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OMEGA THEOREMS FOR A CLASS OF 
DIRICHLET SERIES1 

DON REDMOND 

ABSTRACT. The class of Dirichlet series considered in this paper 
are those satisfying functional equations with multiple gamma fac­
tors. We generalize the methods of Gangadharan and Katai and Cor­
radi to obtain omega theorems for the error terms for the summa-
tory functions for the coefficients of these Dirichlet series. As an 
example we improve known estimates for the Piltz divisor problem 
for algebraic number fields. 

1. Introduction and Statement of Results. The problem of determin­
ing the size of arithmetical functions is a difficult one and though much 
effort has been expended on this problem no final results for the gener­
al case have been obtained. In this paper we shall obtain an omega the­
orem for the error term of the summatory function of a clsss of Dirich­
let series. The class of Dirichlet series we are concerned with consists 
of those satisfying a functional equation involving multiple gamma fac­
tors such as was considered by Chandrasekharan and Narasimhan in [2]. 

Let (a(n)} and {b(n)}, 1 = n < +00, be two sequences of complex 
numbers, not all zero, and let ( \n) and {jun}, 1 = n < +00, be two se­
quences of positive real numbers increasing to +00. Suppose that 

fis) = 2 « M V 8 and g(s) = 5 b ( n K -
nzzl n—1 

each converge in some half plane with finite abcissas of absolute con­
vergence oa(f) and aa(g), respectively. Let 

(i.i) m = n iK + ßk), 

where ak > 0 and ßk is complex, 1 ^ k ^ N. Then f(s) and g(s) are said 
to satisfy the functional equation 

(L2) Hs)f(s) = A(r - s)g(r - s) 
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734 D. REDMOND 

if there exists in the s-plane a domain D which is the exterior of a com­
pact set S, such that in D a holomorphic function G exists with the 
properties: 

(1) lim G(o + it) = 0, 
\t\-**> 

uniformly in every strip — oo < o1 = a = o2 < -f-oo, and 

m ™ = (A{s)f{s) for Re(s) > °a(f) 

( ' U lA(r - s)g(r - s) for Re(S) < r - oa(g). 
If 

(1.3) ««)=-^-X ^ * 

where C is a curve enclosing all the singularities of the integrand, let 

(1.4) £(*)= 2 'a(n)-Q(x), 

where the prime indicates that if Xn = x, then we add only a(n)/2. E(x) 
is called the error term for the summatory function of the coefficients 
of the Dirichlet series f(s). 

Let A — 2^_x ak. Throughout this paper we shall assume r > 0 and 
A > 1/2. Also cjy y = 1, 2, • • -, will denote a positive absolute constant. 

Let F be a set of prime numbers satisfying the estimate 

(1.5) B^/log x^ 2 1 = ß2*/ Iog * 

for all x = 1 and some positive constants B1 and B2, where 
Pa ,= { p E P : p = jc}. Let Qx be the set of all square-free integers 
made up of all the primes in Px, written in increasing order. 

THEOREM 1. Let Q be a subset of Qx. If a(n) and b(n) are real, 
fin — c±n for all n and 

(1.6) 2 |%)|<r((r/2)+(1/<U)) = c2x* \ogßx 
QEQ 

for all x= 1 and some nonnegative constants a and ß, then 

E(x) = a ± {a<r/2>-<1/4A>(loglogx)a(logloglogx)a+^}. 

THEOREM 2. Under the hypotheses of Theorem 1, if instead of (1.6), 
we have 



OMEGA THEOREMS 735 

(1.7) 2 |%)|<r«r/2)+(1/4A» i= c3exp(c4x«/logx) 
QGQ 

for all x= 1 and some positive constant a, then 

E(x) = 8 ± (^^-^^exp^aoglog^/aogloglogx) 1 -«)}. 

COROLLARY. Suppose b(n) is a multiplicative function of n which sat­
isfies 

(1.8) | % ) | S c6p° 

/or all p G P and some a > (r/2) + (1/4A) - 1. T/ien 

£(*) = Q ± ( ^ . - a - > e x p ( c7 ( l o g l o g x ) ^ ° - ^ ' - ' - > ) 1 . 
I V (logloglogx)<r/2>+<1AM>-a / J 

REMARKS. (1) The method we use to prove these results generalizes 
the method used by Gangadharan [4], Katai and Corradi [10] and Joris 
[8]. 

(2) The condition that a(n) and h(n) be real is not essential. With a 
slight modification of the proof below we can get omega theorems for 
Re(E(x)) and Im(£(x)). 

(3) Theorems 1 and 2 are special cases of the following more general 
theorem. Under the hypotheses of Theorem 1 suppose that 

2 |%)|4-«r/2)+(1/4A)) i= cst(x) 

<7£<p 

for all x = 1, where t(x) is an increasing function of x. Then 

E(x) = ö ± {^r/2)-(1/4^>f(c9loglogxlogloglogx)}. 

Unfortunately, we are not able to give a satisfactory proof of this re­
sult. If t(x) satisfies the additional condition 

t(x)/t(Cx) — D 

as x'•—* oo for all constants C, where D is some nonzero constant, then 
we can prove this more general theorem by a slight modificaton of the 
proof of Theorem 1. 

2. Lemmas. We begin with some lemmas on Dirichlet series satis­
fying the functional equation (1.1). 

For Re v > 0 let 
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where p is an integer satisfying 

( l ) p â - l , 

(2) p + 2Ar + 1/2 > 2A max(aa(g), 
max{Re(-ßfc/afc) : 1 ^ N}), and 

(3) p + 1/2 > 2A max{Re(j8fc - l)/ak : 1 ^ fc ^ N}. 

For Re(s) > 0 let 

(2.2) R(s) = -^r- X, ^W(*/2A)^, 

where C^ is a curve enclosing all the singularities of the integrand 
which lie to the right of Re(z) = - ( p + (1/2)). 

LEMMA 1. Suppose f(s) ' and g(s) satisfy the functional equation 
(1.1). Then 

2 a ( n ) e x p ( - * V ^ ) = *(*) 
nz:l 

miri 

where the infinite series on the right hand side converges absolutely for 
Re(s) > 0. 

The essence of this result can be traced back to Hardy [5]. The state­
ment and proof of Lemma 1 can found in [3, Lemma 1, p, 168]. 

(2.4) F(s) = 2 a(n)exp(-s\n
1/2A) 

n=l 

and 

(2.5) G(s) = - {F(s) - R(s)}. 
s 

LEMMA 2. Let log D = 2 £ = 1 aklog ak, B = 2 £ = 1 ßk and 
H = 2A/D1/A. 
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(1) If Y ^ 2, 1 ^ iim ^ Y, 0 < a < H, tfien tfierß is a positive con­
stant B0 such that 

a^r+(i/2)G(a ± i^i/2^//) = ß0exp{ ±77i(4ß -Ar- (3/2))} 

' fe(m)^r/2>-<1/4^> + 0(a1/4Ycio) 

as a —» 0 + . 

(2) Let R(k, w) = {s: Re(s) > 0, |s| ^ k, \s ± i\im
1/2AH\ > w, 

0 < w < H). Then for s in R(k, w) 

(2.7) G(s) = 0(u;-<^+<1/2»kcii), 

as w —* 0 + . 

This lemma is a special case of Lemmas 4 and 5 of [9]. 

We now take 2A to be a rational number. In view of the fact that 
the statements of the theorems and corollary do not place extra restric­
tions of Xn, it suffices to prove these results under the assumption that 
Hn = n for all n. 

Let M be the cardinality of Px and N = 2M be the cardinality of Ç^. 
Let Ç) be a subset of Qx of cardinality Nv Then, if 9 E Q, we have 

log 9 ^ log q^ 

(2.8) - S l o g p , 

^ 2B2x, 

by (1.5). 
Let 

i ^ + 2 rx9x
1/2^ 

x=i 
j)(x) — inf I 7] : 17 = 

m = 1, 2, 3, • • -, rx = 0, + 1 , - 1 , "2 r\ = 2 f 
\ = i ^ 

Then as in [5] or [8] one shows that if q(x) = - log r\{x), then 

(2.9) c12x ^ qi(x) ^ exp(c13x/log x). 

Choose P(x) = exp(c14x/log x) such that 



738 D. REDMOND 

(1) cu > 0, 

( 2 1 0 ) , 2 , * , < w , 

(3) P(x)/x is an increasing function of x, and 

(4) iv2 ^ P(x). 

That P(x) exists is shown in [8]. 
If z is real, let V(x) = 2 cos2(z/2) = (e** + e~iz)/2 + 1 and let 

T(u)= UV(HQ^u + pQ) 
QGQ 

where 

(2U) n = (^4B ~Ar~ ( 3 / 2 ) ) / 2 Ìf b(q) - ° 
1 • ; P* U ( 4 £ - Ar + (l/2))/2 if % ) < 0. 

Then, from the definition of V(z), we see that T(u) = 0 for all real u. 
Write T(u) = T0(u) + T^M) + J\(u) + T2(u), where 

W = i 

2 <7EQ 

( 2 - n ) ^ 

T2(u)= "Zhme-Hivmu 

where \hm\ = 1/4 and the rjm are real and are the distinct numbers of 
the form 

2 rqq 
QEQ 

1/2A 

where rQ G (0, 1, - 1 } with 2 r g
2 ^ 2. From the definition of f)(x), (2.8) 

and (2) of (2.10), we see that 

(2.13) |TJ. ± n1/2Ä\ ^ e~™ 

for n ^ 0 and every /, 1 ta j ^â Nv 

If T(u) — 2 kve
ltvu, where fcv are complex and tv are real and distinct, 

is any trigonometric polynomial and U(s) is a holomorphic function, de­
fine 

(2.14) (T A U)(s) = 2 kvU(s + K). 
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Define 

/,(*) = s-°, 

am = e~2™ 
(2.15) 

Ox=Ar- (1/2) + (l/P(x)), and 

yx — sup E(u2A)u~X. 
uO 

Since E(u) = ti±(u{r/2)-{1/4A)) (see [3, Theorem 3.2]) we see that yx > 0. 
Also if yx = +00 then E(u) = ü+{ud*/2A) which is better than the result 
claimed in Theorems 1 and 2, by (2.9) and (2) of (2.10). Thus we may 
assume that 0 < yx < +oo. Thus 

(2.16) yxu
d* - E(u2A) ^ 0. 

Let 

/. = */r+(1/2) J T {YX' - Z("2A)) e-^T(u) du 

(2.17) = a / r + ( 1 / 2 ){y/ (^+i)^/ ,x + 1(a; 

- y ï - p / 2 A ) r A I 1 ( a x ) - T A G ( a x ) } . 

Then by (2.16) Jx ̂  0. 

LEMMA 3. (1) If 0 = 0 and a < 0, then as x^> oo, we have 

T A Ie(a) = a"* + 0 ( 3 V ^ ) . 

(2) With ox and 0X as defined in (2.15), we have as x—•* oo, 

a / r + a /2 , { r A ^ + i K ) } = c 2 + o ( 1 ) . 

(3) As x —» oo, 

a / f + , l / 2 , { r A J i K ) } = 0 ( 1 ) . 

(4) As x —* oo, 

a / ^ 1 / 2 > { T A G ( a J } = B0 2 |%)|<T ( ( r / 2 ) + ( 1 / 4^ + o(l), 

where B0 is the constant defined in (1) of Lemma 2. 

PROOF. (1). We have T0 A Z^a) - o~e = 0. Next 

l^i A J,(a)| = y 2 eV (a - iHq1/2A)-e 



740 D. REDMOND 

^ — H-* 
2 

< Nx ^ N, 

2 <r*/2^ 

as ac—> oo. Similarly |T1 A Iö(a)| C i V a s x ^ o o . 
Since |hw| = 1/4, we have, by (2.13) with n = 0, as x ^ oo, 

\T2 A I,(a)| = | 2 hja + n?J" ' | 

Combining these results gives (1) by (2.12). 

(2). We have by (2.12), 

ox
Ar+a/2){TAI6x+1(ax)} = otW»{T/\Ie^(ox) 

_ o -6,-1} , 0 -d-l+Ar+(l/2) 

_ 0 -1/Pix) _|_ Q / a ^ + ( 1 / 2 ) 3 ^ ( 0 , + 1)P(J?)\ 

— g2 _|_ Q/3JVeP(ar)((ö,+ l)-2(^r+(l/2)))\ 

— e2 + 0(3iVe~i>(x)(Ar+(1/2))) 

= £2 + 0(1) 

a s x ^ , by (4) of (2.10). 

(3). This follows in the same way since â —> 0 as x—* oo, by (2.15). 

(4). We have 

ö / r + ( l /2 , { T o A Gi0x)] = a / r + ( l / 2 , G ( f f J = 0 ( 1 ) 

as x—» oo, since G(CTT) = O(l) as ax—> 0 by (2.7). 
By (2.14), 

ö / r + , l /2, ( r i A G K ) } = 1 2 e i p V r + , l / 2 , G ( ( J i _ V / 2 ^ 

^ QGO 

= \ B0 2 |&fa)|<r«'/2>+(1'"» 

+ 0(a / / 4 >N9/ / 2 ^) 
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as X-+ oo, by (2.6) with Y = qN. By (1.5) and (2.8), 

N < ecux/losx and qN < e2JV. 

Thus by (2.15) nd (4) of (2.10), 

a /*f<i/2){ T i A G(aJ} = i - B0 2 |fo(9)|r((r/2)+(i/4^)) 

In a similar way we have 

a / r + U / 2 ) { T i A G ( a J } = i - B0 2 |fe(q)|q-«r/2)+(l/4A» + o ( 1 ) 
Z CEO 

as x —» oo. 
Finally, 

°/r+il/2){T2 A GK)} = a/**'» 2 ^ K + n,J-
m 

Now 

|a, -h ir?m ± iHn1/2A\ ^ |îjm ± Hn1/2A\ ^ Hir«*> 

for ra = 0 by (2.13). Also, by (2.10) we have, for x sufficiently large, 

\ox + tyj ^ a, + IVx1/2^ ^ 2Nx1/2^. 

Thus by (2.7) with w = He-™ and fc = 2Afr1/2^, we have 

°x
Ar+il/2){T2 A G(aJ) 

^ a ^r+(l/2) :Jcc11/2^ß(Ar+(l/2))P(a:)3JV^c11 

^ e-Ur+(l/2)P(jr)xc11/2^jv-c113iV 

= 0(1) 

as x -^oo by (4) of (2.10) and (2.15). Combining these results gives (4) 
by (2.12). 

This completes the proof of the lemma. 

3. Proof of Theorem 1. If we combine the results of Lemma 3 with 
the expansion of Jx, (2.17), we have as x—> oo 

(e2 _|_ o(l))y rWr+(l/2)+(l/P(ar)) 

^ B0 2 |%)|<T((r/2)+(1/4A)) + o(l), 
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since Jx ^ 0. Now Ar + (1/2) + (l/P(x)) is positive and bounded away 
from zero. Also, by (3) of (2.10), l / P ( x ) - > 0 a s x - o o . Thus, by (3.1), 
we have 

(3.2) yx è c15 2 |6(q)|q-«^)+(i/4A)) + o ( 1 ) 

CEO 

as x—* oo. Thus by the definition of yx> (2.15), there is a sequence 
ux —*> oo as x —> oo such that 

Efa^u,-" â c15 2 |%)|<T((r/2)+(1/4il)) 

<7GQ 

<3-3> > , « 

by (1.5). 
Let vx = ux

1/pW. Then (2 log ux)/P(x) = 2 log vx. If 2 log t>, ^ 1, 
then 21ogwar = P(x). Since F(x) is increasing by (3) of (2.10), we have 
P~\2 log ux) = x, where F - 1 denotes the functional inverse of P. If 
2 log vx ^ 1, then by (3) of (2.10), 

P(x) . P(2xlogvx) = P(2xlogt ;J _ P(x) 
x 21ogw^ 21ogt;v x 

Thus P(2x log Ü J ^ 2 log i^ , for x sufficiently large and hence 
P~~1(2 log ux) ^ 2x log vx. If we let wx = max(l, 2 log vx), we may write 
these last two results as 

(3.4) P~\2\ogux)^xwx. 

For x sufficiently large, we have 

(3.5) wx ^ c17V<«+/>+<>, 

where a + ß + €> 0 and e > 0. Finally, for x sufficiently large we 
have 

log P-\2 log ux) ^ log x + log u;^ 

(3.6) < l o g x + u ^ < 1 / 2 > 

^3u;x<1/2>logx. 

Thus by (3.4H3.6) we have 
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(3.7) 

E(ux
2Ä) 1 

u / r - ( l /2) { p - l ( 2 log ux)}<*{\0g P-\ log Ux))ß 

= E(ux
2A) » ,1 / P W 

«,«. ' {P-\Z log«,)}« {logF-i(2 log ux)}* 

>Cl7Ïalog% KJ#H? 

> c 1 9 , 

since qfx < 1. This gives 

(3.8) E(x) = Ö±(x(r/2)-(1/4^){I^1(log *))a( l og ^"Hlog x)}/5). 

As in [5] one shows that there exist constants c20 and c21 such that, 
for x sufficiently large, we have 

(3.9) ß2ol°g x l°g l°g x < P~1(x) < c2i^°§ x 1°£ l°g *• 

Combining (3.8) and (3.9) gives 

E(x) = co+(x(r/2)-(1/4il)(log log x)"(log log log x)«+ß). 

The ß_ result is proved similarly. 
This completes the proof of Theorem 1. 

4. Proof of Theorem 2. We proceed as in the proof of Theorem 1 up 
to (3.3), where we assert the existence of the sequence ux. This is re­
placed by 

ux
a/2)-QrE(ux

2A) ^ ux
1/P{x) 2 \b(q)\q-«r/2)+{1/4A)) 

QEQ 

(4.1) 
^ c22exp{c4xMogx + (\ogux)/P(x)} 

by (1.7). 
Suppose 

(4.2) (log ux)/P(x) ^ c4x<71og x. 

Then by the definition of P(x), we have 

(4.3) log log uu ^ c23x/log x. 

Then, since ya\ogby is an increasing function of y for a > 0 and y suffi­
ciently large, we have from (4.3), with a — a and b — a — 1, 
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(log log ux)
a
 g c xf 

(log log log uf-« 24 log* (4-4) „__ , . _ , _ _ „ u _ „ = -24 

Then, under the assumption of (4.2), we have by (4.1) and (4.4), 

-Mr-,1/2)E(M 2A) g> / (log log«,)« | 
" I (log log log M,)1"« J 

This gives the ß + result of Theorem 2 under the assumption (4.2). 
Suppose 

(4.5) (log ux)/P(x) S c4x«/log x. 

If 

( l o g l o g Ux)
a ^ l o g M x 

(log log log u,)1-« 26 P(*) (4-6) ^ T f , " ^ ! - ^ <*. 

then by (4.5) we again obtain the ti+ result of Theorem 2. If not, then 
take logs once on both sides of (4.6) with the inequality reversed. This 
gives 

(4.7) log log ux ^ c27x/log x. 

Then, as above for (4.4), (4.7) implies 

(log logt/J" ^ c x-
(log log log uj 1-« 28 log* ( 4 - 8 ) ^ , ^ ^ . . , 1 - „ = "28 

This, by (4.5), yields the S2+ result of Theorem 2. 
The Œ_ result is proved similarly. 
This proves Theorem 2. 

5. Proof of the Corollary. We have, by (1.8), 

2 |%)|<r«r /2)+ (1 /4^ 
QtQx 

= n (i + \b{V)\v-^
/2^^A^ 

= exp \ 2 log(l + |fc(p)|p-«r/2>+<1/4A») } 
V PGPX J 

^ exp { 2 log(l + c6p
a-<r/2>-<1/4^>) \ 

V. PGPX J 
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= C29eXP { 2 (c6p
a-<r/2>-<1/4^» - — c6Y

a~rXil/2A)) 1 

^ c29exp { c 3 0 2 p-«'/2>+<i/4A)-o) | 
V. peP, J 

^ c31exp{(c32%
1-«'-/2>+<1/^»-aVlog x)} 

by (1.5). 
The result of the corollary then follows from Theorem 2 by taking 

a = l + a- (r/2) - (1/4A). 
This completes the proof of the corollary. 

6. Examples. We give four examples of Theorems 1 and 2 and the 
Corollary. 

EXAMPLE 1. The Piltz divisor problem in algebraic number fields. Let 
K be an algebraic number field of degree n = rxl + 2r2, where rx is 
the number of real conjugates and 2r2 is the number of imaginary con­
jugates of K. Let a(m) be the number of integral ideals of K with norm 
exactly m. For Re(s) > 1, let 

00 

£*(*) = 2 a(m)m-s 

mzzl 

be the Dedekind zeta function associated with K. If g is a positive in­
teger, let g1 — grv g2 = gr2 and <p(s) = {$g(s)}0. Then it is known [11, 
p. 22] that there is a positive constant B, depending only on K, such 
that f(s) = B9S <p(s) satisfies the functional equation 

where 

We have 

A(S)/(S) = A(l - s)/(l - s), 

A(.) = {r(*/2)}«.{r(S)}«t 

00 

f(s) = B9S 2 a^{m)m-\ 
mzzl 

where a*°(m) denotes the gth power Dirichlet convolution of a(m) with 
itself. Here we take r = 1 and A = gn/2. 

In [8, Lemma 6, p. 228] it is shown that there is a set of primes P 
satisfying (1.5) and such that a(p) ^ 1 for all p G P. Thus we may take 
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a = 0 in the Corollary. Thus if E(x) is the error term associated with 
f(s) by (1.4), we have, as x^ oo, 

L(x)-U±Y exp ^ c33 ( l o g l o g l o g ï ) «v2) + ( i^ W ) / / • 

This betters the result of Berndt [1, Example 1, p. 201]. If we take 
n = 1 and g = 2 we have a result of Corradi and Katai [10, (1.8), p. 
90]. For n ^ 2 and g = 1 we have a result of Joris [8, Satz 1, p. 220]. 

EXAMPLE 2. Let Q(xv • • -, xfc) be a positive definite quadratic form 
in k = 2 variables. Let a(Ç>, n) denote the number of representations of 
n by the form Q. For Re(s) > fc/2, the Epstein zeta function is defined 
by 

00 

n = l 

Then f(Ç>, s) satisfies the functional equation 

7T-ST(S)Ç(Q, S) = |Ç|-l/277-((^/2)-s) 

• r((*/2) - s)Ç(Q-\ (k/2) - s), 

where \Q\ is the determinant of Q and Ç - 1 is the inverse form to Ç. 
Here we take r = k/2 and A = 1. 

For even /c Hecke in [7] and for odd k Petersson in [12] have shown 
that, for k ^ 5, 

a(Q, n) = A(Ç>, njn!1"2*-1 + 0(nk/4) 

as n —> oo, where A(Ç), n) is the singular series associated with Q. By a 
result of Tartakowsky [14] we know that A(Q, n) ¥= 0 if k = 5 and n 
belongs to certain residue classes determined by the form Q. Thus, for 
these n, we have 

a(Q, n) ^ c^n«*^"1. 

If we let Pfc(x) be the error term associated with f(Ç>, 5) then Theorem 1 
gives, for k = 5, 

Ffc(x) = ^{(x log logxlog log logxp- 1 ^ 4 } . 

This extends the results of Szegö [13]. 
In the case that Ç(xv • • •, xk) = xt

2 + • • -f x / we can obtain bet­
ter results for the values k = 2, 4, and 8. For these values it is known 
[6] that a(Q, n)/2k is a multiplicative function. Also in [6] it is shown 
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that if k — 2 and p = 1 (mod 4), then a(Ç, n) = 1 and for /c = 4 and 8, 
that A(Ç>, n) ^ 0 for all n. Thus we may take a = (k/2) - 1 in the Cor­
ollary for these values of k. This gives 

f ,w=a ,{..-»^P(CM <i°fy)l'ri )}• 
v. \ (log log log x) (5-* ) / 4 / J 

For fc = 2 w e have a result of Corradi and Katai [10, (1.7),p. 90]. 
However, for such Q, Walfisz in [15] has obtained better results for 

k ^ 4. He shows that 

and for k = 5 

P4(x) = a ± (x log logx ) 

Pk(x) = Q±(*«^) 

By dividing the values of k up into various residue classes modulo 8 he 
shows that this result is best possible for k ^ 7, in the sense that there 
exist positive absolute constants C and D, depending only on k, such 
that 

Cx(*/2)-i < Pfc(x) < ifcCfc/a-i. 

EXAMPLE 3. Let {a(m)} be a sequence of real numbers which are the 
coefficients of a cusp form of weight k with an Euler product. Here we 
have r = k and A = 1. 

As in [8, § 7], we can show that for all x = 1 we have 

2 K q ) | q - ( ( ' c / 2 ) - ( 1 / 4 , ) ^ C 3 6 l o g x . 

Thus, by Theorem 1 with a — 0 and ß = 1, we have 

2 fl(m) = fì±(x(/c/2)-(1/4)logloglogx). 

This result was obtained by Joris in [9]. 

EXAMPLE 4. Let ov(n) denote the sum of the ü th powers of the divi­
sors of n. Since o0(n) — d(n), which we dealt with in Example 1, and 
o_v(n) = n~vGv(n), we may assume v > 0. For Re(s) > v + 1, we have 

n = l 



748 D. REDMOND 

Here we have r = v + 1 and A = 1. 
We have ov(p) > pv for all p. Thus, in the Corollary we may take 

a — v. This gives 

Sv(x) = ß±{x<v/2)+<1/4) 

• exp(c38(log log xf/2>+<1/4)(log log log x)<v/2>-<3/4>)}, 

where Sv(x) is the error term associated with the coefficients ov(n). This 
result improves a result of Berndt [1, Example 3, p. 202]. 
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