ON SOME TOPOLOGIES WHICH COINCIDE ON THE UNIT SPHERE OF THE FOURIER-STIELTJES ALGEBRA B(G) AND OF THE MEASURE ALGEBRA M(G)

E. E. GRANIRER AND M. LEINERT

Introduction. Let G be an arbitrary locally compact group $[A(G)], B(G)$ the [Fourier] Fourier-Stieltjes algebra of G and $M(G)$ the Banach algebra of bounded Radon measures on G (see definitions in what follows).

We prove in $\S 1$ of this paper that we w^{*}-topology $\tau_{w^{*}}$ and the multiplier topology τ_{M} coincide on the unit sphere $S=\{u \in B(G) ;\|u\|=1\}$ of $B(G)$, where $u_{\alpha} \rightarrow u$ in τ_{M} if and only if $\left\|\left(u_{\alpha}-u\right) v\right\| \rightarrow 0$ for each $v \in A(G)$. This result proves a conjecture of McKennon [10, p. 49]. It improves a result of Derighetti [1] and McKennon [10] (that $\tau_{w^{*}}=\tau_{u c}$ on S, where $\tau_{u c}$ is the topology of uniform convergence on compacta) which in turn improves a theorem of Raikov [13] and Yoshizawa [17] (that $\tau_{w^{*}}=\tau_{u c}$ on the positive definite face of S). Applying this result we show in theorem B_{1} that for any compact $K \subset G$ the Banach space $A_{K}(G)=\{u \in A(G)$; supp $u \subset K\}$ has the Radon-Nikodym property and consequently a strong Krein-Milman theorem, for closed bounded convex subsets of $A_{K}(G)$, follows. Theorem B_{2} of this section consists of a long list of topologies which coincide on S.
$\S 3$ consists of a measure theoretical selfcontained proof of a result of McKennon [10] which states that the w^{*} and the L^{p}-multiplier topology on $S=\{\mu \in M(G) ;\|\mu\|=1\}$ coincide $\left(\mu_{\alpha} \rightarrow \mu\right.$ in the latter if and only if $\left\|\left(\mu_{\alpha}-\mu\right) * f\right\|_{p} \rightarrow 0$ for each $\left.f \in L^{p}\right)$. The reader familiar with [10, pp. $21-25$ and $32-33$] will find, we think, that our proof is simpler, more natural and self-contained. Finally we investigate in $\S 2$, subsets of $B_{p}^{M}(G)$ (the space of multipliers of $A_{p}(G)$) on which the topologies τ_{M} and $\sigma\left(B_{p}^{M}, L^{1}\right)$ coincide. As a consequence a necessary and sufficient condition for a subset of $A_{p}(G)$ to be norm compact is given (in case G is amenable). In view of [8] the results seem to be of interest even for the nonamenable case.

Definitions and notations. Let G be a locally compact group with unit e. $C(G)\left(C_{00}(G)\right)\left[C_{0}(G)\right]$ will denote the space of complex bounded continuous functions (with compact support) [which vanish at infinity]. λ or $d x$ will denote a left Haar measure on $G .\|f\|_{p}=\left(\int|f|^{p} d x\right)^{1 / p}$ will denote the
$L^{p}(G)$ norm of $f . \Delta(x)$ will denote the modular function on G and if h is a complex function on G, then we define as usual ([4]) $\bar{h}(x)=\overline{h(x)}$, $h^{\sim}(x)=h\left(x^{-1}\right), h^{\sim}(x)=\overline{h\left(x^{-1}\right)}$, and $h^{*}(x)=(1 / \Delta(x)) h^{\sim}(x)$.

We follow Eymard [4] in the definitions and notations for the spaces $A(G), B(G), C^{*}(G)$, etc., and for the norms $\left\|\left\|_{\rho},\right\|\right\|_{\Sigma}$, etc. Different norms will sometimes occur and we write $\|u\|_{B(G)}=\|u\|_{B},\|u\|_{A(G)}=\|u\|_{A}$, etc., to emphasize which norm we consider.

If X, Y are normed spaces in duality then $\sigma(X, Y)$ will denote as usual the weakest topology on X which makes all linear functionals in Y continuous. If X^{*} is the conjugate Banach space of X then $\sigma\left(X, X^{*}\right)$ is denoted by w, the weak topology of X and $\sigma\left(X^{*}, X\right)$ is the w^{*} (weak star) topology of X^{*}.

If X, Y are normed spaces in duality and if for each $x \in X\|x\|=$ $\sup \{|\langle x, y\rangle|, y \in Y,\|y\| \leqq 1\}$, then $x_{\alpha} \rightarrow x$ in $\sigma(x, y)$ implies $\lim \inf \left\|x_{\alpha}\right\| \geqq$ $\|x\|$. If in addition $\sup \left\|x_{\alpha}\right\|<\infty$, then $\left|\left\langle x_{\alpha}-x, y\right\rangle\right| \rightarrow 0$ uniformly on norm compact subsets of Y. These properties are known and easily proved.

If τ is a topology on X and $K \subset X$, then $\tau \mathrm{cl} K$ will denote the τ closure of K in $X .1_{K}$ will denote the function which is one on K and zero outside K.

The rest of the definitions are given in the following sections.

1. Various topologies on the unit sphere of $B(G)$. The basic notations in this section are as in Eymard [4]. If h is a continuous linear functional on a C^{*}-algebra, we denote by $|h|$ the positive linear functional determined by the conditions $\||h|\|=\|h\|$ and $|h(a)|^{2} \leqq\|h\||h|\left(a a^{*}\right)$. The extension of $|h|$ to the algebra with adjoined unit is again denoted by $|h| . B(G)$ is the dual of the C^{*}-algebra $C^{*}(G)$ as defined in [4]. We define the topologies $\tau_{u c}, \tau_{w^{*}}, \tau_{b w^{*}}, \tau_{n w^{*}} \tau_{M}$ on $B(G)$ by the statement that a net u_{α} converges to u in $\tau_{u c}$ if $u_{\alpha} \rightarrow u$ uniformly on compacta; $\tau_{w^{*}}$ if $u_{\alpha} \rightarrow u$ in w^{*}, i.e., $\left.\sigma(B(G)), C^{*}(G)\right) ; \tau_{b w^{*}}$ if u_{α} is norm bounded and $u_{\alpha} \rightarrow u$ weakly*; $\tau_{n w^{*}}$ if $\left\|u_{\alpha}\right\| \rightarrow\|u\|$ and $u_{\alpha} \rightarrow u$ in w^{*}; and τ_{M} if $\left\|\left(u_{\alpha}-u\right) v\right\| \rightarrow 0$ for all $v \in A(G)$. (M stands for multiplier).

Note that, on norm bounded sets of $B(G), \tau_{w^{*}}$ coincides with $\sigma(B(G)$, $\left.L^{1}(G)\right)$ since $L^{1}(G)$ is dense in $C^{*}(G)$.

The main result of this section is theorem A which shows that $\tau_{w^{*}}$ coincides with τ_{M} on $S=\{u \in B(G),\|u\|=1\}$. It proves a conjecture of McKennon [10, p. 49] (it improves theorem 5.5, [10, p. 47]) which in turn improves a theorem of Derighetti [1] (that $\tau_{w^{*}}=\tau_{u c}$ on S) which in turn improves a theorem of Raikov [13] and Yoshizawa [17] (that $\tau_{w^{*}}=$ $\tau_{u c}$ on the positive definite face of S).

The next result is theorem B_{1} which states that, for any compact $K \subset G$, the Banach space $A_{K}(G)=\{u \in A(G)$; supp $u \subset K\}$ is a dual Banach space with the Radon-Nikodym property (definitions are given later) and consequently a strong Krein Milman theorem for closed bounded convex sub-
sets of $A_{K}(G)$ follows. If G is compact abelian, $A_{G}(G)=A(G) \cong \ell_{1}(\hat{G})$ and this result is known (Phelps [12, p. 87]). If G is abelian and noncompact then $A(G)$ does not have the Radon-Nikodym property. We use theorem A in the proof of theorem B_{1}.

The last result in this section is theorem B_{2} which consists of a long list of topologies which coincide on S.

The reader familiar with [10] will note the simplicity of the proofs that follow.

The following is a particular case of lemma (3.2) of McKennon [10, p. 23] with a much simpler proof.

Lemma 1. Let u_{β} be a net in $B(G)$ such that $u_{\beta} \rightarrow u_{0} \in B(G)$ in $\tau_{n w^{*} .}$ Let $e_{\alpha} \in L^{1}(G)$ be a positive (in the $C^{*}(G)$ sense) approximate identity for $L^{1}(G)$ consisting of real valued functions such that $\left\|e_{\alpha}\right\|_{1} \leqq 1$. Then, for any $\varepsilon>0$ there exist α_{0} and β_{0} such that $\left\|e_{\alpha_{0}} * u_{\beta}-u_{\beta}\right\|_{B}<\varepsilon$ for all $\beta \geqq \beta_{0}$ and $\left\|e_{\alpha_{0}} * u_{0}-u_{0}\right\|_{B}<\varepsilon$.

Remark. Our assumption implies that $e_{\alpha}=f_{\alpha} * f_{\alpha}^{*}$ for $f_{\alpha} \in L^{1}$. Since $\left\|e_{\alpha}\right\|_{C^{*}(G)} \leqq\left\|e_{\alpha}\right\|_{1} \leqq 1$, it follows that $0 \leqq e_{\alpha} \leqq 1$ (in the C^{*}-algebra $C^{*}(G)$ sense $)$ and therefore $0 \leqq\left(1-e_{\alpha}\right) *\left(1-e_{\alpha}\right) \leqq 1-e_{\alpha}$ in $C^{*}(G)$ with adjoined identity.

Proof. We can assume that $u_{0} \neq 0$. If G is nondiscrete, we may adjoin a unit 1 to $L^{1}(G)$. If $f \in L^{1}(G)$, then since $\bar{e}_{\alpha}=e_{\alpha}$, we have for any $u \in B(G)$

$$
\begin{aligned}
\left|\left\langle e_{\alpha} * u-u, f\right\rangle\right|^{2} & =\left|\left\langle u,\left(\bar{e}_{\alpha}-1\right) * f\right\rangle\right|^{2} \\
& \left.\leqq\|u\||\langle | u|,\left(e_{\alpha}-1\right) * f * f^{*} *\left(e_{\alpha}-1\right)\right\rangle \mid \\
& \left.\leqq\|u\|\left\|f * f^{*}\right\|_{C^{*}(G)}|\langle | u|,\left(1-e_{\alpha}\right) *\left(1-e_{\alpha}\right)\right\rangle \mid \\
& \leqq\|u\|\|f\|_{C^{*}(G)}^{2}\left(\langle | u\left|, 1-e_{\alpha}\right\rangle\right) .
\end{aligned}
$$

We have used the fact that if p is a positive linear functional on a C^{*} algebra A then $p\left(a^{*} b a\right) \leqq\|b\| p\left(a^{*} a\right)$ which follows readily from representing $p(c)=(\pi(c) \xi, \xi)$ where π is a representation of A on some Hilbert space H and $\xi \in H$. The last inequality is true by the remark above and since $|u|$ is a positive functional on $C^{*}(G)$.

Now $|u|\left(e_{\alpha}\right) \rightarrow|u|(1)=\|u\|$. Let α_{0} be such that $\left\|u_{0}\right\|\left(\langle | u_{0}\left|, 1-e_{\alpha_{0}}\right\rangle\right)<$ ε. Then

$$
\left\|e_{\alpha_{0}} * u_{\beta}-u_{\beta}\right\|_{B} \leqq\left\|u_{\beta}\right\|\left(\langle | u_{\beta}\left|, 1-e_{\alpha_{0}}\right\rangle\right) \rightarrow\left\|u_{0}\right\|\left(\langle | u_{0}\left|, 1-e_{\alpha_{0}}\right\rangle\right)<\varepsilon
$$

since by Effors [3, lemma 3.5], $\left|u_{\beta}\right| \rightarrow\left|u_{0}\right|$. Choose β_{0} such that $\left\|u_{\beta}\right\|$ $\left(\langle | u_{\beta}\left|, 1-e_{\alpha_{0}}\right\rangle\right)<\varepsilon$ if $\beta \geqq \beta_{0}$.
The following is lemma 13.5 .1 in [2, p. 260].
Lemma 2. Let $A \subset L^{\infty}(G)$ be norm bounded and $f \in L^{1}(G)$. If ϕ_{α} is a net in A such that $w^{*} \lim \phi_{\alpha}=\phi$, then $f * \phi_{\alpha} \rightarrow f * \phi$ uniformly on compacta.

For proof just note as in [2] that $f * \phi_{\alpha}(s)=\left\langle\phi_{\alpha^{\prime} s} f\right\rangle \rightarrow\left\langle\phi,{ }_{s} f\right\rangle$ uniformly for s in a compact K since $\left\{{ }_{s} f ; s \in K\right\}$ is a compact subset of $L^{1}(G)$.

We note here that $\tau_{w^{*}}$ coincides with $\sigma\left(B(G), L^{1}(G)\right)$ on bounded subsets of $B(G)$.

Lemma 3. Let $F=f * g$ for $g, f \in C_{00}(G)$. Then $u \rightarrow F * u$ is continuous from $\left(B(G), \tau_{b w^{*}}\right)$ to $\left(B(G), \tau_{M}\right)$.

Proof: Let $u_{\alpha} \rightarrow u$ in the w^{*} topology of $B(G)$ be such that $\sup _{\alpha}\left\|u_{\alpha}\right\|_{B}=$ $\gamma<\infty$ and $u \in B(G)$. Let $v \in A \cap C_{00}(G)$ and let $K \subset G$ be compact such that $S_{f}^{-1} S_{\nu} \subset K$ where S_{w} is the support of w. Then for any $w \in L^{\infty}$ and $h \in L^{1}$ one has

$$
\langle(f * w) v, h\rangle=\left\langle w, \bar{f}^{*} *(v h)\right\rangle=\left\langle w 1_{K}, \bar{f}^{*} * v h\right\rangle=\left\langle\left[f *\left(w 1_{K}\right)\right] v, h\right\rangle .
$$

Also, f and $\left(w 1_{K}\right)^{\sim}$ are in $L^{2}(G)$; hence $f *\left(w 1_{K}\right) \in L^{2}(G) * L^{2}(G)^{\sim}=A(G)$, [4, p. 218] and

$$
\|(f * w) v\|_{A(G)}=\left\|\left(f * w 1_{K}\right) v\right\|_{A(G)} \leqq\|f\|_{2}\left\|\left(w 1_{K}\right) \sim\right\|_{2}\|v\|_{A(G)}
$$

Let $w=g *\left(u_{\alpha}-u\right)$. Then

$$
\left\|\left(f * g *\left(u_{\alpha}-u\right)\right) v\right\| \leqq\|f\|_{2}\left\|\left[\left(g *\left(u_{\alpha}-u\right)\right) 1_{K}\right]^{\sim}\right\|_{2}\|v\|_{A(G)} \rightarrow 0
$$

since by lemma 2, $g *\left(u_{\alpha}-u\right) \rightarrow 0$ uniformly on K. We have shown that $\left\|\left[F *\left(u_{\alpha}-u\right)\right] v\right\|_{A(G)} \rightarrow 0$ for any $v \in A \cap C_{00}(G)$. To finish the proof it is enough to show that $F * u_{\alpha} \in B(G)$ and $\sup _{\alpha}\left\|F * u_{\alpha}\right\|<\infty$, both of which follow from Eymard [4, p. 198 (2.18)] by which

$$
\left\|F * u_{\alpha}\right\|_{B(G)} \leqq\|F\|_{\Sigma}\left\|u_{\alpha}\right\|_{B(G)} \leqq\|F\|_{1} \gamma
$$

Remark. We have only used in the proof that $g \in L^{1}(G)$ and that $f \in L^{\infty}$ is 0 a.e. except on some compact set. It is not hard to show, using corollary 1 to theorem A (which follows), that F can be chosen to be any element of $L^{1}(G)$ and still lemma 3 remains true.

Theorem A. $\tau_{n w^{*}} \supset \tau_{M}$. In particular $\tau_{w^{*}}$ and τ_{M} coincide on $S=\{u \in$ $B G) ;\|u\|=1\}$.

Proof. Let $u_{\alpha}, u \in B(G)$ satisfy $u_{\beta} \rightarrow u$ in w^{*} and $\left\|u_{\beta}\right\| \rightarrow\|u\|$ and $\varepsilon>0$. Let U_{α} be a relatively compact neighborhood base at $e, e \in V_{\alpha}=V_{\alpha}^{-1}$ be open and such that $V_{\alpha}^{2} \subset U_{\alpha}$ and $e_{\alpha}=f_{\alpha} * f_{\alpha}^{*}$ where $f_{\alpha}=\lambda\left(V_{\alpha}\right)^{-1} 1_{V_{\alpha}}$. Then e_{α} satisfies the conditions of lemma 1. Hence there exists α_{0} and β_{0} such that $\left\|e_{\alpha_{0}} * u_{\beta}-u_{\beta}\right\|_{B(G)}<\varepsilon / 3$ if $\beta \geqq \beta_{0}$ and $\left\|e_{\alpha_{0}} * u-u\right\|_{B(G)}<\varepsilon / 3$. Thus, if $v \in A(G)$ and $\beta \geqq \beta_{0}$ we have

$$
\left\|\left(u_{\beta}-u\right) v\right\|_{A(G)} \leqq \frac{\varepsilon}{3}+\left\|\left[e_{\alpha_{0}} *\left(u_{\beta}-u\right)\right] v\right\|_{A(G)}+\frac{\varepsilon}{3}
$$

Take now $e_{\alpha_{0}}=F$ in lemma 3. Then, there is some $\beta_{1} \geqq \beta_{0}$ such that $\left\|\left(e_{\alpha_{0}} *\left(u_{\beta}-u\right)\right) v\right\|_{A(G)}<\varepsilon / 3$ if $\beta \geqq \beta_{1}$.

The rest of the proof is immediate since $\tau_{M} \supset \tau_{u c} \supset \tau_{w^{*}}$ on bounded sets. In fact if $u_{\alpha} \rightarrow u$ in τ_{M} and we let $v \in A(G)$ be 1 on the compact K, then $\left\|\left(u_{\alpha}-u\right) 1_{K}\right\|_{\infty} \leqq\left\|\left(u_{\alpha}-u\right) v\right\|_{A} \rightarrow 0$.

Remark. McKennon has proved in [10, theorem 5.5] that if $u, u_{\beta} \in B(G)$ and u is positive definite, then $u_{\beta} \rightarrow u$ in $\tau_{n w^{*}}$ implies that $u_{\beta} \rightarrow u$ in τ_{M}. He conjectured that the assumption tnat u is positive definite might not be needed [10, p. 49]. Theorem A proves this conjecture.

Corollary 1. (Raikov [13], McKennon [10]. Derighetti [1]). $\tau_{n w^{*}} \supset \tau_{u c}$. In particular $\tau_{w^{*}}$ coincides with $\tau_{u c}$ on the unit sphere of $B(G)$.

One only has to note that $\tau_{M} \supset \tau_{u c}$ since for any compact K there is some $v \in A(G)$ such that $v=1$ on K.

Definition. Let $K \subset G$ be closed. Then $A_{K}(G)=\{f \in A(G), \operatorname{supp} f \subset$ $K\}$ where $\operatorname{supp} f=\operatorname{cl}\{x \in G ; f(x) \neq 0\}$. It is readily seen that $A_{K}(G)=$ $\{f \in A(G) ; f=0$ on $\operatorname{cl}(G \sim K)\}$.

Corollary 2. Consider $A_{K}(G)$ as a subset of $B(G)$. If K is compact, then $\tau_{w^{*}}$ coincides with the norm topology on the unit sphere of $A_{K}(G)$.

Proof. Let $v_{\alpha}, v \in A_{K}$ be such that $\left\|v_{\alpha}\right\|=1=\|v\|$ and $v_{\alpha} \rightarrow v$ in $\tau_{w^{*}}$. Let $w \in A(G)$ be such that $w=1$ on K (See [4, p. 208]). Then $\left(v_{\alpha}-v\right) w=$ $v_{\alpha}-v$ and by theorem $A,\left\|\left(v_{\alpha}-v\right) w\right\| \rightarrow 0$.

Remark. If G is metric nondiscrete, it is easy to find a positive definite $u \in A \cap C_{00}$ such that $0 \leqq u \leqq 1$ and $\{x ; u(x)=1\}=\{e\}$. Then $v_{n}=u^{n}$ will satisfy $v_{n}(x) \rightarrow 0$ a.e., thus $v_{n} \rightarrow 0$ in the w^{*} topology of $B(G)$. Yet $\left\|v_{n}\right\|_{A}=u^{n}(e)=1 \nrightarrow 0$.

Remark. Let G be compact abelian. Then $A(G) \approx \ell_{1}(\Gamma)$ (isometric isomorphism) where $\Gamma=\hat{G}$ is the discrete dual of G. In this case $A(G)=$ $B(G)$. Corollary 2 reduces to the known fact that the norm and w^{*} topologies on the unit sphere of $\ell_{1}(\Gamma)$ coincide. If G is compact nonabelian, then $A(G)$ is just the dual of the noncommutative C^{*}-algebra $C^{*}(G)$. Then Corollary 2 applied to $A(G)$ yields another family of Banach spaces with this same property (which is just property (${ }^{* *}$) of I. Namioka [11, p. 530]).

Definition. A Banach space X has the Radon-Nikodym property (RNP) if every bounded subset C of X is dentable, i.e., for each $\varepsilon>0$ there is some $x \in C$ such that ($\left.{ }^{*}\right) x \notin$ norm $\mathrm{cl} \mathrm{Co}[C \sim(x+\varepsilon U)]$ where $U=$ $\{x \in X ;\|x\| \leqq 1\}$. A point $x \in C$ for which $\left(^{*}\right)$ holds for each $\varepsilon>0$ is said to be a denting point of C.

It has been proved by M.A. Rieffel that vector valued measures with range in a Banach space with the RNP satisfy a Radon Nikodym theorem implenented by Bochner integrable functions [41]. (see also [12] [16]).

Theorem B_{1}. Let $K \subset G$ be compact. Then $A_{K}(G)$ is a dual Banach space with the Radon Nykodym property. Consequently every bounded closed convex subset C of $A_{K}(G)$ has strongly exposed points and moreover C is the norm closed convex-hull of its strongly exposed points.

Remark. Let G be abelian and noncompact. Then $A(G)$ does not have the RNP. In fact $A(G) \approx L^{1}(H)$ where $H=\hat{G}$ is not discrete. If $f \in L^{1}(H)$, $j|f| d x=1$, let $\mu(A)=\int_{A}|f| d x$. Then, as is well known, there is some Borel set A_{0} such that $\mu\left(A_{0}\right)=1 / 2=\mu\left(G^{\sim} A_{0}\right)$. It readily follows that if $g=f 1_{A_{0}}-f l_{G^{\sim} A^{0}}$, then $\int|f \pm g| d x \leqq 1$, which shows that the closed unit ball of $L^{1}(H)$ (hence of $A(G)$) does not have extreme points and afortiori [12, p. 80] does not have the RNP. This seems to indicate, at least for abelian noncompact G, that if $K \subset G$ is closed with interior which is not relatively compact, then $A_{K}(G)$ does not have the RNP. It is possible that the proof of this fact is quite easy.

Proof. R. Phelps has proved in [12, p. 85] that any Banach space with the RNP satisfies the above consequence. Hence it is enough to prove that any bounded subset $C \subset A_{K}(G)$ has a denting point (see [12, p. 79] in the definition and the remark thereafter). If K has empty interior, then $A_{K}(G)=\{0\}$. Hence we assume that int $K \neq \varnothing$.

We claim at first that $A_{K}(G)=A_{K}$ is w^{*} closed in $B(G)$.
In fact, if $u_{\alpha} \rightarrow u$ in $w^{*}, u_{\alpha} \in A_{K}$ and $v \in B(G)$ is such that $v=0$ on K, then $0=u_{\alpha} v \rightarrow u v$ in $\sigma\left(B(G), L^{1}(G)\right)$. Hence $u v=0$. Now for any $x \notin K$ there is some $v \in A(G)$ such that $v(K)=0$ and $v(x) \neq 0$. Thus $u(x)=0$ if $x \notin K$; hence $\{y \in G ; u(y) \neq 0\} \subset K$. This readily shows that $u \in A_{K}$.

We show now that A_{K} is a dual Banach space. In fact, if $M=\left(A_{K}\right)_{\perp}=$ $\left\{\phi \in C^{*}(G) ;\langle\phi, v\rangle=0\right.$ for all $\left.v \in A_{K}\right\}$ then, by [15, p. 92 thm 4.9(b)], the Banach space $\left(C^{*}(G) / M\right)^{*}$ is isometric to $M^{\perp}=\{u \in B(G) ;\langle u, \phi\rangle=0$ for all $\phi \in M\}$. But $\left(\left(A_{K}\right)_{\perp}\right)^{\perp}=M^{\perp}=A_{K}$ since A_{K} is w^{*} closed in $B(G)$, which is the dual of $C^{*}(G)$. This show that A_{K} is the dual of a Banach space and has property ($* *$) of I. Namioka [11, p. 530] by our Corollary 2. Prop 4.11 of [11, p. 530] implies that each bounded norm closed convex subset of A_{K} has a denting point and hence, by Phelps [12, p. 79], A_{K} has the RNP.

Theorem B_{2}. Let $S=\left\{u \in B(G) ;\|u\|_{B}=1\right\}$. Let $u_{\beta} \in S$ and $u \in S$. The following properties are equivalent.
(a) $u_{\beta} \rightarrow u$
(b) $u_{\beta} \rightarrow u$
(c) $u_{\beta} T \rightarrow u T$
(c') $u_{\beta} T \rightarrow u T$
(d) $T\left(u_{\beta} v\right) \rightarrow T(u v)$
in $\tau_{w^{*}}\left(i . e ., \sigma\left(B(G), C^{*}(G)\right)\right.$.
in $\tau_{u c}$.
in $\left\|\|_{C_{o}^{*}(G)}\right.$ norm for all $T \in C_{\rho}^{*}(G)$.
in $\sigma(V N(G), A(G))$ for all $T \in V N(G)$.
in $\left\|\|_{A(G)}\right.$ norm for all $T \in C_{\rho}^{*}(G), v \in A(G)$.
$\left(\mathrm{d}^{\prime}\right) T\left(u_{\beta} v\right) \rightarrow T(u v) \quad$ weakly $\left(\right.$ i.e., $\sigma(A(G), V N(G))$ for all $T \in C_{\rho}^{*}(G)$, $v \in A(G))$.
(e) $u_{\beta} v \rightarrow u v$
in $A(G)$ norm for all $v \in A(G)$.
(e') $u_{\beta} v \rightarrow u v$
weakly (i.e., $\sigma(A(G), V N(G))$ for all $v \in A(G))$.
Proof. $(a) \Leftrightarrow(b) \Leftrightarrow(e)$ follows from theorem $A .(e) \Rightarrow\left(c^{\prime}\right)$ is clear.
To show $\left(c^{\prime}\right) \Rightarrow(a)$, let $f \in C_{00}, v \in A$ with $v=1$ on supp f. Thus $v f=f$ and $\left\langle u_{\beta}, f\right\rangle=\left\langle u_{\beta} f, v\right\rangle \rightarrow\langle u f, v\rangle=\langle u, f\rangle$ where $u f \in V N(G)$. Hence $u_{\beta} \rightarrow u$ in $\sigma\left(B, C_{00}\right)$ which by density implies (a).
$(e) \Rightarrow(c)$ since any $T \in C_{\rho}^{*}(G)$ with compact support is expressible as $v T$ where $v \in A(G)$ with $v=1$ on $\operatorname{supp} T$.
$(c) \Rightarrow(a),\left(d^{\prime}\right) \Rightarrow(a)$ and $\left(e^{\prime}\right) \Rightarrow(a)$ are all shown in the same way as $\left(c^{\prime}\right) \Rightarrow(a)$. The implications $(e) \Rightarrow(d),(d) \Rightarrow\left(d^{\prime}\right)$ and $(e) \Rightarrow\left(e^{\prime}\right)$ are all evident.

Another application of the above methods which will be proved in greater generality in the next section is the following theorem.

Theorem B_{3}. Let G be a amenable group. A set $E \subset A(G)$ is relatively norm compact if and only if the following hold:
(a) E is norm bounded;
(b) For each $v \in A(G)$ and $\varepsilon>0$ there is a neighborhood V of e such that $\left.\| \ell_{x} u-u\right) v \|<\varepsilon$ for each $u \in E$ and $\left.x \in V\left({ }_{x} u\right)(y)=u(x y)\right)$; and
(c) For each $\varepsilon>0$ there is some $v \in A(G)$ such that $\|u-u v\|<\varepsilon$ for each $u \in E$.
2. Subsets of $B_{p}(G)$ on which τ_{M} and $\sigma\left(B_{p}, L^{1}\right)$ coincide. Let $A_{p}(G)$ be (as in Herz [5, p. 96]) the Banach algebra of all functions f on G which can be represented as $f=\sum_{1}^{\infty} v_{n} * \breve{u}_{n}$, an absolutely and uniformly convergent sum, such that $\sum_{n}\left\|v_{n}\right\|_{p^{\prime}}\left\|u_{n}\right\|_{p}<\infty, 1 / p+1 / p^{\prime}=1$. We define the norm $\|f\|_{A_{p}}=\inf \sum\left\|v_{n}\right\|_{p}\left\|u_{n}\right\|_{p}$ over all such representations. The space $B_{p}(G)$ defined in Herz [6, p. 146] is denoted by us by $B_{p}^{H}(G)$ or B_{p}^{H} ($\|u\|_{H}$ will denote the norm in B_{p}^{H}).

We define by $B_{p}^{M}(G)$, or B_{p}^{M}, the space of all functions u such that $u v \in A_{p}$ for each $v \in A_{p}$. It then follows by the closed graph theorem that $\|u\|_{M}=$ $\sup \left\{\|u v\|_{A_{p}} ;\|v\|_{A_{p}} \leqq 1\right\}$ is finite. We equip B_{p}^{M} with this multiplier norm. $B_{p}^{M}(G) \subset C(G)$ becomes in this way a translation invariant Banach algebra.

It has been proved by Herz in [6, p. 147] that for any $G, A_{p} \subset B_{p}^{H} \subset B_{p}^{M}$, and $\|u\|_{M} \leqq\|u\|_{H}$ if $u \in B_{p}^{H}$, and $\|u\|_{H} \leqq\|u\|_{A_{p}}$ if $u \in A_{p}$. If G is amenable, then $B_{p}^{H}=B_{p}^{M}$ and the norms coincide. In this case $B_{2}^{M}(G)=B(G)$ where $B(G)$ is defined in [4]. If G is the free group on two generators, then $B_{2}^{H}(G) \neq B(G)$ as shown by Leinert in [8]. For any G one has $B(G) \subset$ $B_{2}^{H}(G)$. The τ_{M} topology on B_{p}^{M} is defined so that a net $u_{\alpha} \in B_{p}^{M}$ converges τ_{M} to $u \in B_{p}^{M}$ if $\left\|\left(u_{\alpha}-u\right) v\right\|_{A_{p}} \rightarrow 0$ for each $v \in A_{p}$. Define $\tau_{x} u(y)=u(x y)$ for all $x, y \in G$ and $u \in B_{p}^{M}$.

Our main result in this section is the following theorem.
Theorem C. Let $E \subset B_{p}^{M}(G)$ be norm bounded. If for each $\varepsilon<0$ and $v \in A_{p}(G)$ there exists a neighborhood V of e such that $\left\|\left({ }_{~_{x}} u-u\right) v\right\|_{A_{p}}<\varepsilon$ for each $u \in E$ amd $x \in B$, then τ_{M} and $\sigma\left(B_{b}^{M}, L^{1}\right)$ convergence coincide on E.
B_{p}^{M} is not known to be a dual Banach space (even though B_{p}^{H} is one, as proved by Herz in [6]). Translation, i.e., the map $x \rightarrow \ell_{x} u$ is not known to be norm continuous in B_{p}^{M}. In fact I. Khalil stated as an open question in his thesis whether translation is norm continuous in $B_{p}(R)$ for $p \neq 2$ (where R is the real line). M. Cowling informs us that for amenable G translation is norm continuous in B_{p}^{M} (this uses a deep theorem on tensor products due to John E. Gilbert). In spite of these difficulties, translation is continuous in $\left(A_{p}(G)\right.$, norm $)$ and also in $\left(B_{p}^{M}, \tau_{M}\right)$. In fact one has the following trivial lemma.

Lemma 4. For any $u \in B_{p}^{M}, a \in G,\|u\|_{\infty} \leqq\|u\|_{M}=\left\|\iota_{a} u\right\|_{M}$ and $x \rightarrow \ell_{x} u$ is continuous from G to $\left(B_{p}^{M}, \tau_{M}\right)$. Hence for any compact $K \subset G$, the set $\left\{\ell_{x} u ; x \in K\right\}$ is compact in $\left(B_{p}^{M}, \tau_{M}\right)$.

Proof. ($B_{p}^{M},\| \|_{M}$) is a commutative Banach algebra of continuous bounded functions on G and G is included in the maximal ideal space of B_{p}^{M}, hence $\|u\|_{\infty} \leqq\|u\|_{M}$. Furthermore

$$
\left\|\iota_{a} u\right\|_{M}=\sup \left\{\left\|\left(\iota_{a} u\right) v\right\|_{A_{p}} ;\|v\|_{A_{p}} \leqq 1\right\}
$$

Now $\left\|\ell_{x} v\right\|_{A_{p}}=\|v\|$ as easily checked. Thus

$$
\left\|\iota_{a} u\right\|_{M}=\sup \left\{\left\|u \iota_{a-1} v\right\|_{A_{p}} ;\left\|\iota_{a-1} v\right\|_{A_{p}} \leqq 1\right\}=\|u\|_{M}
$$

As to the continuity of $x \rightarrow \ell_{x} u$ in τ_{M}, one has for $v \in A_{p}$ that

$$
\begin{aligned}
\left\|\left(\zeta_{x} u-u\right) v\right\|_{A_{p}} & \leqq\left\|\iota_{x}(u v)-u v\right\|_{A_{p}}+\left\|\left(\ell_{x} u\right) v-\iota_{x}(u v)\right\|_{A_{p}} \\
& \leqq\left\|\ell_{x}(u v)-u v\right\|_{A_{p}}+\left\|\iota_{x} u\right\|_{M}\left\|\ell_{x} v-v\right\|_{A_{p}} \\
& =\left\|\ell_{x}(u v)-u v\right\|_{A_{p}}+\|u\|_{M}\left\|\ell_{x} v-v\right\|_{A_{p}} \rightarrow 0
\end{aligned}
$$

since translation is continuous in A_{p}.
Denote by δ_{a} the point mass at a, by Co L the convex hull of the set L and by $\tau_{M} \mathrm{cl} A$ the closure of $A \subset B_{p}^{M}$ in the τ_{M} topology.

Lemma 5. Let $K \subset G$ be compact and μ a probability measure on the Borel subsets of K. Let μ_{α} be a net in $\operatorname{Co}\left\{\delta_{x} ; x \in K\right\}$ such that $\mu_{\alpha} \rightarrow \mu$ in $\sigma(M(G), C(G))$. If $u \in B_{p}^{M}$, then $\mu * u \in B_{p}^{M}$ and $\mu_{\alpha} * u \rightarrow \mu * u$ in τ_{M}. Consequently $\|\mu * u\|_{M} \leqq\|u\|_{M}$.

Proof. For each $x \in G$ we have

$$
\mu_{\alpha} * u(x)=\int u\left(y^{-1} x\right) d \mu_{\alpha}(y) \rightarrow \int u\left(y^{-1} x\right) d \mu(y)=\mu * u(x)
$$

since for fixed x the function $y \rightarrow u\left(y^{-1} x\right)$ is continuous and bounded. If $\nu \in A_{p}$ and $\nu=\sum^{n} \beta_{j} \delta_{a_{j}}$, then $(\nu * u) v(x)=\sum \beta_{j} u\left(a_{j}^{-1} x\right) v(x) \in A_{p}$ and

$$
\|(\nu * u) v\|_{A_{p}} \leqq\left(\sum_{1}^{n}\left|\beta_{j}\right|\right)\|u\|_{M}\|v\|_{A_{p}} .
$$

Hence $\left\|\left(\mu_{\alpha} * u\right) v\right\|_{A_{p}} \leqq\|u\|_{M}\|v\|_{A_{p}}$ and $\mu_{\alpha} * u \in \operatorname{Co} \quad L$ where $L=\left\{\iota_{x} u\right.$; $\left.x \in K^{-1}\right\}$. We show now that $\left(B_{p}^{M}, \tau_{M}\right)$ is a complete locally convex space. In fact if u_{α} is a τ_{M} Cauchy net, then for each $v \in A_{p}, u_{\alpha} v \rightarrow w_{\nu} \in A_{p}$ in A_{p} norm and hence pointwise. Now for each x there is some $v \in A_{p}$ with $v(x) \neq 0$. Hence there is some function u on G such that $u_{\alpha} v \rightarrow u v=$ $w_{\nu} \in A_{p}$ for each $v \in A_{p}$. Thus $u A_{p} \subset A_{p}$; hence $u \in B_{p}^{M}$. We apply now [7, p. 133 (13.4)] and get that $\tau_{M} \mathrm{cl} \mathrm{CoL}$ is τ_{M} compact.

In conclusion, there exists a subnet and some $w \in \tau_{M} \mathrm{cl} \operatorname{Co} L$ such that for each $v \in A_{p},\left\|\left(\mu_{\alpha_{\beta}} * u-w\right) v\right\|_{A_{p}} \rightarrow 0$. Since $\mu_{\alpha} * u \rightarrow \mu * u$ pointwise, it follows that $\mu * u=w \in B_{p}^{M}$. But every subnet $\mu_{\alpha \beta}$ has a further subnet ν_{r} such that $\nu_{r} * u \rightarrow \mu * u$ in τ_{M}. This immediately implies that $\mu_{\alpha} * u \rightarrow \mu * u$ in τ_{M}. Clearly $\left\|\mu_{\alpha} * \mu\right\|_{M} \leqq\|u\|_{M}$ and since $\|w\|_{M}=\sup \left\{\|w v\| ;\|v\|_{A_{p}} \leqq 1\right\}$ we get $\|\mu * u\|_{M} \leqq\|u\|_{M}$.

The proof of the next lemma is a slight modification of the proof of lemma 3.
Lemma 6. Let $u_{\alpha}, u \in B_{p}^{M}(G)$ be such that $\sup _{\alpha}\left\|u_{\alpha}\right\|_{M}=\gamma<\infty$ and $u_{\alpha} \rightarrow u$ in $\sigma\left(B_{p}^{M}, L_{1}\right)$. If $F=f * g$ where $g \in L^{1}, f \in L^{\infty}$ and f has compact support. Then $F *\left(u_{\alpha}-u\right) \rightarrow 0$ in τ_{M}.

Proof. $F *\left(u_{\alpha}-u\right)$ belongs to B_{p}^{M} by lemma 5. Let $v \in C_{00} \cap A_{p}$ and $K \subset G$ be compact such that $s_{f}^{-1} s_{v} \subset K$ where S_{w} is the support of w. Then as in the proof of lemma 3 one has for each $w \in L^{\infty}, h \in L^{1}$ that $(f * w) v=\left[f *\left(w 1_{K}\right)\right] v$. Now $f \in L^{p^{\prime}}$ and $\left(w 1_{K}\right) \in L^{p}$ thus $\left(f *\left(w 1_{K}\right)\right) v \in A_{p}$ and

$$
\left\|\left[f *\left(w 1_{K}\right)\right] v\right\|_{A_{p}} \leqq\|f\|_{p^{\prime}}\left\|\left(w 1_{K}\right)^{\sim}\right\|_{p}\|v\|
$$

(see [5, p. 97]).
Choose now $w=g *\left(u_{\alpha}-u\right)$. Then

$$
\left\|\left[f * g *\left(u_{\alpha}-u\right)\right] v\right\|_{A_{p}} \leqq C\left\|\left(\left(g *\left(u_{\alpha}-u\right)\right) 1_{K}\right]^{\sim}\right\|_{p} \rightarrow 0
$$

since by lemma $2, g *\left(u_{\alpha}-u\right) \rightarrow 0$ uniformly on K. To finish the proof it is enough to show that $\sup _{\alpha}\left\|F * u_{\alpha}\right\|_{M}<\infty$. However by lemma 5,

$$
\left\|F * u_{\alpha}\right\|_{M} \leqq\|F\|_{1}\left\|u_{\alpha}\right\|_{M} \leqq \gamma\|F\|_{1} .
$$

Definition. $E \subset B_{p}^{M}$ is said to be τ_{M} left equicontinuous if for each $\varepsilon>0$ and $v \in A_{p}$, there is some neighborhood V of e such that $\|\left(\left(_{x} u-u\right) v\right.$ $\|_{A_{p}}<\varepsilon$ for all $x \in V$ and $u \in E$.

Theorem C. Let $E \subset B_{p}^{M}$ be norm bounded and τ_{M} left equicontinuous. Then $\sigma\left(B_{p}^{M}, L^{1}\right)$ and τ_{M} coincide E.

Proof. Let $u_{\alpha}, u \in E$ be such that $\int u_{\alpha} h d x \rightarrow \int u h d x$ for each $h \in L^{1}$ and $v \in A_{p}$. Let $\sup \left\{\|w\|_{M} ; w \in E\right\}=\gamma<\infty$. Let $V^{-1}=V$ be a compact neighborhood of e such that $\left\|\left(w-\ell_{x} w\right) v\right\|_{A_{p}}<\varepsilon / 3$ if $x \in V$ and $w \in E$. Let $U=U^{-1}$ be a compact neighborhood of e such that $U^{2} \subset V$. Let $g=f=$ $\lambda(U)^{-1} 1_{U}$ and $F=f * g$. Then $\|F\|_{1}=1$ and $F \geqq 0$. Let $\mu_{\alpha} \in \operatorname{Co}\left\{\delta_{x}\right.$; $x \in V\}$ be such that $\mu_{\alpha} \rightarrow F d x$ in $\sigma(M(G), C(G))$. Then by lemma 5 $\mu_{\alpha} * w \rightarrow F * w \in B_{p}^{M}, \tau_{M}$ convergence, for each $w \in B_{p}^{M}$. Now $\|\left(w-\ell_{x} w\right) v$ $\|_{A_{p}}<\varepsilon / 3$ implies $\left\|\left(w-\mu_{\alpha} * w\right) v\right\|_{A_{p}}<\varepsilon / 3$ for each α and each $w \in E$. By lemma 5 one has $\|(w-F * w) v\|_{A_{p}} \leqq \varepsilon / 3$ for each $w \in E$. Thus

$$
\begin{aligned}
\left\|\left(u_{\alpha}-u\right) v\right\|_{A_{p}} & \leqq\left\|\left(u_{\alpha}-F * u_{\alpha}\right) v\right\|_{A_{p}}+\|(u-F * u) v\|_{A_{p}}+\left\|\left(F *\left(u_{\alpha}-u\right)\right) v\right\|_{A_{p}} \\
& \leqq \frac{2}{3} \varepsilon+\left\|\left(F *\left(u_{\alpha}-u\right)\right) v\right\|_{A_{p}}<\frac{2}{3} \varepsilon+\frac{1}{3} \varepsilon
\end{aligned}
$$

if $\alpha \geqq \alpha_{0}$ where α_{0} is chosen using lemma 6 . The converse consists in noting that τ_{M} implies uniform convergence on compacta hence $\sigma\left(B_{p}^{M}, L^{1}\right)$ convergence.

Corollary. Let $E \subset A_{p}(G)$. If
(a) E is τ_{M} left equicontinuous, A_{p} norm bounded and
(b) for each $\varepsilon>0$ there is some $v \in A_{p}$ such that $\|u v-u\|_{A_{p}}<\varepsilon$ for each $u \in E$,
then E is relatively norm compact (i.e., its norm closure is norm compact.)
If G is amenable and $E \subset A_{p}(G)$ is relatively norm compact, then (a) and (b) hold.

Proof. Assume (a) and (b). Then $\|u\|_{H} \leqq\|u\|_{A_{p}}$ for all $u \in A_{p} \subset B_{p}^{H}$ (as defined in [6]). Thus E is a norm bounded subset of B_{p}^{H} which is the dual Banach space of the normed space $L^{1}(G)$, normed with the (complicated) norm $Q F_{p}$, see Herz [6, p. 153]. We show now that the w^{*} closure of E in B_{p}^{H} (which is certainly w^{*} compact) is τ_{M} left equicontinuous. Let $\varepsilon>0, v \in A_{p}$ and $w \in A_{p} \cap C_{00}$ be such that $\|v-w\|_{A_{p}}<\varepsilon(3 \gamma)^{-1}$ where $\gamma=\sup \left\{\|u\|_{A_{p}} ; u \in E\right\}<\infty$. Then

$$
\begin{aligned}
\left\|\left(\iota_{x} u-u\right) v\right\|_{A_{p}} & \leqq\left\|\left(\iota_{x} u-u\right)(v-w)\right\|_{A_{p}}+\left\|\left(\ell_{x} u-u\right) w\right\|_{A_{p}} \\
& <\varepsilon(3 \gamma)^{-1} 2 \gamma+\left\|\left(\iota_{x} u-u\right) w\right\|_{A_{p}} .
\end{aligned}
$$

Hence it is enough to prove that for each $\varepsilon>0$ and $w \in A_{p} \cap C_{00}$ there is a neighborhood V of e such that $\left\|\left({ }_{x} u-u\right) w\right\|_{A_{p}}<\varepsilon$ for each $u \in$ $w^{*} \operatorname{cl} E$ and $x \in V$. Let $\varepsilon<0$ and $w \in A_{p} \cap C_{00}$ be fixed. Then $w=v_{1} v_{2}$ where $v_{1}, v_{2} \in A_{p}$ (in fact take $v_{1}=w$ and $v_{2} \in A_{p} \cap C_{00}$ which is 1 on the support of w). There is a neighborhood V of e such that

$$
\left\|\left(l_{x} u-u\right) v_{1}\right\|_{A_{p}}<\varepsilon\left\|v_{2}\right\|_{A_{p}}^{-1}
$$

for each $x \in V, u \in E$. Let now $u \in w^{*} \mathrm{cl} E$, and u_{α} a net in E such that $u_{\alpha} \rightarrow u$ in w^{*}. Then $\left({ }_{x} u_{\alpha}-u_{\alpha}\right) v_{1} \rightarrow\left({ }_{x} u-u\right) v_{1}$ in $w^{*}\left(\right.$ in $\left.B_{p}^{H}\right)$. Thus

$$
\lim \inf \left\|\left(\ell_{x} u_{\alpha}-u_{\alpha}\right) v_{1}\right\|_{H} \geqq\left\|\left(\tau_{x} u-u\right) v_{1}\right\|_{H}
$$

Hence

$$
\left\|\left({ }_{x} u-u\right) w\right\|_{A_{p}} \leqq\left\|\left(r_{x} u-u\right) v_{1}\right\|_{H}\left\|v_{2}\right\|_{A_{p}} \leqq\left(\varepsilon\left\|v_{2}\right\|_{A_{p}}^{-1}\right)\left\|v_{2}\right\|_{A_{p}}=\varepsilon
$$

for each $x \in V$ and $u \in w^{*} \operatorname{cl} E \subset B_{p}^{H}$. We have shown that $w^{*} \mathrm{cl} E \subset B_{p}^{H}$ is $\left\|\|_{H}\right.$ norm bounded (and afortiori $\| \|_{M}$ norm bounded) and τ_{M} left equicontinuous. Let now u_{α} be a net in E. A subnet $w_{\beta}=u_{\alpha \beta}$ will converge w^{*} (and by theorem C even in τ_{M}), to some $u \in B_{p}^{H}$. Let $\varepsilon>0$ be given and choose some $v \in A_{p}$ such that $\left\|w_{\beta}-w_{\beta} v\right\|_{A_{p}}<\varepsilon / 3$ for each β (by (b)). Then

$$
\begin{aligned}
\left\|w_{\beta}-w_{r}\right\|_{A_{p}} & \leqq\left\|\left(w_{\beta}-w_{r}\right) v\right\|_{A_{p}}+\left\|\left(w_{\beta}-w_{r}\right)(1-v)\right\|_{A_{p}} \\
& <\left\|\left(w_{\beta}-w_{\gamma}\right) v\right\|_{A_{p}}+\frac{2}{3} \varepsilon
\end{aligned}
$$

for any β, γ. However $\left\|\left(w_{\beta}-u\right) v\right\|_{A_{p}} \rightarrow 0$. Hence

$$
\left\|\left(w_{\beta}-w_{\gamma}\right) v\right\|_{A_{p}} \leqq\left\|\left(w_{\beta}-u\right) v\right\|_{A_{p}}+\left\|\left(w_{\gamma}-u\right) v\right\|_{A_{p}}<\varepsilon / 3
$$

if $\beta, \gamma \geqq \beta_{0}$. Thus w_{β} is a norm Cauchy net in the Banach algebra $A_{p}(G)$. Hence for some $u_{1} \in A_{p},\left\|w_{\beta}-u_{1}\right\|_{A_{p}} \rightarrow 0$. Thus $u=u_{1} \in A_{p}$ and $w^{*} \mathrm{cl} E$ is in fact a subset of A_{p}, which is norm compact. The care involved in the above proof is warranted by [8].

We prove now the second part. Let G be amenable and $v_{\alpha} \in A_{p}$ be a bounded approximate identity for $A_{p}(G)$. If E is a norm compact subset of $A_{p}(G)$, then $\left\|v_{\alpha} u-u\right\| \rightarrow 0$ uniformly in $u \in E$ since sup $\left\|v_{\alpha}\right\|_{A_{p}}<\infty$. Also $\left\|\ell_{x} u-u\right\|_{A_{p}} \rightarrow 0$ as $x \rightarrow e$ uniformly in $u \in E$. Thus stronger conditions than (a) and (b) hold. (Only sup $\left\|v_{\alpha}\right\|_{M}<\infty$ has been used. Haagerup has shown that if G is the free group on 2 generators, then $A(G)$ has an approximate identity v_{n} such that sup $\left.\left\|v_{n}\right\|_{M}<\infty\right)$.

Remark. This Corollary applied to $A(G)$ yields theorem B_{3} of the previous section.
3. Various topologies on the unit sphere of $M(G)$. The main result of this section is a measure theoretical selfcontained proof of a result of McKennon [10, p. 32 theorem (4.2)]. McKennon relies heavily in his proof on theorem (3.3) [10, p. 25] which relies heavily on an intricate result on approximate identities in C^{*} algebras [10, lemma (3.2)] which in turn uses results of E. Effros on C^{*} algebras. The reader who will peruse through pp. 21-25 and 32-33 of [10] will find, we think, that our proof is much simpler and more natural.

Lemma 3.9. Let $\mu_{\alpha}, \mu \in M(G)$ with $\mu_{\alpha} \rightarrow \mu$ weakly* and $\left\|\mu_{\alpha}\right\| \rightarrow\|\mu\|$. Then for every $\varepsilon>0$ there is a compact set C and an index α_{0} such that $\int_{G / C} d\left(\left|\mu_{\alpha}\right|+|\mu|\right)<\varepsilon$ for $\alpha>\alpha_{0}$.

Proof. Let $\varepsilon>0$ and choose $h \in C_{00}(G)$ with $\|h\|_{\infty} \leqq 1$ and $\mid\langle h, \mu\rangle-$ $\|\mu\| \mid<\varepsilon$. For $C=\operatorname{supp} h$ this implies $\int_{G / C} d|\mu|<\varepsilon$. Choose α_{0} such that $\left|\left\langle h, \mu_{\alpha}\right\rangle-\langle h, \mu\rangle\right|<\varepsilon$ and $\left|\left\|\mu_{\alpha}\right\|-\|\mu\|\right|<\varepsilon$ for $\alpha>\alpha_{0}$. We have

$$
\begin{aligned}
\|\mu\| & \leqq|\langle h, \mu\rangle|+\varepsilon \\
& \leqq\left|\left\langle h, \mu-\mu_{\alpha}\right\rangle\right|+\left|\left\langle h, \mu_{\alpha}\right\rangle\right|+\varepsilon \leqq 2 \varepsilon+\int_{C} d\left|\mu_{\alpha}\right|
\end{aligned}
$$

for $\alpha>\alpha_{0}$. Hence

$$
\int_{G \backslash C} d\left|\mu_{\alpha}\right|=\left\|\mu_{\alpha}\right\|-\int_{C} d\left|\mu_{\alpha}\right| \leqq\|\mu\|+\varepsilon-\int_{C} d\left|\mu_{\alpha}\right| \leqq 3 \varepsilon
$$

for $\alpha>\alpha_{0}$. We thus have $\int_{G / C} d\left(\left|\mu_{\alpha}\right|+|\mu|\right)<4 \varepsilon$ for $\alpha>\alpha_{0}$.
Remark. Let $\mu_{\alpha}, \mu \in M(G)$ be such that $\mu_{\alpha} \rightarrow \mu$ in w^{*} and $\left|\mu_{\alpha}\right|(G) \rightarrow$ $|\mu|(G)$. Then $\left|\mu_{\alpha}\right| \rightarrow|\mu|$ in w^{*}. Assume in fact that a subnet $\mu_{\alpha_{\beta}}$ is such that $\left|\mu_{\alpha_{\beta}}\right| \rightarrow \nu \neq|\mu|$ in w^{*} (the unit ball of $M(G)$ is w^{*} compact). If $0 \leqq f \in C_{0}(G)$ and $|g| \leqq f$, then $\left|\mu_{\alpha_{\beta}}\right|(f) \geqq\left|\mu_{\alpha_{\beta}}(g)\right| \rightarrow|\mu(g)|$. Thus $\nu(f) \geqq$ $\sup \{|\mu(g)| ;|g| \leqq f\}=|\mu|(f)$, i.e., $(\nu-|\mu|) \in M(G)^{+}$. But $(\nu-|\mu|)(G)=0$. Thus $\nu=|\mu|$ which cannot be.

Theorem D. (a) Let $\mu_{\alpha}, \mu \in M(G)$ be such that $\mu_{\alpha} \rightarrow \mu$ in $\sigma(M(G)$, $\left.C_{0}(G)\right)$ and $\left\|\mu_{\alpha}\right\| \rightarrow\|\mu\|$. Then $\left\|\left(\mu_{\alpha}-\mu\right) * f\right\|_{p} \rightarrow 0$ for each $f \in L^{p}(G)$ where $1 \leqq p<\infty$. (If $f \in U C B_{r}(G)$, then $\left.\left\|\left(\mu_{\alpha}-\mu\right) * f\right\|_{\infty} \rightarrow 0\right)$.
(b) If μ_{α} is a norm bounded net in $M(G), \mu \in M(G)$ and if $\left\|\left(\mu_{\alpha}-\mu\right) * f\right\|_{p} \rightarrow$ 0 for each $f \in C_{00}(G)$ for fixed $1 \leqq p<\infty$, then $\mu_{\alpha} \rightarrow \mu$ in w^{*}.

Remark. $f \in U C B_{r}(G)$ if and only if $f \in C(G)$ and $x \rightarrow \tau_{x} f$ from G to $\left(C(G),\| \|_{\infty}\right)$ is continuous.

Proof. It is enough to prove that for any $f \in C_{00}(G)$ with $0 \leqq f \leqq 1$, $\left\|\left(\mu_{\alpha}-\mu\right) * f\right\|_{p} \rightarrow 0$. Since then, it will be true for any $f \in C_{00}(G)$. Thus, by the density of $C_{00}(G)$ in $L^{p}(G)$ and since $\left\|\mu_{\alpha} * f\right\|_{p} \leqq\left\|\mu_{\alpha}\right\|\|f\|_{p}$ where $\left\|\mu_{\alpha}\right\|=\left|\mu_{\alpha}\right|(G) \rightarrow|\mu|(G)=\|\mu\|$ is a bounded net (past some α), it will readily follow for all $f \in L^{p}(G)$. Hence fix $0 \leqq f \leqq 1$ in $C_{00}(G)$. For any compact set $K \subset G$ we have
(a)

$$
\left\|\left(\mu_{\alpha}-\mu\right) * f\right\|_{p}^{p} \leqq \int_{K}\left|\left(\mu_{\alpha}-\mu\right) * f\right|^{p}+\int_{G / K}\left(\left|\mu_{\alpha}\right| * f+|\mu| * f\right) . p
$$

Now let $g_{\alpha}=|\mu \alpha| * f, g=|\mu| * f$. One has $g_{\alpha}, g \in L^{1}(G)$ and $\left\|g_{\alpha}\right\|_{1}=\left\|\mu_{\alpha}\right\|$ $\|f\|_{1} \rightarrow\|\mu\|\|f\|_{1}=\|g\|_{1}$. Also $g_{\alpha} \rightarrow g$ weakly* since (by the remark preceding theorem $D)\left|\mu_{\alpha}\right| \rightarrow|\mu|$ weakly*, hence by Lemma 3.9 for every
$\varepsilon>0$ there is a compact set $K \subset G$ and an index α_{0} such that $\int_{G_{/ K} K}\left(\left|\mu_{\alpha}\right| * f\right.$ $+|\mu| * f)<\varepsilon$ for $\alpha>\alpha_{0}$. Since the integrand is dominated in sup-norm by $\left(\left\|\mu_{\alpha}\right\|+\|\mu\|\right)\|f\|_{\infty} \leqq M<\infty$ for $\alpha>\alpha_{1}$. we obtain

$$
\int_{G / K}\left(\left|\mu_{\alpha}\right| * f+|\mu| * f\right)^{p} \leqq M^{p-1} \int_{G / K}\left(\left|\mu_{\alpha}\right| * f+|\mu| * f\right)<M^{p-1} \cdot \varepsilon
$$

for $\alpha>\alpha_{0}, \alpha_{1}$. Since $\left\{_{\left.{ }_{\breve{x}} \check{f} \mid x \in K\right\}}\right.$ is compact in $C_{0}(G)$, we have $\mu_{\alpha} * f \rightarrow$ $\mu * f$ uniformly on K, hence $\int_{K}\left|\left(\mu_{\alpha}-\mu\right) *\right|^{p}<\varepsilon$ for $\alpha>\alpha_{2}$. By (a) we obtain for $\alpha>\alpha_{0}, \alpha_{1}, \alpha_{2}$ the inequality

$$
\left\|\left(\mu_{\alpha}-\mu\right) * f^{\prime}\right\|_{p}<\varepsilon\left(1+M^{p-1}\right)
$$

which proves that $\left\|\left(\mu_{\alpha}-\mu\right) * f\right\|_{p} \rightarrow 0$, for all $f \in L^{p}($ for fixed $1 \leqq p<\infty)$. If $f \in U C B_{r}(G)$, then $f=g * h$ with $g \in L^{1}, h \in L^{\infty}$ as is well known. Thus $\left\|\left(\mu_{\alpha}-\mu\right) * f\right\|_{\infty} \leqq\left\|\left(\mu_{\alpha}-\mu\right) * g\right\|_{1}\|h\|_{\infty} \rightarrow 0$ since $g \in L^{1}$.
For the proof of (b) let $f, g \in C_{00}(G)$. Then

$$
\left\langle\mu_{\alpha}-\mu, g * f^{\sim}\right\rangle=\left\langle\left(\mu_{\alpha}-\mu\right) * \bar{f}, g\right\rangle \rightarrow 0
$$

since $f, g \in L^{2}$. Thus $\left\langle\mu_{\alpha}, h\right\rangle \rightarrow\langle\mu, h\rangle$ for all h in a norm dense subspace of $A(G)\left[4\right.$, p. 208]. Since $A(G)$ is sup norm dense in $C_{0}(G)$ (Eymard [4, p. 210]). $\mu_{\alpha} \rightarrow \mu$ in w^{*}.

Remark. Let G be nondiscrete and x_{α} a net in G such that $x_{\alpha} \rightarrow x$ in G with $x_{\alpha} \neq x$ for each α. Then the point masses $\delta_{x_{\alpha}} \rightarrow \delta_{x}$ in $\sigma(M(G)$, $C_{0}(G)$) (e.i., in w^{*}) and $\left\|\delta_{x_{\alpha}}\right\|=\left\|\delta_{x}\right\|=1$. Clearly $\left\|\delta_{x_{\alpha}}-\delta_{x}\right\|=2$; hence the assumptions of theorem $D(a)$ do not imply norm convergence of μ_{α} to μ.

References

1. A. Derighetti, Some results on the Fourier-Stieltjes algebra of a locally compact group, Comment. Math. Helv. 45 (1970), 219-228.
2. J. Dixmier, Les C^{*}-algèbres et leures représentations, Gauthier-Villars, Paris 1969.
3. E. G. Effros, Order ideals in a C^{*}-algebra and its dual, Duke Math. J. 30 (1963), 391-441.
4. P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
5. C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier Grenoble 23 (3) (1973), 91-123.
6. -, Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier Grenoble 24 (3)(1974), 145-157.
7. J. L. Kelley and I. Namioka, Linear topological spaces, Van Nostrand, Princeton, NJ, 1963.
8. M. Leinert, Abschatzung von Normen gewisser Matrizen, Math. Annalen 240 (1979), 13-19.
9. -, Faltungsoperatoren auf gewissen discreten Gruppen, Studia Math. 52 (1974), 149-158.
10. K. McKennon, Multipliers, positive functionals, positive-definite functions, and Fourier-Stieltjes transforms, Memoirs Amer. Math. Soc. 111 (1971).
11. I Namioka, Separate continuity and joint continuity, Pac. J. Math. 51 (1974), 515-531.
12. R. R. Phelps, Dentability and extreme points in Banach spaces, J. of Functional Analysis 16 (1974), 78-90.
13. D. A. Raikov, On various types of convergence of positive-definite functions, Dokl. Akad. Nauk SSSR 58 (1947), 1279-1282.
14. M. A. Rieffel, Dentable subsets of Banach spaces with application to a Randon Nikodym theorem, Proc. Conf. Functional Analysis, Thompson Book Co., Washington, D.C., 1967, 71-77.
15. W. Rudin, Functional Analysis, Mc Graw Hill, New York, 1973.
16. C. Stegall, The Radon-Nikodym property in conjugate Banach spaces, (to appear).
17. H. Yoshizawa, On some types of convergence of positive definite functions, Osaka Math. J. 1 (1949), 90-94.

Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T1W5.

University of Heidelberg, Heidelberg, West Germany.

