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ON SOME TOPOLOGIES WHICH COINCIDE ON THE UNIT 
SPHERE OF THE FOURIER-STIELTJES ALGEBRA B(G) AND 

OF THE MEASURE ALGEBRA M(G) 

E. E. GRANIRER AND M. LEINERT 

Introduction. Let G be an arbitrary locally compact group [̂ 4(G)], B(G) 
the [Fourier] Fourier-Stieltjes algebra of G and M(G) the Banach algebra 
of bounded Radon measures on G (see definitions in what follows). 

We prove in §1 of this paper that we w*-topology zw* and the multiplier 
topology zM coincide on the unit sphere S = {u e B(G)\ \\u\\ = 1} of 
B(G\ where ua -> u in zM if and only if ||(wa — w)v|| -» 0 for each v e A(G). 
This result proves a conjecture of McKennon [10, p. 49]. It improves a 
result of Derighetti [1] and McKennon [10] (that zw* = zuc on S, where 
zuc is the topology of uniform convergence on compacta) which in turn 
improves a theorem of Raikov [13] and Yoshizawa [17] (that zw* = zuc 

on the positive definite face of S). Applying this result we show in theorem 
Bx that for any compact K a G the Banach space AK(G) = {u e A(G); 
supp u a K} has the Radon-Nikodym property and consequently a 
strong Krein-Milman theorem, for closed bounded convex subsets of 
AK(G)9 follows. Theorem B2 of this section consists of a long list of 
topologies which coincide on S. 

§3 consists of a measure theoretical selfcontained proof of a result of 
McKennon [10] which states that the w* and the ZAmultiplier topology 
on S = {ju e M(G); ||//|| = 1} coincide (//« -> ft in the latter if and only if 
|| (/ua — fi)*f\\p -• 0 for each fe LP). The reader familiar with [10, pp. 
21-25 and 32-33] will find, we think, that our proof is simpler, more 
natural and self-contained. Finally we investigate in §2, subsets of Bf(G) 
(the space of multipliers of Ap(G)) on which the topologies zM and a(Bf, Ll) 
coincide. As a consequence a necessary and sufficient condition for a 
subset of Ap(G) to be norm compact is given (in case G is amenable). In 
view of [8] the results seem to be of interest even for the nonamenable case. 

Definitions and notations. Let G be a locally compact group with unit e. 
C(G) (C00(G)) [CQ(G)] will denote the space of complex bounded continu­
ous functions (with compact support) [which vanish at infinity]. À or dx 
will denote a left Haar measure on G. \\f\\p = ($\f\pdx)v* will denote the 
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L*>(G) norm of/. A(x) will denote the modular function on G and if h is 
a complex function on G, then we define as usual ([4]) h(x) = h(x), 
fT(x) = h{x~l\ h~(x) = AÇR), and A*(x) = (1/J(x)) A~(JC). 

We follow Eymard [4] in the definitions and notations for the spaces 
A(G), B(G), C*(G), etc., and for the norms || ||,, || \\2, etc. Different norms 
will sometimes occur and we write ||M||Ä(G) = IM|5, \\U\\A(G) — \\U\\A> 

etc., to emphasize which norm we consider. 
If X, Y are normed spaces in duality then a(X, Y) will denote as usual 

the weakest topology on X which makes all linear functionals in Y con­
tinuous. If X* is the conjugate Banach space of X then a(X, X*) is denoted 
by w, the weak topology of Zand a(X*, X) is the w* (weak star) topology 
of**. 

If X, Y are normed spaces in duality and if for each xeX \\x\\ = 
sup{|<*,j>>|, ye Y, \\y\\ ^ 1}, then xa -> x in a(x,y) implies lim inf||xa|| ^ 
||JC||. If in addition sup||*a|| < oo, then \{xa — x, y}\ -> 0 uniformly on 
norm compact subsets of Y. These properties are known and easily proved. 

If z is a topology on Zand K a X, then zcìKmìì denote the z closure of 
Kin X. \K will denote the function which is one on ^Tand zero outside K. 

The rest of the definitions are given in the following sections. 

1. Various topologies on the unit sphere of B(G). The basic notations in 
this section are as in Eymard [4]. If h is a continuous linear functional on 
a C*-algebra, we denote by \h\ the positive linear functional determined 
by the conditions || \h\ \\ = \\h\\ and \h(a)\2 ^ ||A|| \h\(aa*). The extension 
of \h\ to the algebra with adjoined unit is again denoted by \h\. B(G) is the 
dual of the C*-algebra C*(G) as defined in [4]. We define the topologies 
?uo ?w*-> tbw*> ?nw* ?M o n B(ß) by the statement that a net ua converges 
to u in zuc if ua -• u uniformly on compacta; rw* if ua -> u in w*9 i.e., 
a(B(G)), C*(G)); zbw* if ua is norm bounded and ua -+ u weakly*; znw* if 
|| wa|| -> \\u\\ and ua -• u in w*; and zM if \\(ua — u)v\\ -> 0 for all v e ^4(G). 
(Af stands for multiplier). 

Note that, on norm bounded sets of B(G), zw* coincides with a(B(G), 
L\G)) since L\G) is dense in C*(G). 

The main result of this section is theorem A which shows that zw* 
coincides with zM on S = {we B(G\ \\u\\ = 1}. It proves a conjecture 
of McKennon [10, p. 49] (it improves theorem 5.5, [10, p. 47]) which in 
turn improves a theorem of Derighetti [1] (that zw* = zuc on S) which in 
turn improves a theorem of Raikov [13] and Yoshizawa [17] (that zw* = 
zuc on the positive definite face of 5). 

The next result is theorem B1 which states that, for any compact K a G, 
the Banach space AK(G) = {w e A(G); supp w c K) is a dual Banach space 
with the Radon-Nikodym property (definitions are given later) and conse­
quently a strong Krein Milman theorem for closed bounded convex sub-
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sets of AK(G) follows. If G is compact abelian, AG(G) = A(G) s 4(G) 
and this result is known (Phelps [12, p. 87]). If G is abelian and noncompact 
then A(G) does not have the Radon-Nikodym property. We use theorem 
A in the proof of theorem Bv 

The last result in this section is theorem B2 which consists of a long list 
of topologies which coincide on S. 

The reader familiar with [10] will note the simplicity of the proofs that 
follow. 

The following is a particular case of lemma (3.2) of McKennon [10, p. 
23] with a much simpler proof. 

LEMMA 1. Let Uß be a net in B(G) such that uß -> u0e B(G) in znw*. Let 
ea G Ll(G) be a positive (in the C*(G) sense) approximate identity for Ll(G) 
consisting of real valued functions such that \\ea\\i ^ 1. Then, for any 
e > 0 there exist a0 and ß0 such that \\eaQ*Uß — uß\\B < e for all ß ^ ß0 

and\\eao*u0 - u0\\B < e. 

REMARK. Our assumption implies that ea = fa*f* for fa e L1. Since 
Ik« liceo è Ik«Hi ^ 1, it follows that 0 ^ ea ^ 1 (in the C*-aigebra 
C*(G) sense) and therefore 0 ^ (1 - <?«)*( 1 - e a) ^ 1 - ea in C*(G) 
with adjoined identity. 

PROOF. We can assume that u0 # 0. If G is nondiscrete, we may adjoin 
a unit 1 to Ll(G). Iff e Ll(G), then since ea = ea, we have for any u G B(G) 

\<ea*u - w,/>|2 = !<«,(««- 0*/>l2 

^ NI KM, 0>« - i)*/*/**(*«- i»l 

è ll«llll/*/*llc-(G)KM.(l -e«)*d -e«)}\ 

è \\u\\ | | / |& ( G ) «M, 1 - *«». 

We have used the fact that if p is a positive linear functional on a C*-
algebra A then p(a*ba) g ||6|| p(a*a) which follows readily from repre­
senting/?^) = (TZ(C)^, £) where % is a representation of A on some Hilbert 
space H and £ G H. The last inequality is true by the remark above and 
since \u\ is a positive functional on C*(G). 

Now \u\(ea) -> M(l) = IM|. Leta 0be such that IkolKOol, 1 - eao» < 
e. Then 

lk«o*w/3 - MB ^ IIM«M> ! ~ e«o» -* Uwoll«M, 1 - ^«0» < e 

since by Effors [3, lemma 3.5], 1̂ 1 -* |w0|. Choose ß0
 s u c n t n a t Il M 

«hi 1 - % » < e i f j 8 è ] 8 o . 

The following is lemma 13.5.1 in [2, p. 260]. 

LEMMA 2. Let A c= L°°(G) 6e norm bounded and ft Ll(G). If(j)a is a net in 
A such that w*lim <j>a = (j), thenf*<f>a -+ f*<j) uniformly on compacta. 
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For proof just note as in [2] that/*ç5a(» = <^a/s/> -> <^, sf} uniformly 
for s in a compact K since {sf; s e K] is a compact subset of Ll(G). 

We note here that z> coincides with a(B(G), LX(G)) on bounded subsets 
of B(G). 

LEMMA 3. Let F = f*gforg,fe C0Q(G). Then u -• F*u is continuous from 
(B(Gl W ) to (B(G), rM). 

PROOF: Let ua -> u in the w* topology of 5(G) be such that supa||wa||ß = 
Y < oo and w 6 B(G). Let v e ^ f| C0o(G) and let Â  c G be compact such 
that S^Sy c= AT where Sw is the support of w. Then for any w e L°° and 
/? e Ll one has 

<(/*w)v, A> = <vv,/**(v/0> = <wl*,/**v/*> = <[/*(wl*)]v, A>. 

Also , /and (wl*)~ are in L2(G); hence/*(wlÄ) G L\G)*L\G)~ = A(G\ 
[4, p. 218] and 

II(/*W)V|U(G) = \\(f*w\K)v\\MG) S | | / | | 2 l l ( w l Ä r i | 2 | | v L ( C , . 

Let w = g*(ua — u). Then 

\\(f*g*(Ua - U))V\\ S \\f\\2\\l(g*(Ua - u))lK]~\\2\\v\\A{G) - 0 , 

since by lemma 2, g*(ua — u) -> 0 uniformly on A'. We have shown that 
||[F*(wa — M)]VIU(O -• 0 for any v e A f] C0o(G). To finish the proof it is 
enough to show that F*ua e B(G) and supa|| F*ua\\ < oo, both of which 
follow from Eymard [4, p. 198 (2.18)] by which 

\\F*Ua\\BiGi ^ ||Fy|i/«||*cc> g | |F | | i r . 

REMARK. We have only used in the proof that g e Ll(G) and t h a t / e L°° 
is 0 a.e. except on some compact set. It is not hard to show, using corollary 
1 to theorem A (which follows), that F can be chosen to be any element of 
L\G) and still lemma 3 remains true. 

THEOREM A. znw* => TM. In particular TW* and zM coincide on S = {u e 
BG);\\u\\ = 1}. 

PROOF. Let wa, u e B(G) satisfy uß -> u in w* and Hŵ l -> \\u\\ and e > 0. 
Let Ua be a relatively compact neighborhood base at e, e e Va = K"1 be 
open and such that V% a Ua and ea = fa*f* where/a = /^F«) - 1 !^ . Then 
ea satisfies the conditions of lemma 1. Hence there exists cc0 and ß0 such 
that \\eao*uß - uß\\BiG) < e/3 if ß ^ ß0 and ||eao*w - u\\B{G) < e/3. Thus, 
if v e A(G) and /3 à ßo w e have 

II (ty - U)V\\MG) ^ y + llko*(^ - «OH*«?) + y . 

Take now eao = F in lemma 3. Then, there is some /3i ^ ßo such that 
ll(*«o*(ty- "))vb(C) < eßifß^ß^ 
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The rest of the proof is immediate since zM ZD ZUC 3 zw* on bounded 
sets. In fact if ua -> u in zM and we let v e A(G) be 1 on the compact K, 
then \\(ua - M)1A:||OO ^ \\{ua - u)v\\A -• 0. 

REMARK. McKennon has proved in [10, theorem 5.5] that if w, uß e B(G) 
and u is positive definite, then uß -+ w in rwt^ implies that ŵ  -+ w in rM. 
He conjectured that the assumption tnat u is positive definite might not 
be needed [10, p. 49]. Theorem A proves this conjecture. 

COROLLARY 1. (Raikov [13], McKennon [10]. Derighetti [1]). znw* z> zuc. 
In particular zw* coincides with zuc on the unit sphere of B(G). 

One only has to note that zM => tUc s i n c e f° r anY compact K there is 
some v G A(G) such that v = l o n ^ . 

DEFINITION. Let K a G be closed. Then AK(G) = {fe A(G), supp/ cz 
K) where s u p p / = c\{x G G;f(x) ^ 0}. It is readily seen that AK(G) = 
{ / G , 4 ( G ) ; / = 0 o n c l ( G ~ / 0 } . 

COROLLARY 2. Consider AK(G) as a subset of B(G). If K is compact, then 
zw* coincides with the norm topology on the unit sphere of AK(G). 

PROOF. Let va, v G AK be such that ||va|| = 1 = ||v|| and va -> v in zw*. 
Let w G A(G) be such that w = 1 on # (See [4, p. 208]). Then (va - v)w = 
Va — v and by theorem A, ||(v« — v)w|| -> 0. 

REMARK. If G is metric nondiscrete, it is easy to find a positive definite 
u e A H Qo suchthat O ^ w ^ l and {x; u(x) = 1} = {e}. Then vw = un 

will satisfy vn(x) -> 0 a.e., thus vn -^ 0 in the w* topology of B{G). Yet 
l|vJU = ^ (e )= 1 ^ 0 . 

REMARK. Let G be compact abelian. Then A(G) « 4(-0 (isometric 
isomorphism) where r = G is the discrete dual of G. In this case A(G) = 
5(G). Corollary 2 reduces to the known fact that the norm and w* topolo­
gies on the unit sphere of 4C/7) coincide. If G is compact nonabelian, then 
A(G) is just the dual of the noncommutative C*-algebra C*(G). Then 
Corollary 2 applied to A(G) yields another family of Banach spaces with 
this same property (which is just property (**) of I. Namioka [11, p. 530]). 

DEFINITION. A Banach space A" has the Radon-Nikodym property (RNP) 
if every bounded subset C of X is dentable, i.e., for each e > 0 there is 
some x G C such that (*) x $ norm cl Co[C ~ (x + eU)] where U = 
{x G X; || A:II ^ 1}. A point x G C for which (*) holds for each e > 0 is said 
to be a denting point of C. 

It has been proved by M.A. Rieffel that vector valued measures with 
range in a Banach space with the RNP satisfy a Radon Nikodym theorem 
implenented by Bochner integrable functions [41]. (see also [12] [16]). 
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THEOREM B^ Let K a G be compact. Then AK(G) is a dual Banach space 
with the Radon Nykodym property. Consequently every bounded closed 
convex subset C ofAK(G) has strongly exposed points and moreover C is the 
norm closed convex-hull of its strongly exposed points. 

REMARK. Let G be abelian and noncompact. Then A(G) does not have 
the RNP. In fact A(G) « L\H) where H = G is not discrete. If/G L\H), 
)\f\dx = 1, let ju(A) = \A\f\dx. Then, as is well known, there is some 
Borei set A0 such that p(A0) = 1/2 = p(G ~ A0). It readily follows that 
if g = f\Ao — f/G~Ao, then J | / ± g|dx ^ 1, which shows that the closed 
unit ball of Ll(H) (hence of A(G)) does not have extreme points and 
afortiori [12, p. 80] does not have the RNP. This seems to indicate, at 
least for abelian noncompact G, that if K a G is closed with interior 
which is not relatively compact, then AK(G) does not have the RNP. It is 
possible that the proof of this fact is quite easy. 

PROOF. R. Phelps has proved in [12, p. 85] that any Banach space with 
the RNP satisfies the above consequence. Hence it is enough to prove 
that any bounded subset C c AK(G) has a denting point (see [12, p. 79] 
in the definition and the remark thereafter). If K has empty interior, then 
AK{G) = {0}. Hence we assume that int K ^ 0 . 

We claim at first that AK(G) = AK is w* closed in B(G). 
In fact, if ua -• u in w*, ua e AK and v G B(G) is such that v = 0 on K, 

then 0 = uav -> uv in a(B(G), Ll(G)). Hence uv = 0. Now for any 
jc <£ K there is some v G A(G) such that v(K) = 0 and v(x) ^ 0. Thus 
u(x) = 0 if x <£ K\ hence {y e G; u(y) ^ 0) c K. This readily shows that 
u e AK. 

We show now that AK is a dual Banach space. In fact, if M = (AK)± = 
{(j) G C*(G); <0, v> = 0 for all v G ̂ ^} then, by [15, p. 92 thm 4.9(b)], the 
Banach space (C*(G)/Af)* is isometric to ML = {ueB(G); <w, ^> = 0 
for all 0 G M}. But {{AK)LY = M1 = AK since AK is w* closed in B(G), 
which is the dual of C*(G). This show that AK is the dual of a Banach 
space and has property (**) of I. Namioka [11, p. 530] by our Corollary 2. 
Prop 4.11 of [11, p. 530] implies that each bounded norm closed convex 
subset of AK has a denting point and hence, by Phelps [12, p. 79], AK has 
the RNP. 

THEOREM B2. Let S = {ueB(G); \\u\\B = 1}. Let ußeS and ueS. 
The following properties are equivalent. 

(a) uß -> u in zAi-e-, a(B(G), C*(G)). 
(b) uß -> u in TUC. 

(c) ußT -* uT in || ||C*(G) norm for all Te C*(G). 
(c') UßT -> uT in a(VN(G), A{G))for all Te VN(G). 
(d) T(ußv) - T(uv) in || \\MG) norm for all Te C*(G), v e A(G). 
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(d') T(ußv) -> T(uv) weakly (i.e., a(A(G\ VN(G))for all Te C*(G\ 
v e A(G)). 

(e) UßV -> uv in A(G) norm for all v e A(G). 
(e') ußv -• uv weakly (i.e., a(A(G\ VN(G))for all v e A(G)). 

PROOF, (a) o (b) <=> (e) follows from theorem A. (e) => (c') is clear. 
To show (c') => (a), l e t / e C0o, v e A with v = 1 on supp/. Thus vf = / 

and (Uß, / > = O^/, v> -* <w/, v> = <w, / > where W/G VN(G). Hence 
j/0 -> w in tf-(i?, Coo) which by density implies (a). 

(e) => (c) since any Te C*(G) with compact support is expressible as 
vT where v e ^(G) with v = 1 on supp T. 

(c) => (a), (dr) => (a) and (e') => (a) are all shown in the same way as 
(e') => (a). The implications (e) => (d), (d) => (df) and (e) => (ef) are all 
evident. 

Another application of the above methods which will be proved in 
greater generality in the next section is the following theorem. 

THEOREM B3. Let G be a amenable group. A set E a A(G) is relatively 
norm compact if and only if the following hold: 

(a) E is norm bounded; 
(b) For each v e A(G) and e > 0 there is a neighborhood V of e such that 

\\/xu — w)v|| < e for each uè E and x e V {/xü)(y) = u(xy)) ; and 
(c) For each e > 0 there is some v e A(G) such that \\u — uv\\ < e 

for each u e E. 

2. Subsets of Bp(G) on which zM and a(Bp, L1) coincide. Let Ap(G) be (as 
in Herz [5, p. 96]) the Banach algebra of all functions fon G which can be 
represented as / = 2]î°v» * "»> a n absolutely and uniformly convergent 
sum, such that L J vj^llwj/, < oo, \/p + \/p' = 1. We define the 
norm \\f\\Ap = inf ZIIIvJI/>'llwJ/> o v e r all such representations. The space 
Bp(G) defined in Herz [6, p. 146] is denoted by us by Bf(G) or Bf 
(\\u\\H will denote the norm in Bf). 

We define by Bf(G), or Bf, the space of all functions u such that uv e Ap 

for each v G Ap. It then follows by the closed graph theorem that ||w||M = 
supjUwvll̂  ; | |v||^ ^ 1} is finite. We equip Bf with this multiplier 
norm. Bf(G) c C(G) becomes in this way a translation invariant Banach 
algebra. 

It has been proved by Herz in [6, p. 147] that for any G, Ap cz Bf a Bf, 
and||w||M ^ IMItfif ueBf, and \\u\\H ^ \\u\\Apiï ue Ap. If Gis amenable, 
then Bf = Bf and the norms coincide. In this case B^(G) = B(G) 
where B(G) is defined in [4]. If G is the free group on two generators, then 
Bg(G) ^ B(G) as shown by Leinert in [8]. For any G one has B(G) a 
Bg(G). The zM topology on Bf is defined so that a net ua e Bf converges 
TM to u e Bf if \\(ua — u)v\\Ap -+ 0 for each v G Ap. Define sxu(y) = u(xy) 
for all x, y e G and u e Bf. 
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Our main result in this section is the following theorem. 

THEOREM C. Let E c B^(G) be norm bounded. If for each e < 0 and 
v 6 Ap(G) there exists a neighborhood V of e such that \i/xu — u)v\\Ap < e 

for each u e E amd x e B, then zM and o(Bf, L1) convergence coincide on E. 

Bf is not known to be a dual Banach space (even though B% is one, as 
proved by Herz in [6]). Translation, i.e., the map x -> sxu is not known to 
be norm continuous in Bf. In fact I. Khalil stated as an open question in 
his thesis whether translation is norm continuous in Bp(R) for p ^ 2 
(where R is the real line). M. Cowling informs us that for amenable G 
translation is norm continuous in Bf (this uses a deep theorem on tensor 
products due to John E. Gilbert). In spite of these difficulties, translation 
is continuous in (Ap(G), norm) and also in (Bf, zM). In fact one has the 
following trivial lemma. 

LEMMA 4. For any ueBf, aeG, ||w||oo ^ \\u\\M = \\/au\\M and x ->/xu 
is continuous from G to (Bf, zM). Hence for any compact K c G, the set 
{/xu; x e K] is compact in (Bf, zM). 

PROOF. (Bf, \\ \\M) is a commutative Banach algebra of continuous 
bounded functions on G and G is included in the maximal ideal space 
of Bf, hence ||w||oo ^ IM|M. Furthermore 

\Vau\\u = sup{||(<Wv|U,; \\v\\Ap g 1}. 

Now ||4VII^ = llvll a s easily checked. Thus 

\Vau\\M = sup{||i//fl-iv||^; \K-iv\\Ap £ 1} = \\u\\M. 

As to the continuity of x -> sxu in zM, one has for v e Ap that 

11(4" - u)v\\Ap £ \\/x(uv) - uv\\Afi + \\(/xu)v - Sx(uv)\\Ap 

è K M - uv\\Ap + ||4W|IMII4V - v\\Afi 

= K(«v) - uv\\Ap + ||w||M||4v - v\\Ap -> 0 

since translation is continuous in Ap. 

Denote by da the point mass at a, by Co L the convex hull of the set L 
and by zMcl A the closure of A c BM

p in the zM topology. 

LEMMA 5. Let K a G be compact and ju a probability measure on the 
Borei subsets of K. Let fxa be a net in Co{<?*; x e K} such that jua -» ju in 
a(M(G\ C(G)). If we Bf, then ju*u e Bf and jua*u -* ju*u in zM. 
Consequently \\[i*u\\M ^ ||t/||M. 

PROOF. For each x e G w e have 

jua*u(x) = ( u{y-lx)djjLa(y) -> I u(y-lx)dfjt(y) = ju*u(x) 
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since for fixed x the function y -> u{y~lx) is continuous and bounded. If 
veAp and v = J^ißjdap then (v*w)v(x) = HßMa^x^x) e Ap and 

\\{v*u)v\\Ap^ (±\ßj\)\\u\\M\\v\\Ap. 

Hence ||(//a*w)v||^ ^ INI^IMIii, and jua*u e Co L where L = {/xu\ 
x G ^T-1}. We show now that (Bf, zM) is a complete locally convex space. 
In fact if Ua is a rM Cauchy net, then for each v G Ap, uav -> wve Ap in ^ 
norm and hence pointwise. Now for each x there is some v G Ap with 
v(x) 7e 0. Hence there is some function u on G such that w«v -> wv = 
wv G ̂  for each v G ̂ . Thus w ^ c ^ ; hence u G i?j^. We apply now 
[7, p. 133 (13.4)] and get that rMcl CoL is zM compact. 

In conclusion, there exists a subnet and some w e zMc\ COL such that 
for each veAp, \\(/iaß*u — w)v\\Afi -• 0. Since jua*u -> fi*u pointwise, 
it follows that ju*u = w e Bf. But every subnet fiaß has a further subnet 
vr such that vr*u -• //*w in rM. This immediately implies that jua*u -> JLL*U 

in rM. Clearly \\/ia*/i\\M è \\u\\M and since \\w\\M = sup{||wv||;||v||^ è 1} 
we get \\/i*u\\M S \\u\\M. 

The proof of the next lemma is a slight modification of the proof of 
lemma 3. 

LEMMA 6. Let ua, ue Bf{G) be such that supa||wa||M = y < oo and 
Ua -> u in a{Bf, Lx). if F — f*g where g e L1, fe L°° and f has compact 
support. Then F*(ua — u) -> 0 in zM. 

PROOF. F*(ua — u) belongs to Bf by lemma 5. Let v G C00 fi Ap and 
K a G be compact such that sj1sv c K where Sw is the support of w. 
Then as in the proof of lemma 3 one has for each w e L°°, h G L1 that 
(/*w)v = [f*(w\K)]v. Now feU' and (w\K) e LP thus (f*(w\K))v e Ap 

and 

\\[Mw\K)]v\\Ap^ \\f\\p4(^Kr\\p\M 

(see [5, p. 97]). 
Choose now w = g*(wa — u). Then 

\\[f*g*(Ua - u)]v\\Aß ^ C\\((g*(Ua - u))lKr\\p - 0 

since by lemma 2, g*(ua — u) -> 0 uniformly on K. To finish the proof it 
is enough to show that supa||F*wa||M < oo. However by lemma 5, 

\\F*ua\\M û II^IIIII^IIM è ridili-

DEFINITION. E c Bf is said to be zM left equicontinuous if for each 
e > 0 and v G Ap, there is some neighborhood V of e such that \\(/xu - u)v 
\\A < e for all x e Fand u e E. 
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THEOREM C. Let E c= Bf be norm bounded and zM left equicontinuous. 
Then a(Bf, Ll) and zM coincide E. 

PROOF. Let ua, uè E be such that \uahdx -• \uhdx for each h e L1 and 
v G A p. Let sup{|| w\\M; w G E} = j < oo. Let V~x = V be a compact neigh­
borhood of e such that \\(w — fxw)v\\A < e/3 if x G V and w e E. Let 
U — U~l be a compact neighborhood of e such that U2 a V. Let g = / = 
^ ( t / ) - 1 ^ and F=f*g. Then H l̂k = 1 and F £ 0. Let jua e Co{öx; 
xe V} be such that jua -> FJx in 6r(M(G), C(<7)). Then by lemma 5 
jua*w -> F*w G 2?^, rM convergence, for each w e Bf. Now \\(w — Sxw)v 
\\Ap < e/3 implies \\(w — fia*w)v\\Ap < e/3 for each a and each w e E. 
By lemma 5 one has \\(w — F*w)v\\A ^ e/3 for each w e E. Thus 

\\(Ua-u)v\\Ap è \\(Ua-F*Ua)v\\Ap + \\(u - F*u)v\\Ap + \\(F*(Ua - u))v\\Ap 

è^-e + ||(F*(i/« - u))v\\Ap < - | e + - I £ 

if a ^ (X0 where a0 is chosen using lemma 6. The converse consists in 
noting that TM implies uniform convergence on compacta hence a(Bf, L1) 
convergence. 

COROLLARY. Let E e Ap(G). If 
(a) F is zM left equicontinuous, Ap norm bounded and 
(b) for each e > 0 //zere is some v e Ap such that \\uv — u\\A < e for 

each u e E, 
then E is relatively norm compact (i.e., its norm closure is norm compact.) 

If G is amenable and E c Ap(G) is relatively norm compact, then (a) and 
(6) hold. 

PROOF. Assume (a) and (b). Then \\u\\H ^ \\u\\Ap for all u G Ap a Bf 
(as defined in [6]). Thus E is a norm bounded subset of BH

p which is the 
dual Banach space of the normed space L\G), normed with the (com­
plicated) norm QFp, see Herz [6, p. 153]. We show now that the w* closure 
of E in Bf (which is certainly w* compact) is zM left equicontinuous. 
Let e > 0, veAp and w G Ap f| C00 be such that ||v - w\\A < E P ^ ) - 1 

where j = sup{||w||^; ueE] < oo. Then 

11(4" - U)V\\A, ^ IK4" - K)(v-H0b, + Wj*-u)w\\Ap 

< e(3T)-nr + \\(/xu - u)w\\Ap. 

Hence it is enough to prove that for each e > 0 and w G Ap f] C00 there 
is a neighborhood V of e such that \\(/xu — u)w\\Ap < e for each ue 
w*cl E and x e V. Let e < 0 and w e Ap f] C00 be fixed. Then w = vxv2 

where vl9 v2 e Ap (in fact take vx = w and v2 G Ap f] C0o which is 1 
on the support of w). There is a neighborhood Vof e such that 

file:///uhdx
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\\(/xu - i/)vx||^< e\\v2\\Ä
l
p 

for each x e V, ue E. Let now u G w*cl E, and wa a net in E such that 
Ua -+ urn w*. Then (4wa — ua)vl -> (4w — w)v! in w* (in 2?^). Thus 

lim inf \\(/xiia - Ua)vx\\H ̂  ||(4« - wjvill^. 

Hence 

11(4" - u)w\\Ap ^ ||(4i/ - W)v1||//||v2||^ £ (£||v2||4)||v2||^ = e 

for each x e K and u G w*cl £ cz Bj*. We have shown that w*cl E a Bj? 
is || ||# norm bounded (and afortiori || \\M norm bounded) and rM left 
equicontinuous. Let now ua be a net in £. A subnet wß = wa/3 will converge 
w* (and by theorem C even in rM), to some u G 2?^. Let e > 0 be given 
and choose some v G Ap such that || H^ — vî vH^ < eß for each ß (by (ò)). 
Then 

\\wß - wr\\Ap ^ \\(wß - wr)v||^ + IK^ - wr)(\ - v)\\Ap 

for any ß, y. However \\(wß — ü)v\\A -• 0. Hence 

IIO/3 - wr)v||^ g H(W/, - u)v\\Ap + ||(wr - w)v||^ < e/3 

rf ß, T = ßo- Thus wß is a norm Cauchy net in the Banach algebra Ap(G). 
Hence for some ux G Ap, \\wß — ui\\A -> 0. Thus u = wx G Ap and w*cl E 
is in fact a subset of Ap, which is norm compact. The care involved in the 
above proof is warranted by [8]. 

We prove now the second part. Let G be amenable and va G Ap be a 
bounded approximate identity for Ap(G). If E is a norm compact subset 
of Ap(G), then \\vau — u\\ -> 0 uniformly in w G £ since sup Hv«^ < oo. 
Also ||4« — w||^ -• 0 as x -> e uniformly in u e E. Thus stronger 
conditions than (a) and (b) hold. (Only sup ||va||M < oo has been used. 
Haagerup has shown that if G is the free group on 2 generators, then A(G) 
has an approximate identity vn such that sup || vn\\M < oo). 

REMARK. This Corollary applied to A(G) yields theorem B3 of the 
previous section. 

3. Various topologies on the unit sphere of M(G). The main result of this 
section is a measure theoretical selfcontained proof of a result of McKen-
non [10, p. 32 theorem (4.2)]. McKennon relies heavily in his proof on 
theorem (3.3) [10, p. 25] which relies heavily on an intricate result on 
approximate identities in C* algebras [10, lemma (3.2)] which in turn uses 
results of E. Effros on C* algebras. The reader who will peruse through 
pp. 21-25 and 32-33 of [10] will find, we think, that our proof is much 
simpler and more natural. 
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LEMMA 3.9. Let //a, ju e M(G) with jua -> ja weakly* and \\jua\\ -» ||//||. 
Then for every e > 0 there is a compact set C and an index a0

 sucn tnat 

Jc/c^d^l + \tA) < efora > a0. 
PROOF. Let e > 0 and choose h e C00(G) with HAH«, g 1 and |<A, //> — 

||//1| | < £. For C = supp A this implies jG/cd\ju\ < e. Choose a0 such that 
|<A, //«> - <A, //>| < e and |||//a|| - ||//||| < e for a > a0-

 W e h a v e 

Ml SKKfjL)\ + e 

è \<h, fi- //«>| + |<A, //«>| + £ ^ 2£ + J / M 

for a > a0. Hence 

f d\fia\ = ||//«|| - f d\fXa\ £ ||//|| + S - f rf|//«| ^ 3£ 
J G\C J C J C 

for a > a0. We thus have §G/Cd(\/ua\ 4- |//|) < 4e for a > a0. 

REMARK. Let //«, // e M(G) be such that //« -» // in w* and |//a|(G) -» 
I//1(G). Then |//«| -+ |//| in w*. Assume in fact that a subnet juaß is such 
that |//a/3| -> v ^ |//| in w* (the unit ball of M(<7) is w* compact). If 
O^fe C0(G) and |g| ^ / , then \juaß\(f) è l^fe)l - IM*) I- T h u s K / ) è 
sup{|/zfe)|;|g|^/} = | / / | (A i.e.,(v - M ) e M ( 0 + . But (v - |//|)(G) = 0. 
Thus v = |//| which cannot be. 

THEOREM D. (a) Let jua, ju e M(G) be such that /ua -> // />z a(M(G), 
C0(G)) and ||//a|| -+ II//II. rA<?« ||(//« - / / )* / | | , -• 0 for each fe LP(G) where 
1 £ /> < co. ( / / / e <7Ci?r(G), fAe/i ||(//« - //)*/|U - 0). 

(b) If fia is a norm bounded net in M{G), ju e M(G) andif\\(jua — ii)*f\\p -• 
Ofor each f e C0Q(G) for fixed 1 ^ p < oo, /Ae« //<*->// in u>*. 

REMARK, / e UCBr(G) if and only if / e C(G) and x -> 4 / from G to 
(C(G), || || oo) is continuous. 

PROOF. It is enough to prove that for any fe C00(G) with 0 :g / ^ 1, 
\\(jua — ju)*f\\p -> 0. Since then, it will be true for any fe C00(G). Thus, by 
the density of C00(G) in LP(G) and since \\fta*f\\p è ||//*|| \\f\\p where 
||//«|| = |//a| (G) -> |//|(G) = ||//|| is a bounded net (past some a), it will 
readily follow for a l l / e L*(G). Hence fix 0 ^ / ^ 1 in C00(G). For any 
compact set K c G we have 

(a) IK//« - //)*/||J ^ f |(//a - //>/|> + f (|//„|*/+ |//|*/V 

Now let g« = \fjta\*f,g = |//|*/. One has g«, g e Z,i(G) and ||ga|| x = ||//«|| 
ll/lli -* Ml ll/lli = libili. Also g« ->g weakly* since (by the remark 
preceding theorem D) |//a| -* |//| weakly*, hence by Lemma 3.9 for every 
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e > 0 there is a compact set K a G and an index a0 such that JG/jK:(|^a|*/ 
+ \/A*f) < s for a > a0. Since the integrand is dominated in sup-norm 
by (||//«|| + II//IDII/II00 ^ M < 00 for a > ai. we obtain 

f ( H * / + |/z|*/y £ M H f (|^«|«/+ I/.I*/) < M^ i - e 

for a > ao, o^. Since {x\f\ x e K} is compact in C0(G), we have fia*f-+ 
ju*f uniformly on K, hence $K\(fia — fi)*f\p < e for a > a2. By (a) we 
obtain for a > a0, ax, a2 the inequality 

Hjua - ju)*f\\P < e(\ + MP-*) 

which proves that \\(jua - fi)*f\\p -» 0, for a l l / e Z> (for fixed \ S P < 00). 
I f / e UCBr(G), then / = g*/z with geL1, heL°° as is well known. Thus 
HO/« - //)*/lU g Ufia - fjL)*gh IIAIloo - 0 since g e ^ . 

For the proof of (b) let/, g G C00(G). Then 

(fia - fi, g*/~> = ((fia - / / )* / , g> -> 0 

since/ g e L2. Thus <//«, hy -> <//, A> for all A in a norm dense subspace 
of A(G) [4, p. 208]. Since A(G) is sup norm dense in C0(G) (Eymard [4, p. 
210]). [ia -+ fx in M>*. 

REMARK. Let G be nondiscrete and xa a net in G such that xa -> x in 
(7 with Xa ^ x for each a. Then the point masses dXa -» <5X in tf(M(G), 
Co(G)) (e.i., in w*) and ||5XJ = ||<5J = 1. Clearly Wö^- öx\\ = 2; hence 
the assumptions of theorem D(d) do not imply norm convergence of jua 

to ju. 
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