
/x : ( <3X)n -> <3(Xn) given by 

M((*I, 'I)> * * S (X„, rn)) = (X,max(r1, • • -, rn)), 

where k(t) = (Xi(f), * * s A„(*)). Let IPX be the subset of <3X consist­
ing of all (X, r) such that X(0) = x0 and let QX consist of all (X, r) in 
<PX such that X(r) = x0. Let A C 9 X X <?X consist of all pairs 
((*i>ri)> (A2>

 r2)) s u c n that X1(r1) = X2(0). Then we obtain an addi­
tion, + : A-> ^X ,by 

(ft„r,)+(X2,,2))[«]-{«;)_fi) ^ Ï ' J ^ ^ . 

Clearly ilX X fìX C A and ftX + HX C ftX. 
Henceforth, consider the situation 

axx = nXi 
4 | 
E - > <PXY 

I p f l TT * 

where the left-hand column is the fìbration induced from the right-
hand column. Thus E = {(x,X) |/(ac) = 7TOO(X)}. Suppose that there 
are operations <f> : Xn —> X and <̂ x : Xx

n —» Xx and that there is a 
homotopy H:Xn—» *?Xx that makes / a (fa fa)-map. Construct an 
operation <£2 : E

n —> £ by 

<M(*l>*l), * ' *> (*»>»)) = W>(*1> * * ->*n)> ^4>1 ° M(*1> ' ' S O 

Observe that $ 2 is well-defined and that F : E—» X is a (fa,«hJ-map. 
The operation </>2 is said to be induced by fa fa, and H. 

Suppose that fa ty : Xn —> X and fa, i/^ : X ^ —> X2 are operations and 
that there are relations R : Xn -> X and Rx : Xx

n -» Xx between the 
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pairs <f>, ijj and <f>u tyly respectively. Then there is induced in similar 
fashion a relation R2 : En-+ QE. 

We wish to consider the existence of operations and relations on a 
space by examining the stages of its Postnikov system. Thus we 
examine the situation 

E 
\P 

xXK{G,m+ 1) 

where irk(X) = 0(fc ^ m). We want to determine necessary conditions 
for the existence of operations and relations on E in terms of X and 6. 

Suppose we have an operation <f>2 : En —> E. By the naturality 
of Postnikov systems [4] there are induced <f> : Xn —> X and 
fa : K(Gy m + l ) n -> K(G, m + 1) such that 6 is a (<£, c^-map and p 
is a (</>2, 0)-map. The homotopy classes of <f> and (f>l are uniquely deter­
mined. We need to know more, however, to conclude that <f>2 induces 
operations on X with prescribed values on T1

n(X). 

PROPOSITION 1. Let n ^ 2. Suppose that <j>2 : En—» E and <f> : T1
n(X) 

—> X are such that p ° <t>2 = <j> ° pn on T1
n(X). Then there exists an 

extension </> : Xn —» X of 0 such that p is a (<f>2, <l>)-map. 

PROPOSITION 2. Let <£2, ty2: En-+ E, <f>, ifß : X n -» X, and c^, 

i//l : K(G, m + l)n—» K(G, m + 1) foe operations such that p is a 
(</>2>$)- ö n ^ (\p2,ìlj)-map and 6 is a (<£,<M" a n (^ {ty,*\ti)-map. Let 
R2 : En—> ^ E foe a relation between <f>2 and i//2. Ee£ R: T 1

n ( X ) ^ 
^ X be a homotopy between the restrictions of <f> and ifß to Tl

n(X). 
Then A extends to a relation R between <f> and ifß such that p is an 
(R2, R)-map. Furthermore, there exists a relation RY between <f>i and 
ifri such that 6 is an (R, KJ-map. 

PROPOSITION 3. (cf. [9, pp. 38-40] ). Suppose that <f> : Xn—» X and 
(f>l : K(G, m + l ) n -> K(G, m + 1) are operations and that H : X n -» 
QK(G,m + 1) is a homotopy that makes 6 a (<f>,<f>i)-map. Suppose 
that <j>2 : Tl

n(E) —> E is given by 

+ H(xl9 • • -,*„)). 

Then any extension <j>2 of<j>2 that makes p a (<j>2,<l))-map is homotopic 
to one of the form 

<M(*i>*i)> • * -, (*„,*„)) = (4>(*i> ' • -,xn), <?<fo « ^(Xx, • • -,Xn) 

+ H(xl9 • • - , * „ ) ) , 
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for some homotopy H between $ ° <f> and f ° Ö " that agrees with 
H on Tf(X). 

PROPOSITION 4. Suppose fì:Xn-»<?X and Rx : K(G, m + l ) n -> 
9 K ( G , m + l ) are relations and that D : Xn-> <?( <3K(G, m + 1)) 
makes 6 an (R, R^-map. Suppose that A2 : En—» *3E is induced by 
R, Ru and D. Then any R2 • En—» QE that makes p an (R2, R)-map 
is homotopic to one induced by R, Rx, and D,for some D that agrees 
with D on r1

n(X). 

Propositions 1 and 2 are modelled on those of [7]. Propositions 
3 and 4 are proved using obstruction theory, cf. [6]. See also [1]. 

The above techniques have been used to study H- and HAH-struc-
tures in [1], [7], [8] and [12]; HC-structures in [10] and 
[12]; and ÇC-structures in [11]. In order to make calculations 
we need to examine the image of [ — ; OK(G, m -f 1 )]—>[ — ; E] . We 
illustrate the type of calculation necessary in two examples. 

EXAMPLE 1. We enumerate the H-equivalence classes of multiplica­
tions on real projective 3-space P3. (Two multiplications m and m ' 
are H-equivalent if there exists an H-map / : (X, m)—> (X, m') that 
is a homotopy equivalence. According to [5] there are 768 homotopy 
classes of H-space multiplications on P3. We wish to determine which 
of these are H-equivalent to each other. 

Begin by observing that there are two homotopy classes of homotopy 
equivalences of P3 with itself. For, in the short exact sequence of 
groups 

0-> [P3; S3] ^ [ P 3 ; P3] _ [P3; K(Z2) 1)] ^ 0 

obtained from the fib ration S°-+ S3^> F3, we see that [F3; P3] is an 
extension of Z2 by Z, and the only elements of [P3; P3] that induce 
isomorphisms of integral cohomology are 1 and 1 — [w ° p] for p 
an appropriately chosen generator of [P3; S3]. 

Now consider the bottom stage of a Postnikov system for P3. We 
have 

K(Z2,lAx(Z,4). 

There is one self-equivalence on K(Z2,1), there are two on K(Z, 4), 
and 6l is a map for each pair of these, since dY* takes both generators 
of H4(Z, 4; Z) to the non-zero element of H4(Z2,1; Z). Differences in 
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homotopies H : K(Z2, l ) -> 9K(Z, 4) for 0X lie in 

[K(Z2, 1); fìK(Z, 4)] - //3(Z2, 1; Z) = 0. 

Thus we obtain two classes of self-equivalences for £1? which are 
easily seen to lift to the two classes on F3. 

We now count the multiplications on E}. There are unique multi­
plications on K(Z2, 1) and K(Z, 4), respectively, and $l must be an 
//-map with respect to these. The classes of multiplications on £ l 5 

therefore, are determined by elements of the group H4(K(Z2,1) 
A K(Z2,1); Z) « Z2, so there are at most two classes of multiplications 
on Ev 

We may regard F3 as a loop space HBSO(3), and consequently may 
consider the spaces and maps in its Postnikov system to be loop spaces 
and loop maps. Let m denote the loop addition on Ex. If we can 
show that m is not homotopy-commutative, then the two classes of 
multiplications on El must be those determined by m and m° T. 

Let us write El = £IE1 ', K(Z2,1) = OK(Z2,2), K(Z, 4) = (IK(Z, 5), 
and 6Y = O 0 / . For any space Y let e : XQY-* Y denote the evaluation 
map. It is easy to see, cf. [ 12], that the composition 

//5(K(Z2,2) A K(Z2,2)) (* A «)* H5(2K(Z2,1) A 2K(Z2,1)) 

- //3(K(Z2,1) A K(Z2,1)) 

takes the obstruction to 0l ' being an //-map to an element of the 
obstruction set to Qx being an //C//-map. This latter obstruction set is 
a coset of the subgroup (T* - 1*)(//3(K(Z2,1) A K(Z2,1))). By use of 
the Künneth theorem we see that this subgroup is trivial and that 
(e A c ) * is an isomorphism in this dimension. Thus 0l' is an H-map 
if and only if 6Y is an HC H-map. But it is shown in [2] that 61

f is 
not an //-map. Thus no multiplication on Ex can be homotopy-
commutative. 

Let <j> denote the non-identity self homotopy-equivalence on EY. 
We may represent <f> by <f>(a) = — a. (Here — (a,r) = ( —a, r) where 
-a(t) = a(r- t).) Then ^ m(a,ß) = - ( a + /3) = (-j8) + ( - a ) 
whereas m ° (0 X 0) (a, 0) = ra(-a, - £ ) = ( - a ) + (-j8). Thus 
m ° (<f> X (f>) is not homotopic to <f>° m. Let <£x denote the nonidentity 
self homotopy-equivalence of F3. Since any multiplication ml on F3 

is a lifting of either m or m ° T, then $ i - 1 ° ra^ ° (<h X 0X) must 
be a lifting of the other. Hence <f)l is not an //-map between any 
multiplication and itself, so the 768 homotopy classes of multiplica­
tions on F3 reduce to exactly 384 //-equivalence classes. 
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EXAMPLE 2. We compute the number of classes of homotopy self-
equivalences of the special unitary group, SU(3). The first stages of 
a Postnikov system for SU(3) may be written 

E8 

IP« 

£ 7 = E6 -A_>K(Z ia,9) 

|Pe 

Es — ^ K ( Z 6 , 7 ) 

I P s . 
E3= E4= K(Z,3)—1L^K(Z,6) 

l J 

To construct and classify the equivalences on En, we consider the 
Serre exact sequence (coefficients in 7rn(SU(3))): 

• • • «- H*(K(nn, n)) «- H*(En) «- ^ ( £ n _ x ) lnH^(K(7rn, n)). 

Note that H " " 1 ^ ^ ) - » Hn-l(En) is isomorphic and H n(E n_!)-* 
Hn(En) is monomorphe. Thus, Hn(En) « ff»(SU(3)) and Hn + 1(En) 
injects monomorphically into tfn + 1(SU(3)). Since Hn(SU(3)) is an 
exterior algebra with two generators in dimensions 3 and 5, Hn(SU(3)) 
= 0 (n / 0, 3, 5 and 8). Thus if n ^ 8, Hn(En) = 0 = Hn + 1(En). 
We observe further that if n ^ 8, 0n* ° a : Hn(K(iTny n))-> Hn + 1(En-i) 
is an isomorphism, whence 0n* : Hn + l(K(7Tn,n + 1))—» Hn + l(En_l) is 
isomorphic. Further examination reveals that dn* is an isomorphism 
in dimension n + 1 for all n > 5. Thus any self-equivalence of 
En_l (n > 5), induces a unique one of K(nn, n + 1) such that 0n is a 
map of these structures. There are two self-equivalences each on 
K(Z, 3) and K(Z, 6) and 85 is a map for each of the four pairings of 
these, since 05* : H6(K(Z, 6) : Z) = Z-» H6(K(Z, 3) : Z) = Z2. We now 
need to count the various liftings of these structures from En_l to En. 

According to Proposition 3, we need to look at elements of 
Hn(En_1;7Tn(SU(3))) and determine which of them define different 
operations on En; precisely, we examine the image of the composition 

H»(£f,_I;ffB(SU(3)))?C [En;ÜK(nn(SU(3)),n + 1)] H [£„;£„] 

where i : !7K(7rn(SU(3)); n + 1)—• En is the inclusion of the fiber. We 
have already seen that pn* is monomorphic in this dimension. 

Let n = 5. Then H5(En; Z) = H5(K(Z, 3); Z) = 0. Consequently 
each pair of equivalences on K(Z, 3) and K(Z, 6) determines a unique 
equivalence of E5. Thus E5 has four self-equivalences. 
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The group H6(E5; Z6) injects into H6(SU(3); Z6) = 0, so that £ 6 

possesses four self-equivalences. 
Finally let n = 8. We observe, by use of the cohomology ring struc­

ture, that p 8 * : HH(E7; Z 1 2 ) -^ H8(E9; Z12) ~ Z12 is an isomorphism. 
Consider the diagram 

[EH; ÜK(Z6,6)] = tf5(E8;Z6) 

( j* 
[ E ^ f l E ^ - ^ H ^ E s ; ^ ) ^ [E8;E8] 

i 
0 = J^(E8 ; Z)-> [E8; ftE5] -» H2(E8; Z) = 0. 

We see that i% is onto. Consequently we may look at the compositions 
H5(EH; Z6)—> [E8; flE7] —> HH(ES; Z12). This is induced by a co­
homology operation K(Z6, 5) —» K(Zl2, 8). Any such operation is zero 
in the cohomology of SU(3) (it must be "essentially" Sq3) and so must 
also be zero in £8 . Thus i* is injective and so each equivalence of 
E7 lifts to twelve of E8. We conclude that E8 (and consequently SU(3)) 
possesses 48 classes of homotopy self-equivalences. 
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