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BOUNDARY BEHAVIOR OF SPACES
OF ANALYTIC FUNCTIONS

GEORGE BRAUER*

0. Introduction. We de fine for p = 1, b > 0, the space M, , of function

f(z) = 32, f(n)z", analytic in the unit disc D, such that

I £, = lim slup(l _ r)b[jzﬂlf(Z)V’dﬂ/Zn]l/p < o,
z = rexp i0.

Two functions f and g are identified in M, , whenever || f — gl ,, = 0.
We also define for a > 0, the space M, of functions f(z), analytic in
D such that
[/1leo,e = lim sup (1 — r)e max |f(z)] < oo;
r—1 lzl=r
two functions f and g in M, , are identified whenever || f — gl , = 0,
that is f(r exp i) — g(r exp i) = o(l — r)¢, uniformly in 6.

For b = 0 a space M, , reduces to a Hardy space H?; for a description
of the Hardy space see [1, 6]. If fis in a Hardy space H?, then | f1|, , = 0
for all b > 0.

In addition to the obvious relations M, , & M, , for p = q we also have

(l) Mp,a—l/p = g,a-1/q

for 1 £ p =g < o, a > 1/p; moreover there exist constants C, C’
such that

[/ lleo,e = CllS M p,a=17p

2) ,
(2 1 laamrra < CUF po-rp

(cf. [1, p. 84)).

The relations (2) shows that if a function fis in a space M, ,_1/
p = 1,a > 1/p, then (1 — |z|)?f(z) must remain bounded as z approaches
a boundary point of D. In this note we will obtain restrictions on the
values which (1 — |z])?f(z) approaches as z approaches the boundary of
D for functions f in a space M, ,_;,,, We will also study topological
properties of the M, , spaces.
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384 G. BRAUER

1. In this section we give estimates on the coefficients of a function in
M, , and also on the area of the region onto which a function inan M, ,
space maps the disc |z] < r. The results are essentially contained in [5];
we will give numerical estimates. We conjecture that for concave function-
als on an M, , space the largest possible value is taken for functions whose
Taylor series contain huge gaps while the smallest possible value is taken

at functions of the form C(1 — z)—¢ for some constant C. We have been
able to confirm our conjecture only in a few cases.

We let p’ denote the quantity p/(p — 1) for 1 < p < o0;if p = 1, we
let p’ = oo, whileif p = oo, weletp’ = 1.

THEOREM 1. If fe M, ,_y,), 1 < p £ ©, a > 1/p, then
lim sup | £ ()|/nle~1? < [ef(a — 1) V2| fllp.a-1/p-
PRrROOF. We deal only with the case 1 < p < oo; the cases p = 1 and

p = oo are somewhat simpler. We have

fen = | _syemde] 2z,

where C is the circle [{| = n/(n + a — 1/p). If we use Holder’s inequality
to estimate | f(n)| we obtain the result.

In the opposite direction we have the following theorem.
THEOREM 2A. Iffe M, ,, then
lim sup | f()/n! 2 || flleo,o/ ['(@);
iffe M, , 1, for somep,2 < p < ©,a = 1, then
lim sup | £ ()|/ne=1 2 || 1|, a-1/lp'/[['(ap — DI(p — D'

PROOF. We treat only the case 2 < p < 0. Let A = lim sup | f(n)|/n*"!

where f(z) = X f(n)z* is a function in M ».a-1/p- By the Hausdorff Young
theorem (cf, [2: p. 145]).

1/ a-17p = tim sup (1 — rye-vs | "~ \fo)edojz)

< lim sup(l — r)rw@ | f(n)p’rv')"’ '
=0
= Al'lap — D)/(p — DIY?[p’.
Hence
AZ PN fllpa-1/p/Tap — Di(p — DIVY.

If 1 £ p < 2, we use the Hardy Littlewood theorem [1, p. 95] in place
of the Hausdorff Young Theorem to obtain the following theorem.
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TueEOREM 2B. If feM, , ,,, for some p, 1 < p <2, and a > 1/p,
then

lim sup(/(@))/n*t Z1£1ly.0-1,5(p/T(@p — D)V2.

Theorem 1 is the best possible in that equality is achieved for the func-
tion f(2) = Y nZV2z», where the numbers n, are chosen to increase
sufficiently rapidly (for examples, the numbers must be chosen in such a
way that ng.1/n, tends to infinity).

The first part of Theorem 2A is also the best possible; here equality is
achieved for the function f(z) = (1 — 2)~¢; equality is also achieved in

“the second part of this theorem for these functions in the case a = 1,

= 2.

7 We let A(r) denote the area of the region onto which the function f(z)
maps the disc [z]| = r.

LeMMA 1. If f€ My q, then | f'llo,011 S (@ + )21 fllo o/a%; if f€ My,
1 <p<©,b>0,then

“f ,"00,b+l+l/p
< (pb + p + DV — 25Uy, rnyapll £ 11, s/(PBY(p + 1IHV2.
Duren [1, pp. 65-66] showed that [(1 — 2)71l2,, (p41) 2, is finite.
Proofr. By the Cauchy integral formula

@l s [ AU - 2idtip2s.

For the first part of the theorem we take C as the circle |{ — z|
(1 — |z])/(a + 1); for the second part we take C as the circle [C|
1zl + (p + IX1 = |z])/(pb + p + 1) and apply Hélder’s inequality.

We also have, following [S, p. 430], the next lemma.
LemMA 2. Iff€ My, then || f'll2,511 = (0 + 1)1 f1|;,,/2b%.
THEOREM 3. If fe M, ,, a > O, then

lim sup (1 — rPH1A() S 7la + DP9 £, olac;

iffeM,;,1 <p < oo,b>0,then
lim sup (1 — r)2+14(r) < znl(p + 1 + pby+1+1/s)(p + 1)1+VX pb)’]
x (1 = Z)"lnzp'. (p+l)/2)"f"[z>,b'

ProOF. We consider only the second part of the theorem; the first part
can be dealt with in a similar fashion. For 1 £ p < o
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lim sup(l — r)2+14(r)

= 7« lim sup(l — r)”“i n| f(n)|2r2
n=1
= lim sup(1 — ry* f z L @Id0)2, (z = r exp if)

’qe . 2r 1/p
< m)V? Tim sup(l — r)**1 max|£'(2)| - lim sup(l — r)”(jo | f(z)ll’do) 1,

where the maximum is taken over the circle |z| = r. Hence
lim sup(l — r)2+14(r)
=zl fllp, sl f oo, 41
< al(p + 1+ pbytHV8)(p + DYV2(pb)Y1-II(1 — 2)7Ey, praszll S 15,
We can also conclude from Lemma 2 the following theorem.
THEOREM 3B. If fe M, ;, b > 0, then
lim sup(l — r)**1A4(r) < z(b + DPMLf [13,5/26°.

A

In the opposite direction we have the following theorem.
THEOREM 4. If fe My , 1,2, a > 1/2. tjen
lim sup(l — r)2A(r) = 2a — Dz| flo-1/2/2-
Proor. We have

A() = anlnlf(n)lwn

so that if lim sup (1 — r)224(r) < A, then for each ¢ > 0, there is a number
ro in (0, 1) such that A(r) (A + ¢)/(1 — r)%e for r = ry. We consider r
fixed; we take r in (rg, 1) and let r tend to one. We have

£ o1z = lim sup (1 = P3| Fpere
= 2lim sup (1 — P13 nl f(m)[Hr2+ — 3r1)/(2n + 1)
n=1

= 2 lim sup(l — r)%-1 _[ " AV |z
70
< 22 + ¢)/(2a — )z.
Hence 2 = (2a — 1)z|| f 113 ,—1/2/2. Since ¢ is arbitrary the result follows.

In the case @ = 1, the theorem is the best possible; for f(z) = (1 — z)71,
1fll2,12 = 27V2and (1 — r)2A(r) tends to z/4.
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COROLLARY. If fe My , 1,5, a > 1/2, then
lim sup (1 — r)%A4(r) 2 (2a — Dzl f%,4/2%.
Proor. We first note that | f|.,, < . We have

[ fllo,e < lim sup (1 — r)a2)|f(n)|,.n

< lim sup a- r)a(iolf'(n)lzrn)l/Z(Zrn)l/Z

by the Schwarz inequality, and the above quantity is bounded by
2e=12| fl5 ,_1,2. The result follows from the preceding theorem.

Again equality is achieved in the case @ = 1 for the function (1 — z)~L

2. In this section we investigate the values which (1 — |z|)?f(z) ap-
proaches as z approaches a boundary point non-tangentially, for functions
fin M, , or in some space M, ,_1,,- We let the symbol C(a, ) denote
thecurve 0 = a + 9p(1 —r) + o1 —r), r = 1 —, where « is in [0, 27)
and 7 is a real number, that is, C(a, %) is a stolz ray terminating at
exp ia and making an angle arc sin y/(1 + 7?12 with the radius to the
point exp ia. We let g(») denote the limit of [(1 — |z])/(1 — z)]* as z ap-
proaches the point 1 along C(0, %), this quantity is also equal to the limit
of [(1 — |z|])/(exp i« — z)]* as z approaches the point exp ia along the
Stolz ray C(a, 7).

THEOREM 5. If fe M, ,, a > 0, and (1 — |z|)*f(2) tends to w as z tends
to exp ia along C(a, 7), then (1 — |2|)*f(2) tends to w q(')/q(y) as z tends
to exp ia along C(a, 7).

Proor. The function F(z) = (exp ia — a)?f(z) is analytic in the domain
bounded by the curves C(a, +(max[|yl, |'| + 1])) and the smaller arc
of the circle |z| = 1/2. As z tends to the point exp ia along C(a, 3), F(z)
tends to w/q(y). By a theorem of Lindelof [7, p. 76] F(z) tends to w/q(y)
as z tends to the point exp i« along C(«, 7)), thatis, (1 — |z[)?f(2) tends to
w q(7)/q().

THEOREM 6. Let {z,} and {z,} be two sequences from D, each approaching
a point in 0D in such a way that

2, = Z,l/(1 = |z,]) and |z, — z,|/(1 — |z,)
remain bounded by a constant M. If for some function fin M, ,, a > 0,
lim (1 — |z,)?f(z,) = w, and lim (1 — |z,])*f(z,) = w’,
then
w —w'| = Ml(a + 1)**Y/a® +a]|l f | co,o-
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PrOOF. We treat only the case @ = 1; the case a < 1 is dealt with in a
similar manner. Without loss in generality, we take |z,| = |z,|. We have

(1 = z,)9(z,) — (I = |z,D)?f(z,)]
= (= zDUfz) = fz)l + (A =z, = (A = [z,D°] [zl
= (I = |zDrlz, — z| max|f'@)| + alz, — z,| max(l — [z))*7Yf(z,)],

where the above maxima are taken over the line segment L joining z, to
z,. Thus

(g — [z.)(z,) — (1 = |z,D)/(z,)l
S M(1 = |z,)l*" max|f'(2)| + Ma(l — |z,)°| fz,)l.
By Lemma 1 for each positive ¢
(I = lzDUf @ = (4 = 2D @) = (@ + DY a)(| flloo,a + €)

for each point z on L provided z, and z,, are sufficiently close to one. (We
note that the boundedness of [z, — z,|/(1 — |z,]) and [z, — z,|/(1 — |z,])
insures that if |z,| and |z,| are close to one, then each point z on L is close
to one.) We now have for |z,| and |z,| sufficiently close to one

I(1 = |z.Df(zn) — (1 = |z,Df(z)
< Mla + DY fllow,e + €)/a] + aM(|| flloo,e + €)-

If we let n tend to infinity and thus let |z,| and |z,]| tend to one and ¢ tend
to zero, we obtain the result.

If a function f'is ina space M ,_1,5, p Z 1, @ > 1/p, then (1 — |z|)*f(2)
is bounded; moreover the next theorem shows that there are restrictions
on the way in which (1 — |z|?|f(z)| may tend to a positive limit as z
approaches a boundary point of the disc.

THEOREM 7A. Let {z’},i = 1,2, ..., bea collection of sequences of points
from D such that

3) 2P = 12| = -+ =1,

4) lim r, =1, and

n—oo
(5) there exists a positive constant L such that for i # j,
20 = 291 2 81 = 129D,

then in order that there exist a function f in some space M, ,_1,p, p Z 1,
a > 1/p, such that

llm (l - rn)af(zr(zi)) =W,
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i=1,2, ..., uniformly in i, it is necessary that the numbers w; satisfy the
condition

2wilPtt < K| f1,0-1sp
z

for some constant K depending only on p and a.

Proor. For sufficiently large n, | f(z{)| = |w;]/2(1 — r,)e for all i. (We
may assume that all w; are different from zero.) There is a constant K;
depending only on p and a such that

1@ = Ky 1 fllp, a-1/p/(1 — |2)**?
(cf. [5, pp. 430-431]). Let I, ; denote the arc with |z| = r, and
10 — arg z?| < wil — r,) min(C/3, /4Kyl 1 5, a-1/p)-
On I, ;, if r, is sufficiently close to one,

12l

v

Wz/2(l - r")a
= [wil — r,) min(C/3, 1/4K1| f1l 5, a-1/5)] max|f'(z)|
w41 — r,).

[\

Since the arcs I, ; are disjoint, if r, is sufficiently close to one,

10 2 53 1f@iedo

1zl=ry
Z Kp D5 Iwil#tY (1 — rp)er
where K, is a universal constant. The result follows.
We are actually able to prove slightly more.

Let #,(0) = max f(|zlexp if).
0=lzl=r
Then there is a constant K3 such that

j \Z0)1°d0 < Kq j |f(2)1#do,

lzl=r lzl=r

1 < p < oo (cf. [4, p. 103-108]). Hence, we have the following theorem.

THEOREM 7B. Let Ay and Ay be two positive constants and for each i, let
{2\ denote a sequence of points such that

(39 A = (1= [zPD/(1 = [z7]) < 4,
@) lim [z =1,i=12, ..., and

n—+0
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(5') there exists a positive constant { such that
29 — 291 2 T~ 129

for all n, i, j, such that i # j, then in order that there exist a function f e
M, 1)y for somep 2 1, a > 1/p, such that

lim(1 — [zP)ef(z?) = w;,
i=1,2, ..., itis necessary that

2wttt < KN f115 01

for some constant K depending only on p, and a.

3. In this section we determine the duals of the M, , spaces; we will also
give some necessary conditions for weak convergence in the M, , spaces.

If X is a locally compact space, then X can be densely imbedded in a
compact space X in such a way that every bounded continuous complex
function has a continuous extension f# to 8X. The space 83X is called the
Stone-Cech compactification of X (for a description of the Stone-Cech
compactification, cf. [3, pp. 82-93]). We will use the symbol X to denote
the Stone-Cech compactification of X; if f'is a bounded continuous func-
tion on X, then f# will always denote its continuous extension to 8X; if v
is a point in BX the symbol ff will express the fact that the function f#
has been evaluated at .

If fis a function in M., a >0, then the function F(r, 0) =
(1 — r)of(r exp i6) is bounded and continuous in D and consequently has
a continuous extension F# to SD. We now respresent M., as a space
of continuous functions on a compact space 4 formed from 3D — D by
identifying two points y; and v, in 3D — D whenever F§ = F5 for all
feM,,, thatis

[ = NS, = [0 = NS

we give 4 the weakest topology which makes all functions
[(1 — r)of(r exp i6))f continuous. The space 4 admits the metric d given by

d()Jl, ))2) = LubIF{,’l - ng'
= lub|[(1 — r)*f(rexpiflf — (1 — r)*f(rexpif)li)

where the lub is taken over all functions fin M., , such that | f|l., = 1.

It can be shown that 4 does not contain an analytic disc. To see this note
that the function (1 — z)~¢is in M., , and that the corresponding function
{[(1 — r)/(1 = 2)]=}¢ vanishes when v is outside the closure in 4 of each
Stolz angle with vertex at z = 1, while this function takes values on some
curve in the complex plane when v is in some Stolz angle with vertex at
z = 1.
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Asin [6, pp. 166-168] we may form the fiber W, above each point exp ix
in 4; We consists of all limit pointsin 4 of all nets {z,} which tend to exp ia.
No point in 4 which is in the closure of the Stolz angle with vertex at the
point 1 can lie in the closure of any union of W, o # 0.

We denote the half-open interval [0, 1) by I.

THEOREM 8. The set of linear functionals on M, , given by

© L) = [ = P S exp i0)g(r, 0)d0L,

feM, ,, where §(r, 0) ranges over the space A, of functions which are
continuous in r on I, and such that [§¥|¢(r, 0)|?’ remains bounded for 0 < r <
1, and p ranges over BI — I are woak * dense in the dual of M, ;. Conversely
each functional of the form (6) represents a bounded linear functional on
M, , such that

2 1/p'
19 1; ’
L1 < @y tim sup( [ 16, 0Fdo)) "

PRrROOF. It is easily seen from Holder’s inequality that each functional
of the form (6) is a bounded functional whose norm satisfies the stated
inequality. To see that functionals of the form (6) are weak * dense in the
dual of M, , we let f be an element of M, , such that | f, , > 0. We will
construct a functional L of the form (6) such that L(f) # 0. Let

[f@)P2f(z) if f(z) # 0
g(r, 0) = {0 if f(z) = 0.

We then have, for some pe I — I,

L(f) = lub[(1 — r)"j:r [f(2)|? d6); = 2| f 15,5 > O.

The result follows.
With a slight modification of the above argument we have

THEOREM 8B. The set of functionals on M, , given by

©) L) = 1= @60, o),

f€ My, ,, where ¢ ranges over the space .. of functions which remain bounded
in D and p ranges over B3I — I are weak % dense in the dual of M, ,.
Conversely each functional L of the form (6') represents a bounded functional
on My , such that

IL]l = 27z lim sup lg(r, 0)I.

If we let
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_(f(2) when f#0
9(r, 0) = {0 when f =0,

then ¢ need not be continuous in r; however, ¢ can be approximated by a
continuous function.

THEOREM 9. The set of functionals on M., ,, given by
27
™ L) = (1 = nef ),

fe M., ,, where u,(0) ranges over the measures defined on each circle |z| = r,
0 < r < 1, which depend continuously on r and which are such that
{871du(0)| is uniformly bounded, and p ranges over I — I are weak * dense
in the dual of M., ,. Conversely each functional of the form (7) is in the dual
of M, , and

2m
120 < tim sup [ 14z O).

ProoFr. To see that the functionals of the form (7) are weak * dense in the
dual of M, ,we let f be an element of M, , such that | f|., , > 0. Then
there is a sequence of points {z,} approaching the boundary of D such that

lim sup(l — |z,[)|f(z,)| > 0.

For p,(0) we take a measure which is the Dirac delta measure concentrated
at z, on each circle |z| = r, and which depends continuously on r. Then

2
lim sup(l — r)ﬂj0 f@du, () > 0.
The result follows.

The M, , spaces are not complete for @ > 0. However, each space M, ,
can be imbedded in a complete space .#, , consisting of equivalence classes
of Cauchy sequences {f,} of elements from M, ,; two Cauchy sequences
in M, ,{f,} and {g,} are equivalent if | f, — g, , tends to zero as n tends
to infinity. As usual the norm of an element of .#, , can be defined as
lim,_o|| £,ll 5, where { £,} is a Cauchy sequence of elements from M .« Which
represents f; clearly this limit does not depend on the choice of Cauchy
sequence. It should be noted that the elements of .#,, ,_y,, are limits (in
the norm topology) of Cauchy sequences in M, , and hence each ele-
ment {f,} of .#,, ,—1,, induces the continuous function

lim[(1 — r)sf,(r exp i6)]¢
on 4.

THEOREM 10. Let {z,} be an infinite sequence of points on the unit circle.
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Let {f,} be a sequence of functions in aspace M, ,_1,5,1 < p < 0, a >
1/p, such that for each m lim sup (1 — |z|)?| f,,(2)| is greater than some posi-
tive constant { as z tends to z,, while for n # m (1 — |z|)¢| f,(2)| tends to
zero as z tends to z,,. The set { f,,} does not have compact closure in 4, ,_1,,.

PRrROOF. The result is rather trivial for p = oo. If p < o0, there is a se-
quence of points {z\/) from D which tends to z, as j tends to infinite such
that

(1 = 1z2Df(z) 2 {2

provided j is sufficiently large. As in the proof of Theorem 7A we construct
an arc I containing the point z{” such that

(1 = iz2h=2 [ 15@)edo

exceeds a positive constant; on the other hand if m # n,

(- IZI)”P—IL \f,.(2)[2d0

can be made arbitrarily small if j is sufficiently large. Thus the distance
between each two distinct elements of { f,,} exceeds some positive constant.
Thus the set {f,,} cannot have compact closure.

We give some necessary conditions for weak convergence in M, ,.

THEOREM 1. If {f,} is a sequence of functions in M, ,_y,,, 1| < p < o0,
a > 1/p, which is weakly convergent to zero, then

lim lim sup (1 — r)¢|f,(2)] = 0.

n—00 r—1

Proor. This result follows immediately from the fact that for each point
pin BI — Ithe functional L on M, ,_,,, given by

L(f) = [(1 = nf(r exp iO)]},
f€M, , 1/ is continuous.

THEOREM 12. For each r, 0 < r < 1, let E(r) denote a measurable subset
the circle |z| = r such that the measure of E(r), |E(r)|, depends continuously
onr. If { £,(2)} is a sequence from M, ,_,, for some p > 1,a > 1/p, which
converges weakly to zero, then

lim lim sup (1 — r)?
1

m—co r—

J.Emfm(z)dﬁ‘ =0

The result follows from the fact that for each point p € 3/ — I the func-
tional on M, ,_y,, given by
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L) =1 = nef e exp it)as

feM, , i/ is bounded.

THEOREM 13. If { £,,} is a sequence of functionsin M, ,_,,, 1 <0
a > 1, which is weakly convergent to zero, then

lIA

0,

lim lim sup nl=2 | f,(n)| = O.
Let N denote the discrete space of natural numbers. The result follows
immediately from the fact that for each A€ SN — N the functional on
M, 1,5 given by L(f) = [n=2f(n)}§ is continuous.
I am indebted to Professors Lee 4. Rubel, Thomas Armstrong and
David Storvick for many helpful suggestions.
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