BOUNDARY BEHAVIOR OF SPACES OF ANALYTIC FUNCTIONS

GEORGE BRAUER*

0. **Introduction.** We de fine for $p \ge 1$, b > 0, the space $M_{p,b}$ of function $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$, analytic in the unit disc D, such that

$$||f||_{p,b} = \limsup_{r \to 1} (1 - r)^b \left[\int_0^{2\pi} |f(z)|^p d\theta / 2\pi \right]^{1/p} < \infty,$$

$$z = r \exp i\theta.$$

Two functions f and g are identified in $M_{p,b}$ whenever $||f - g||_{p,b} = 0$. We also define for a > 0, the space $M_{\infty,a}$ of functions f(z), analytic in D such that

$$||f||_{\infty,a} = \limsup_{r\to 1} (1-r)^a \max_{|z|=r} |f(z)| < \infty;$$

two functions f and g in $M_{\infty,a}$ are identified whenever $||f - g||_{\infty,a} = 0$, that is $f(r \exp i\theta) - g(r \exp i\theta) = o(1 - r)^a$, uniformly in θ .

For b=0 a space $M_{p,b}$ reduces to a Hardy space H^p ; for a description of the Hardy space see [1, 6]. If f is in a Hardy space H^p , then $||f||_{p,b}=0$ for all b>0.

In addition to the obvious relations $M_{p,b} \subseteq M_{q,b}$ for $p \ge q$ we also have

(1)
$$M_{p, a-1/p} \subseteq M_{q, a-1/q}$$

for $1 \le p \le q < \infty$, a > 1/p; moreover there exist constants C, C' such that

(2)
$$||f||_{\infty,a} \le C||f||_{p,a-1/p}$$

$$||f||_{a,a-1/q} \le C'||f||_{b,a-1/p}$$

(cf. [1, p. 84]).

The relations (2) shows that if a function f is in a space $M_{p,a-1/p}$, $p \ge 1$, a > 1/p, then $(1 - |z|)^a f(z)$ must remain bounded as z approaches a boundary point of D. In this note we will obtain restrictions on the values which $(1 - |z|)^a f(z)$ approaches as z approaches the boundary of D for functions f in a space $M_{p,a-1/p}$. We will also study topological properties of the $M_{p,a}$ spaces.

Received by the editors on March 6, 1979, and in revised form on February 12, 1980. *Research supported by NSF grant NSFG 7686.

1. In this section we give estimates on the coefficients of a function in $M_{p,b}$ and also on the area of the region onto which a function in an $M_{p,b}$ space maps the disc $|z| \le r$. The results are essentially contained in [5]; we will give numerical estimates. We conjecture that for concave functionals on an $M_{p,b}$ space the largest possible value is taken for functions whose Taylor series contain huge gaps while the smallest possible value is taken at functions of the form $C(1-z)^{-a}$ for some constant C. We have been able to confirm our conjecture only in a few cases.

We let p' denote the quantity p/(p-1) for 1 ; if <math>p = 1, we let $p' = \infty$, while if $p = \infty$, we let p' = 1.

THEOREM 1. If
$$f \in M_{p, a-1/p}$$
, $1 \le p \le \infty$, $a > 1/p$, then

$$\limsup |\hat{f}(n)|/n|^{a-1/p} \leq [e/(a-1/p)]^{a-1/p} ||f||_{p, a-1/p}.$$

PROOF. We deal only with the case 1 ; the cases <math>p = 1 and $p = \infty$ are somewhat simpler. We have

$$|\hat{f}(n)| = \left| \int_C f(\zeta)/\zeta^{n+1} d\zeta \right|/2\pi,$$

where C is the circle $|\zeta| = n/(n + a - 1/p)$. If we use Hölder's inequality to estimate $|\hat{f}(n)|$ we obtain the result.

In the opposite direction we have the following theorem.

THEOREM 2A. If $f \in M_{\infty,n}$, then

$$\limsup |\hat{f}(n)|/n^{a-1} \ge ||f||_{\infty,a}/\Gamma(a);$$

if $f \in M_{p,a-1/p}$ for some $p, 2 \le p < \infty, a \ge 1$, then

$$\limsup |\hat{f}(n)|/n^{a-1} \ge \|f\|_{b, a-1/p} [p'/[\Gamma(ap-1)/(p-1)]]^{1/p'}.$$

PROOF. We treat only the case $2 \le p < \infty$. Let $\lambda = \limsup |\hat{f}(n)|/n^{a-1}$ where $f(z) = \sum \hat{f}(n)z^n$ is a function in $M_{p,a-1/p}$. By the Hausdorff Young theorem (cf, [2: p. 145]).

$$||f||_{p,a-1/p} = \limsup (1-r)^{a-1/p} \left(\int_0^{2\pi} |f(z)|^p d\theta / 2\pi \right)^{1/p}$$

$$\leq \limsup (1-r)^{a-1/p} \left(\sum_{n=0}^{\infty} |\hat{f}(n)|^{p'} r^{np'} \right)^{1/p'}$$

$$= \lambda \Gamma[ap-1)/(p-1)]^{1/p'}/p'.$$

Hence

$$\lambda \geq p' \|f\|_{p, a-1/p} / \Gamma[(ap-1)/(p-1)]^{1/p'}.$$

If $1 \le p < 2$, we use the Hardy Littlewood theorem [1, p. 95] in place of the Hausdorff Young Theorem to obtain the following theorem.

THEOREM 2B. If $f \in M_{p, a-1/p}$ for some $p, 1 \le p < 2$, and a > 1/p, then

$$\lim \sup (\hat{f}(n))/n^{a-1} \ge ||f||_{p, a-1/p} (p/\Gamma(ap-1))^{1/p}.$$

Theorem 1 is the best possible in that equality is achieved for the function $f(z) = \sum n_k^{a-1/p} z^n$, where the numbers n_k are chosen to increase sufficiently rapidly (for examples, the numbers must be chosen in such a way that n_{k+1}/n_k tends to infinity).

The first part of Theorem 2A is also the best possible; here equality is achieved for the function $f(z) = (1 - z)^{-a}$; equality is also achieved in the second part of this theorem for these functions in the case a = 1, p = 2.

We let A(r) denote the area of the region onto which the function f(z) maps the disc $|z| \le r$.

LEMMA 1. If $f \in M_{\infty,a}$, then $||f'||_{\infty,a+1} \le (a+1)^{a+1} ||f||_{\infty,a} |a^a|$; if $f \in M_{p,b}$, $1 \le p < \infty, b > 0$, then

$$||f'||_{\infty,b+1+1/p}$$

$$\leq (pb+p+1)^{b+1+1/p}\|(1-z)^{-1}\|_{2b',(b+1)/2b}^2\|f\|_{b,b}/(pb)^b(p+1)^{1+1/p}.$$

Duren [1, pp. 65–66] showed that $\|(1-z)^{-1}\|_{2p', (p+1)/2p}$ is finite.

PROOF. By the Cauchy integral formula

$$|f'(z)| \leq \int_C (|f(\zeta)|/(\zeta-z)^2|d\zeta|/2\pi.$$

For the first part of the theorem we take C as the circle $|\zeta - z| = (1 - |z|)/(a + 1)$; for the second part we take C as the circle $|\zeta| = |z| + (p + 1)(1 - |z|)/(pb + p + 1)$ and apply Hölder's inequality.

We also have, following [5, p. 430], the next lemma.

LEMMA 2. If
$$f \in M_{2,b}$$
, then $||f'||_{2,b+1} \le (b+1)^{b+1} ||f||_{2,b}/2b^b$.

THEOREM 3. If $f \in M_{\infty,a}$, a > 0, then

$$\limsup_{r\to 1} (1-r)^{2a+1} A(r) \le \pi (a+1)^{a+1} ||f||_{\infty,a}^2 / a^a;$$

if
$$f \in M_{p,b}$$
, $1 \le p < \infty$, $b > 0$, then

$$\limsup (1-r)^{2b+1}A(r) \le \pi[(p+1+pb)^{b+1+1/p}/(p+1)^{1+1/p}(pb)^{b}] \times \|(1-z)^{-1}\|_{2b', (p+1)/2p}\|f\|_{2b, b}^{2}.$$

PROOF. We consider only the second part of the theorem; the first part can be dealt with in a similar fashion. For $1 \le p < \infty$

386

$$\lim \sup (1-r)^{2b+1}A(r)$$

$$= \pi \lim \sup (1 - r)^{2b+1} \sum_{n=1}^{\infty} n |\hat{f}(n)|^2 r^{2n}$$

$$= \lim \sup(1 - r)^{2b+1} \int_0^{2\pi} |f(z)f'(z)| d\theta/2, \quad (z = r \exp i\theta)$$

$$\leq (2\pi)^{1/p'} \lim \sup(1-r)^{b+1} \max |f'(z)| \cdot \lim \sup(1-r)^b \left(\int_0^{2\pi} |f(z)|^p d\theta \right)^{1/p} / 2,$$

where the maximum is taken over the circle |z| = r. Hence

 $\lim \sup (1-r)^{2b+1}A(r)$

$$\leq \pi \|f\|_{p,\,b} \|f'\|_{\infty,\,b+1}$$

$$\leq \pi [(p+1+pb)^{b+1+1/p}/(p+1)^{1+1/p}(pb)^b] \cdot \|(1-z)^{-1}\|_{2p',p+1/2p}^2 \|f\|_{p,b}^2.$$

We can also conclude from Lemma 2 the following theorem.

THEOREM 3B. If $f \in M_{2,b}$, b > 0, then

$$\lim \sup_{r \to 1} (1 - r)^{2b+1} A(r) \le \pi (b + 1)^{b+1} ||f||_{2,b}^2 / 2b^b.$$

In the opposite direction we have the following theorem.

THEOREM 4. If
$$f \in M_{2, a-1/2}$$
, $a > 1/2$. tjen

$$\lim \sup(1-r)^{2a}A(r) \ge (2a-1)\pi \|f\|_{2,a-1/2}^2/2.$$

Proof. We have

$$A(r) = \pi \sum_{n=1}^{\infty} n |\hat{f}(n)|^2 r^{2n}$$

so that if $\limsup (1-r)^{2a}A(r) \le \lambda$, then for each $\varepsilon > 0$, there is a number r_0 in (0, 1) such that $A(r) \le (\lambda + \varepsilon)/(1-r)^{2a}$ for $r \ge r_0$. We consider r_0 fixed; we take r in $(r_0, 1)$ and let r tend to one. We have

$$||f||_{2,a-1/2}^{2} = \limsup (1-r)^{2a-1} \sum_{n=0}^{\infty} |\hat{f}(n)|^{2} r^{2n}$$

$$= 2 \lim \sup (1-r)^{2a-1} \sum_{n=1}^{\infty} n |\hat{f}(n)|^{2} (r^{2n+1} - r_{0}^{2n+1}) / (2n+1)$$

$$= 2 \lim \sup (1-r)^{2a-1} \int_{r_{0}}^{r} A(r') dr' / \pi$$

$$\leq 2(\lambda + \varepsilon) / (2a-1)\pi.$$

Hence $\lambda \ge (2a-1)\pi \|f\|_{2,a-1/2}^2/2$. Since ε is arbitrary the result follows.

In the case a = 1, the theorem is the best possible; for $f(z) = (1 - z)^{-1}$, $||f||_{2,1/2} = 2^{-1/2}$ and $(1 - r)^2 A(r)$ tends to $\pi/4$.

COROLLARY. If $f \in M_{2, a-1/2}$, a > 1/2, then

$$\limsup (1 - r)^{2a} A(r) \ge (2a - 1)\pi \|f\|_{\infty, a}^2 / 2^{2a}.$$

PROOF. We first note that $||f||_{\infty,a} < \infty$. We have

$$||f||_{\infty,a} \le \lim \sup (1-r)^a \sum_{n=0}^{\infty} |\hat{f}(n)| r^n$$

$$\le \lim \sup (1-r)^a (\sum_{n=0}^{\infty} |\hat{f}(n)|^2 r^n)^{1/2} (\sum_{n=0}^{\infty} |\hat{f}(n)|^2 r^n)^{1/2}$$

by the Schwarz inequality, and the above quantity is bounded by $2^{a-1/2} ||f||_{2, a-1/2}$. The result follows from the preceding theorem.

Again equality is achieved in the case a = 1 for the function $(1 - z)^{-1}$.

2. In this section we investigate the values which $(1-|z|)^a f(z)$ approaches as z approaches a boundary point non-tangentially, for functions f in $M_{\infty,a}$ or in some space $M_{p,a-1/p}$. We let the symbol $C(\alpha, \eta)$ denote the curve $\theta = \alpha + \eta(1-r) + o(1-r)$, $r \to 1-$, where α is in $[0, 2\pi)$ and η is a real number, that is, $C(\alpha, \eta)$ is a stolz ray terminating at exp $i\alpha$ and making an angle arc $\sin \eta/(1+\eta^2)^{1/2}$ with the radius to the point exp $i\alpha$. We let $q(\eta)$ denote the limit of $[(1-|z|)/(1-z)]^a$ as z approaches the point 1 along $C(0, \eta)$, this quantity is also equal to the limit of $[(1-|z|)/(\exp i\alpha-z)]^a$ as z approaches the point exp $i\alpha$ along the Stolz ray $C(\alpha, \eta)$.

THEOREM 5. If $f \in M_{\infty,a}$, a > 0, and $(1 - |z|)^a f(z)$ tends to w as z tends to exp $i\alpha$ along $C(\alpha, \eta)$, then $(1 - |z|)^a f(z)$ tends to w $q(\eta')/q(\eta)$ as z tends to exp $i\alpha$ along $C(\alpha, \eta')$.

PROOF. The function $F(z)=(\exp i\alpha-a)^a f(z)$ is analytic in the domain bounded by the curves $C(\alpha, \pm (\max[|\eta|, |\eta'|+1]))$ and the smaller arc of the circle |z|=1/2. As z tends to the point $\exp i\alpha$ along $C(\alpha, \eta)$, F(z) tends to $w/q(\eta)$. By a theorem of Lindelöf [7, p. 76] F(z) tends to $w/q(\eta)$ as z tends to the point $\exp i\alpha$ along $C(\alpha, \eta')$, that is, $(1-|z|)^a f(z)$ tends to $w = q(\eta')/q(\eta)$.

THEOREM 6. Let $\{z_n\}$ and $\{z'_n\}$ be two sequences from D, each approaching a point in ∂D in such a way that

$$|z_n - z'_n|/(1 - |z_n|)$$
 and $|z_n - z'_n|/(1 - |z'_n|)$

remain bounded by a constant M. If for some function f in $M_{\infty,a}$, a > 0,

$$\lim (1 - |z_n|)^a f(z_n) = w$$
, and $\lim (1 - |z_n'|)^a f(z_n') = w'$,

then

$$|w - w'| \le M[(a + 1)^{a+1}/a^a + a] ||f||_{\infty,a}.$$

388 G. Brauer

PROOF. We treat only the case $a \ge 1$; the case a < 1 is dealt with in a similar manner. Without loss in generality, we take $|z_n| \ge |z'_n|$. We have

$$\begin{aligned} |(1-z_n)^a f(z_n) - (1-|z_n'|)^a f(z_n')| \\ & \leq (1-|z_n|)^a |f(z_n) - f(z_n')| + (1-|z_n|)^a - (1-|z_n'|)^a ||f(z_n')| \\ & \leq (1-|z_n|)^a |z_n - z_n'| \max|f'(z)| + a|z_n - z_n'| \max(1-|z|)^{a-1} |f(z_n')|, \end{aligned}$$

where the above maxima are taken over the line segment L joining z_n to z'_n . Thus

$$|(q - |z_n|)^a f(z_n) - (1 - |z_n'|)^a f(z_n')|$$

$$\leq M(1 - |z_n|)^{a+1} \max|f'(z)| + Ma(1 - |z_n'|)^a |f(z_n')|.$$

By Lemma 1 for each positive ε

$$(1-|z_n|)^{a+1}|f'(z)| \leq (1-|z|)^{a+1}|f'(z)| \leq [(a+1)^{a+1}/a^a](||f||_{\infty,a}+\varepsilon)$$

for each point z on L provided z_n and z'_n are sufficiently close to one. (We note that the boundedness of $|z_n - z'_n|/(1 - |z_n|)$ and $|z_n - z'_n|/(1 - |z'_n|)$ insures that if $|z_n|$ and $|z'_n|$ are close to one, then each point z on L is close to one.) We now have for $|z_n|$ and $|z'_n|$ sufficiently close to one

$$|(1 - |z_n|)^a f(z_n) - (1 - |z_n'|) f(z_n')|$$

$$\leq M[a + 1)^{a+1} (||f||_{\infty, a} + \varepsilon) / a^a| + aM(||f||_{\infty, a} + \varepsilon).$$

If we let n tend to infinity and thus let $|z_n|$ and $|z_n'|$ tend to one and ε tend to zero, we obtain the result.

If a function f is in a space $M_{p, a-1/p}$, $p \ge 1$, a > 1/p, then $(1 - |z|)^a f(z)$ is bounded; moreover the next theorem shows that there are restrictions on the way in which $(1 - |z|^a |f(z)|)$ may tend to a positive limit as z approaches a boundary point of the disc.

THEOREM 7A. Let $\{z_n^{(i)}\}$, i = 1, 2, ..., be a collection of sequences of points from D such that

(3)
$$|z_n^{(1)}| = |z_n^{(2)}| = \cdots = r_n$$

$$\lim_{n\to\infty} r_n = 1, and$$

(5) there exists a positive constant ζ such that for $i \neq j$,

$$|z_n^{(i)} - z_n^{(j)}| \ge \zeta(1 - |z_n^{(i)}|),$$

then in order that there exist a function f in some space $M_{p,a-1/p}$, $p \ge 1$, a > 1/p, such that

$$\lim_{n} (1 - r_{n})^{a} f(z_{n}^{(i)}) = w_{i},$$

 $i = 1, 2, \ldots,$ uniformly in i, it is necessary that the numbers w_i satisfy the condition

$$\sum_{i} |w_{i}|^{p+1} \le K \|f\|_{p,a-1/p}^{p}$$

for some constant K depending only on p and a.

PROOF. For sufficiently large n, $|f(z_n^{(i)})| \ge |w_i|/2(1-r_n)^a$ for all i. (We may assume that all w_i are different from zero.) There is a constant K_1 depending only on p and a such that

$$|f'(z)| \le K_1 ||f||_{b, a-1/b}/(1 - |z|)^{a+1}$$

(cf. [5, pp. 430-431]). Let $I_{n,i}$ denote the arc with $|z| = r_n$ and

$$|\theta - \arg z_n^{(i)}| \le w_i (1 - r_n) \min(\zeta/3, 1/4K_1 ||f||_{p, a-1/p}).$$

On $I_{n,i}$, if r_n is sufficiently close to one,

$$|f(z)| \ge w_i/2(1-r_n)^a - [w_i(1-r_n)\min(\zeta/3, 1/4K_1||f||_{p, a-1/p})] \max|f'(z)|$$

$$\ge w_i/4(1-r_n)^a.$$

Since the arcs $I_{n,i}$ are disjoint, if r_n is sufficiently close to one,

$$\int_{|z|=r_n} |f(z)|^p d\theta \ge \sum_i \int_{I_n,i} |f(z)|^p d\theta$$

$$\ge K_2 \sum_i |w_i|^{p+1}/(1 - r_n)^{ap-1},$$

where K_2 is a universal constant. The result follows.

We are actually able to prove slightly more.

Let
$$\mathscr{F}_r(\theta) = \max_{0 \le |z| \le r} f(|z| \exp i\theta).$$

Then there is a constant K_3 such that

$$\int_{|z|=r} |\mathscr{F}_r(\theta)|^p d\theta \le K_3 \int_{|z|=r} |f(z)|^p d\theta,$$

1 (cf. [4, p. 103–108]). Hence, we have the following theorem.

THEOREM 7B. Let A_1 and A_2 be two positive constants and for each i, let $\{z_n^{(i)} \text{ denote a sequence of points such that }$

(3')
$$A_1 \leq (1 - |z_n^{(i)}|)/(1 - |z_n^{(j)}|) \leq A_2,$$

(4')
$$\lim_{n\to\infty} |z_n^{(i)}| = 1, i = 1, \ldots, and$$

390 G. Brauer

(5') there exists a positive constant ζ such that

$$|z_n^{(i)} - z_n^{(j)}| \ge \zeta/(1 - |z_n^{(i)}|)$$

for all n, i, j, such that $i \neq j$, then in order that there exist a function $f \in M_{p, a-1/p}$ for some $p \geq 1$, a > 1/p, such that

$$\lim(1 - |z_n^{(i)}|)^a f(z_n^{(i)}) = w_i,$$

i = 1, 2, ..., it is necessary that

$$\sum |w_j|^{p+1} \le K ||f||_{p,a-1/p}^p$$

for some constant K depending only on p, and a.

3. In this section we determine the duals of the $M_{p,b}$ spaces; we will also give some necessary conditions for weak convergence in the $M_{p,b}$ spaces.

If X is a locally compact space, then X can be densely imbedded in a compact space βX in such a way that every bounded continuous complex function has a continuous extension f^{β} to βX . The space βX is called the Stone-Cech compactification of X (for a description of the Stone-Cech compactification, cf. [3, pp. 82–93]). We will use the symbol βX to denote the Stone-Cech compactification of X; if f is a bounded continuous function on X, then f^{β} will always denote its continuous extension to βX ; if y is a point in βX the symbol f^{β}_{ν} will express the fact that the function f^{β} has been evaluated at ν .

If f is a function in $M_{\infty,a}$, a > 0, then the function $F(r, \theta) = (1 - r)^a f(r \exp i\theta)$ is bounded and continuous in D and consequently has a continuous extension F^{β} to βD . We now respresent $M_{\infty,a}$ as a space of continuous functions on a compact space Δ formed from $\beta D - D$ by identifying two points ν_1 and ν_2 in $\beta D - D$ whenever $F^{\beta}_{\nu_1} = F^{\beta}_{\nu_2}$ for all $f \in M_{\infty,a}$, that is

$$[(1-r)^{a}f(z)]_{\nu_{1}}^{\beta} = [(1-r)^{a}f(z)]_{\nu_{2}}^{\beta};$$

we give Δ the weakest topology which makes all functions $[(1-r)^{\alpha}f(r\exp i\theta)]^{\beta}$ continuous. The space Δ admits the metric d given by

$$d(\nu_1, \nu_2) = \text{Lub}|F^{\beta}_{\nu_1} - F^{\beta}_{\nu_2}|$$

= \text{lub}|[(1 - r)^a f(r \text{ exp } i\theta]^{\beta}_{\nu_1} - (1 - r)^a f(r \text{ exp } i\theta)]^{\beta}_{\nu_2}|

where the lub is taken over all functions f in $M_{\infty,a}$ such that $||f||_{\infty,a} = 1$. It can be shown that Δ does not contain an analytic disc. To see this note that the function $(1-z)^{-a}$ is in $M_{\infty,a}$ and that the corresponding function $\{[(1-r)/(1-z)]^a\}_{\nu}^{\beta}$ vanishes when ν is outside the closure in Δ of each Stolz angle with vertex at z=1, while this function takes values on some curve in the complex plane when ν is in some Stolz angle with vertex at z=1.

As in [6, pp. 166–168] we may form the fiber W_{α} above each point exp $i\alpha$ in Δ ; W_{α} consists of all limit points in Δ of all nets $\{z_{\mu}\}$ which tend to exp $i\alpha$. No point in Δ which is in the closure of the Stolz angle with vertex at the point 1 can lie in the closure of any union of W_{α} , $\alpha \neq 0$.

We denote the half-open interval [0, 1) by I.

THEOREM 8. The set of linear functionals on $M_{b,b}$ given by

(6)
$$L(f) = [(1-r)^b \int_0^{2\pi} f(r \exp i\theta) \phi(r, \theta) d\theta]_{\rho}^{\beta},$$

 $f \in M_{p,b}$, where $\phi(r,\theta)$ ranges over the space $\Lambda_{p'}$ of functions which are continuous in r on I, and such that $\int_0^{2\pi} |\phi(r,\theta)|^{p'}$ remains bounded for $0 \le r < 1$, and ρ ranges over $\beta I - I$ are woak * dense in the dual of $M_{p,b}$. Conversely each functional of the form (6) represents a bounded linear functional on $M_{p,b}$ such that

$$||L|| \le (2\pi)^{1/p} \limsup_{r \to 1} \left(\int_0^{2\pi} |\phi(r, \theta)|^{p'} d\theta \right)^{1/p'}.$$

PROOF. It is easily seen from Hölder's inequality that each functional of the form (6) is a bounded functional whose norm satisfies the stated inequality. To see that functionals of the form (6) are weak * dense in the dual of $M_{p,b}$ we let f be an element of $M_{p,b}$ such that $||f_{p,b}|| > 0$. We will construct a functional L of the form (6) such that $L(f) \neq 0$. Let

$$\phi(r,\theta) = \begin{cases} |f(z)|^{p-2}\overline{f}(z) & \text{if } f(z) \neq 0\\ 0 & \text{if } f(z) = 0. \end{cases}$$

We then have, for some $\rho \in \beta I - I$,

$$L(f) = \text{lub}[(1-r)^b \int_0^{2\pi} |f(z)|^p d\theta]_\rho^\beta = 2\pi \|f\|_{p,b}^p > 0.$$

The result follows.

With a slight modification of the above argument we have

THEOREM 8B. The set of functionals on $M_{1,b}$ given by

(6')
$$L(f) = [(1-r)^b \int_0^{2\pi} f(z)\phi(r,\theta)d\theta]_{\rho}^{\beta},$$

 $f \in M_{1,b}$, where ϕ ranges over the space Λ_{∞} of functions which remain bounded in D and ρ ranges over $\beta I - I$ are weak * dense in the dual of $M_{1,b}$. Conversely each functional L of the form (6') represents a bounded functional on $M_{1,b}$ such that

$$||L|| \leq 2\pi \limsup_{r \to 1} |\phi(r, \theta)|.$$

If we let

392 G. Brauer

$$\phi(r, \theta) = \begin{cases} \bar{f}(z) & \text{when } f \neq 0 \\ 0 & \text{when } f = 0, \end{cases}$$

then ϕ need not be continuous in r; however, ϕ can be approximated by a continuous function.

THEOREM 9. The set of functionals on $M_{\infty,a}$, given by

(7)
$$L(f) = [(1 - r)^{a} \int_{0}^{2\pi} f(z) d\mu_{r}(\theta)]_{\rho}^{\beta},$$

 $f \in M_{\infty,a}$, where $\mu_r(\theta)$ ranges over the measures defined on each circle |z| = r, $0 \le r < 1$, which depend continuously on r and which are such that $\int_0^{2\pi} |d\mu_r(\theta)|$ is uniformly bounded, and ρ ranges over $\beta I - I$ are weak * dense in the dual of $M_{\infty,a}$. Conversely each functional of the form (7) is in the dual of $M_{\infty,a}$ and

$$||L|| \leq \lim_{r} \sup_{\theta} \int_{0}^{2\pi} |d\mu_{r}(\theta)|.$$

PROOF. To see that the functionals of the form (7) are weak * dense in the dual of $M_{\infty,a}$ we let f be an element of $M_{\infty,a}$ such that $||f||_{\infty,a} > 0$. Then there is a sequence of points $\{z_n\}$ approaching the boundary of D such that

$$\lim \sup (1 - |z_n|)^a |f(z_n)| > 0.$$

For $\mu_r(\theta)$ we take a measure which is the Dirac delta measure concentrated at z_n on each circle $|z| = r_n$ and which depends continuously on r. Then

$$\limsup (1-r)^a \int_0^{2\pi} f(z) d\mu_r(\theta) > 0.$$

The result follows.

The $M_{p,a}$ spaces are not complete for a>0. However, each space $M_{p,a}$ can be imbedded in a complete space $\mathcal{M}_{p,a}$ consisting of equivalence classes of Cauchy sequences $\{f_n\}$ of elements from $M_{p,a}$; two Cauchy sequences in $M_{p,a}\{f_n\}$ and $\{g_n\}$ are equivalent if $\|f_n-g_n\|_{p,a}$ tends to zero as n tends to infinity. As usual the norm of an element of $\mathcal{M}_{p,a}$ can be defined as $\lim_{n\to 0} \|f_n\|_{p,a}$ where $\{f_n\}$ is a Cauchy sequence of elements from $M_{p,a}$ which represents f; clearly this limit does not depend on the choice of Cauchy sequence. It should be noted that the elements of $\mathcal{M}_{p,a-1/p}$ are limits (in the norm topology) of Cauchy sequences in $M_{\infty,a}$ and hence each element $\{f_n\}$ of $\mathcal{M}_{p,a-1/p}$ induces the continuous function

$$\lim_{n\to\infty} [(1-r)^a f_n(r \exp i\theta)]^{\beta}_{\nu}$$

on Δ .

THEOREM 10. Let $\{z_n\}$ be an infinite sequence of points on the unit circle.

Let $\{f_n\}$ be a sequence of functions in a space $M_{p, a-1/p}$, $1 \le p \le \infty$, a > 1/p, such that for each $m \limsup (1 - |z|)^a |f_m(z)|$ is greater than some positive constant ζ as z tends to z_m while for $n \ne m (1 - |z|)^a |f_n(z)|$ tends to zero as z tends to z_m . The set $\{f_m\}$ does not have compact closure in $\mathcal{M}_{p, a-1/p}$.

PROOF. The result is rather trivial for $p = \infty$. If $p < \infty$, there is a sequence of points $\{z_n^{(j)} \text{ from } D \text{ which tends to } z_n \text{ as } j \text{ tends to infinite such that}$

$$(1 - |z_n^{(j)}|)^a f_n(z_n^{(j)}) \ge \zeta/2$$

provided j is sufficiently large. As in the proof of Theorem 7A we construct an arc I containing the point $z_n^{(j)}$ such that

$$(1 - |z|)^{ap-1} \int_{I} |f_n(z)|^p d\theta$$

exceeds a positive constant; on the other hand if $m \neq n$,

$$(1 - |z|)^{ap-1} \int_{I} |f_m(z)|^p d\theta$$

can be made arbitrarily small if j is sufficiently large. Thus the distance between each two distinct elements of $\{f_m\}$ exceeds some positive constant. Thus the set $\{f_m\}$ cannot have compact closure.

We give some necessary conditions for weak convergence in $M_{p,b}$.

THEOREM 11. If $\{f_n\}$ is a sequence of functions in $M_{p, a-1/p}$, $1 \le p \le \infty$, a > 1/p, which is weakly convergent to zero, then

$$\lim_{n\to\infty} \limsup_{r\to 1} (1-r)^a |f_n(z)| = 0.$$

PROOF. This result follows immediately from the fact that for each point ρ in βI – I the functional L on $M_{p, a-1/p}$ given by

$$L(f) = [(1 - r)^{a} f(r \exp i\theta)]_{\theta}^{\beta},$$

 $f \in M_{p, a-1/p}$, is continuous.

Theorem 12. For each $r, 0 \le r < 1$, let E(r) denote a measurable subset the circle |z| = r such that the measure of E(r), |E(r)|, depends continuously on r. If $\{f_m(z)\}$ is a sequence from $M_{p,a-1/p}$ for some p > 1, a > 1/p, which converges weakly to zero, then

$$\lim_{m\to\infty} \limsup_{r\to 1} (1-r)^{a} \left| \int_{E(r)} f_{m}(z) d\theta \right| = 0.$$

The result follows from the fact that for each point $\rho \in \beta I - I$ the functional on $M_{\rho, a-1/\rho}$ given by

$$L(f) = [(1 - r)^{a} \int_{E(r)} f(r \exp i\theta) d\theta]_{\rho}^{\beta},$$

 $f \in M_{p, a-1/p}$, is bounded.

THEOREM 13. If $\{f_m\}$ is a sequence of functions in $M_{p,a-1/p}$, $1 \le 0 \le \infty$, a > 1, which is weakly convergent to zero, then

$$\lim_{m\to\infty} \lim \sup_{n} n^{1-a} |\hat{f}_m(n)| = 0.$$

Let N denote the discrete space of natural numbers. The result follows immediately from the fact that for each $\lambda \in \beta N - N$ the functional on $M_{p, a-1/p}$ given by $L(f) = [n^{1-a}\hat{f}(n)]_{\lambda}^{\beta}$ is continuous.

I am indebted to Professors Lee A. Rubel, Thomas Armstrong and David Storvick for many helpful suggestions.

REFERENCES

- 1. H. P. Duren, Theory of H^b Spaces, Academic Press, New York and London, 1970.
- 2. R. E. Edwards, Fourier Series, A Modern Introduction, II, Holt Rinehart and Winston Inc., New York, 1967.
- 3. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
- 4. G. H. Hardy and J. E. Littlewood. A maximal theorem with function-theoretic applications, Acta Math. 54, (1930), 81-116.
 - 5. —, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439.
- 6. K. Hoffman, Spaces of analytic functions, Prentice-Hall, Englewood, Cliffs, N.J., 1962.
- 7. R. Nevanlinna, *Eindeutige analytische Funktionen*, 2nd Edition, Springer-Verlag, Berlin, 1953.

University of Minnesota, Minneapolis, MN 55455