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BOUNDARY BEHAVIOR OF SPACES 
OF ANALYTIC FUNCTIONS 

GEORGE BRAUERN 

0. Introduction. We de fine for p ^ 1, b > 0, the space MPtb of function 
f(z) = 2 5T=o f(n)zn, analytic in the unit disc D, such that 

\\f\\Ptb = lim sup(l - r)>[^*\f(z)\PdO/2n < 00, 

z = r exp w 

Two functions / and g are identified in MPtb whenever \\f — g\\p,b = 0. 
We also define for a > 0, the space M^a of functions /(z), analytic in 
D such that 

||/||oo,a = l i m sup (1 - r)a max \f(z)\ < oo; 
r - l \z\=r 

two functions / and g in M^^ are identified whenever \\f — g\\oo,a = 0, 
that is/(r exp id) — g(r exp id) = o(l — r)ß, uniformly in 0. 

For 6 = 0 a space Mpjb reduces to a Hardy space HP; for a description 
of the Hardy space see [1,6]. If fis in a Hardy space //Athen 11/11/,, b = 0 
for all b > 0. 

In addition to the obvious relations Mp> b E A^, ô for /? ^ # we also have 

(1) Mp,a-Vp ^ ^ , « - 1 / * 

for 1 ̂  /? ^ q < oo, a > \jp\ moreover there exist constants C, C 
such that 

m Il/Il«,,« ^ Cll/ll,,^!/, 

(cf. [1, p. 84]). 
The relations (2) shows that if a function / is in a space MPjQ_1/p, 

p ^ 1, a > I//?, then (1 — |z|)û/(z) must remain bounded as z approaches 
a boundary point of Z). In this note we will obtain restrictions on the 
values which (1 — |z|)fl/(z) approaches as z approaches the boundary of 
D for functions/in a space MPìa_ì/p. We will also study topological 
properties of the MPt a spaces. 
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1. In this section we give estimates on the coefficients of a function in 
MPtb and also on the area of the region onto which a function in an MPtk 

space maps the disc \z\ ^ r. The results are essentially contained in [S\; 
we will give numerical estimates. We conjecture that for concave function­
a l on an MPt b space the largest possible value is taken for functions whose 
Taylor series contain huge gaps while the smallest possible value is taken 
at functions of the form C(l — z)~a for some constant C. We have been 
able to confirm our conjecture only in a few cases. 

We let p' denote the quantity p/(p — 1) for 1 < p < oo; if p = 1, we 
let/*' = oo, while ifp = oo,weletp' = 1. 

THEOREM 1. Iff e MPta_Vp, 1 ^ p g oo, a > l/p, then 

lim sup | / (») | / I I | - - I /# £ [e/(a - l / p ^ W I U a - i , , . 

PROOF. We deal only with the case 1 < p < oo ; the cases p = 1 and 
p = oo are somewhat simpler. We have 

I/tol = |Jc/(0/Cw+1^c|/2^, 

where C is the circle |Ç| = nj{n + a - l/p). If we use Holder's inequality 
to estimate \f(n)\ we obtain the result. 

In the opposite direction we have the following theorem. 

THEOREM 2A. Iff e M^m then 

limsupl/^l/^-ièll/llcca/A«); 
iff e MPt0_Vpfor some p, 2 g p < oo, a ^ 1, then 

lim sup |/(*)|//,*-i è \\f\\p,a-vp[p'l[r{ap - \)l(p - l)ff/#\ 

PROOF. We treat only the case 2 g p < oo. Let k = lim sup \f(n)\ln*~l 

where/(z) = 2/(n)z» is a function in Mp,a_l/p. By the Hausdorff Young 
theorem (cf, [2: p. 145]). 

ll/ll#.«-i/# = lim sup(l - r)*~vp(X*\f{z)\Pd6ßTtf/p 

è lim sup(l - r)*-i'p( £ |/(/i)| 'V»n 

= ATfop - l)/(p - l )p ' /p ' . 

Hence 

^ 5; P l l / H , , . - ! , ^ « ^ - 1)/(P - I)]1'*'. 

If 1 g /> < 2, we use the Hardy Littlewood theorem [1, p. 95] in place 
of the Hausdorff Young Theorem to obtain the following theorem. 
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THEOREM 2B. If fe MPta.l/p for some p, 1 ^ p < 2, and a > l/p, 
then 

lim sup(/(A!))//i*-i i l l / l * . - ^ / / ^ - I))1"-

Theorem 1 is the best possible in that equality is achieved for the func­
tion f(z) = £n%~l/pzn, whore the numbers nk are chosen to increase 
sufficiently rapidly (for examples, the numbers must be chosen in such a 
way that nh+i/nk

tend«to infinity). 
The first part of Theorem 2A is also the best possible; here equality is 

achieved for the function/(z) = (1 — z)_a; equality is also achieved in 
the second part of this theorem for these functions in the case a = 1, 
p=2. 

We let A(r) denote the area of the region onto which the function /(z) 
maps the disc \z\ ^ r. 

LEMMA 1. Iff e M^ then H/'IL,^ ^ (a + l)'+i||/|L,a/ö*; iff e Mp,b9 

1 ^ p < oo, * > 0, then 

\\f'\\oo,b+l+l/p 

H{pb+p + i)>+1+i"||(i -zyi\\ip,Ap+l)/2p\\f \\pj(pby(p + i)i+i". 

Düren [1, pp. 65-66] showed that ||(1 - z)-i||2/t ip+V/2p is finite. 

PROOF. By the Cauchy integral formula 

inai è Jc(i/(oi/(c - z)va/2*. 
For the first part of the theorem we take C as the circle |Ç - z| = 
{1 _ \z\)/(a + 1); for the second part we take C as the circle |Ç| = 
\z\ + (p + 1X1 - M)/(P* + / > + 0 and apply Holder's inequality. 

We also have, following [5, p. 430], the next lemma. 

LEMMA 2. Iff e M^, then ||/'||2.m ^ (6 + l)*+1l|/li2,*/26*. 

THEOREM 3. / / / e A/«,,,, a > 0, fAe/i 

lim sup (1 - rf-^A(r) ^ %{a + lY+HfUlJ*; 
r—1 

iffeMp,b, 1 ^ p < oo, b > 0, Mm 

Um sup (1 - r)2>+M(r) ^ ic[{p + 1 4- pbywp/(p + l)i+1/>(/>*)>] 

x 11(1 -z)-i | |2^ (^1 ) / 2 > | | / | | | , , . 

PROOF. We consider only the second part of the theorem; the first part 
can be dealt with in a similar fashion. For 1 ^ p < oo 
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lim sup(l - r)2b+1A(r) 
oo 

= % lim sup(l - r)2*+ 12 n\f(n)\2r2» 

= lim sup(l - r)2»+1l \f(z)f'(z)\dd/29 (z = r exp id) 
Jo 

^ (27ü)vPf lim sup(l - r)*+i max|/ '0)l • Hm sup(l - ry(F*\f(z)\PdoYP/2, 

where the maximum is taken over the circle \z\ = r. Hence 

lim sup(l - r)2b+1A(r) 

è 7ü[(p + 1 +pby^P/(p + 1 ) 1 + 1 / ^*) ' ] J (1 - z)-H%,tP+1/2p\\f\\lb. 

We can also conclude from Lemma 2 the following theorem. 

THEOREM 3B. Iff e M2,b> b > 0, then 

lim sup(l - r)2*+i^(r) ^ iz(b + l)*+1||/Hl*/26*. 

In the opposite direction we have the following theorem. 

THEOREM 4. Iff e M2,a-\/2, a > 1/2. (/^« 

lim sup(l - r)**A(r) ^ (2a - l )tf | | / | | |_1 / 2 /2. 

PROOF. We have 
oo 

A(r) = 7r2«|/(A2)|2r2-

so that if lim sup (1 — r)2aA(r) ^ /I, then for each e > 0, there is a number 
r0 in (0, 1) such that A(r) ^(A + £)/(l — r)2û for r ^ r0. We consider r0 

fixed; we take r in (r0, 1) and let r tend to one. We have 

CO 

\\f\\la-y2 = lim SUp (1 - r)2-12|/(ll)|2/-2« 

= 2 lim sup(l - r)2«-if;«|/(«)|2(r2'>+i - ^+ 1)/(2« + 1) 

= 2 lim sup(l - r)2«-ifr A(r')dr'\% 

^ 2(A + e)/(2a - 1)TT. 

Hence /I S: (2a — 1 )TT|| y II I,«—1/2/2. Since e is arbitrary the result follows. 

In the case a = 1, the theorem is the best possible; for/(z) = (1 — z) - 1 , 
II/II2.1/2 = 2-1/2 and (1 _ r)2^(,.) tends to JT/4. 
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COROLLARY. Iff"e M2,a_1/2, a > 1/2, then 

lim sup (1 - r)**A(r) ^ (2a - IMfWloJl2*. 

PROOF. We first note that ||/||oo,a < oo. We have 

oo 

ll/IU,,, g lim sup (1 - r ) « 2 | / ( / ! ) | r « 
»=o 

OO 

g lim sup (1 - r)«(2l/(")l2rn)1 / 2(S' , n)1 / 2 

n=0 

by the Schwarz inequality, and the above quantity is bounded by 
2a_1/2||/||2,a-i/2- The result follows from the preceding theorem. 

Again equality is achieved in the case a = 1 for the function (1 — z)_1. 

2. In this section we investigate the values which (1 — |z|)ff/(z) ap­
proaches as z approaches a boundary point non-tangentially, for functions 
fin Moo^ or in some space MPta_i/p. We let the symbol C(a, rj) denote 
the curve 0 = a + 7/(1 — r) + o(\ — r), r -> 1 —, where a is in [0, 2%) 
and 77 is a real number, that is, C(a9 77) is a stolz ray terminating at 
exp ia and making an angle arc sin 77/(1 + T;2)1/2 with the radius to the 
point exp ia. We let #(77) denote the limit of [(1 — |z|)/(l — z)]a as z ap­
proaches the point 1 along C(0, 77), this quantity is also equal to the limit 
of [(1 — |z|)/(exp ia — z)]a as z approaches the point exp ia along the 
Stolz ray C(a, 77). 

THEOREM 5. Iffe M«,^, a > 0, and (1 — |z|)a/(z) tends to w as z tends 
to exp ia along C(a, 77), then (1 — |z|)ß/(z) tends to w q(r)')iq(rj) as z tends 
to exp ia along C(a, rf). 

PROOF. The function F(z) = (exp ia — a)af(z) is analytic in the domain 
bounded by the curves C(a, ±(max[|77l, \TJ'\ 4- 1])) and the smaller arc 
of the circle \z\ = 1/2. As z tends to the point exp ia along C(a, 77), F(z) 
tends to w/q(7J). By a theorem of Lindelöf [7, p. 76] F(z) tends to w/q(7j) 
as z tends to the point exp ia along C(a, 77'), that is, (1 — |z|)ö/(z) tends to 
w q(y')/q(y)' 

THEOREM 6. Lef {zn} and {z'n} be two sequences from D, each approaching 
a point in 3D in such a way that 

\z„ - z;|/(l - \z„\) and \z„ - z'„\/(l - \z'n\) 

remain bounded by a constant M. If for some function f in M^^, a > 0, 

lim (1 - \z„\yf(z„) = w, and lim (1 - \z'„\Yf(z'„) = w', 

then 

\w - w'\ g M[(a + ly+ya" +a]\\f\\ 
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PROOF. We treat only the case a ^ 1 ; the case a < 1 is dealt with in a 
similar manner. Without loss in generality, we take \zn\ ^ \z'n\. We have 

|(1 - znYf{zn) - (1 - \z'Mz'H)\ 

è (i - \zn\y\f{zn) -f{z'n)\ + (i - \zn\y - (i - \z'n\y\ \f(z'n)\ 
£ (1 - |zj)«|zw - z;| maxl/'OOl + a\zH - zn\ max(l - \z\Y^\f(z'X 

where the above maxima are taken over the line segment L joining zn to 
z'n. Thus 

\(q - \zn\Yf(zn) - (1 - \z'n\YAz'n)\ 

^ M(\ - |zw)|«+i max|/'(z)| + Ma{\ - K\Y\f(z'n)\. 

By Lemma 1 for each positive e 

(1 - \zn\Y
+1\f(z)\ £ (1 - |z|)'+i|/'(z)| ^ [(a + lY+1/aa](\\f\\oo,a + e) 

for each point z on L provided zn and zn are sufficiently close to one. (We 
note that the boundedness of \zn — zf

n\j{\ — \zn\) and \zn — z'n\/(l — \z'n\) 
insures that if \zn\ and \z'n\ are close to one, then each point z on L is close 
to one.) We now have for \zn\ and \z'n\ sufficiently close to one 

|(1 - \zn\YAzn) - (1 - \z'n\Wn)\ 

è M[a + D'+KII/lloo.a + *)/*] + «Mdl/IL,, + e). 

If we let n tend to infinity and thus let \zn\ and \z'n\ tend to one and e tend 
to zero, we obtain the result. 

If a function / i s ina space Mp>a_i/p,p ^ \,a > \/p, then(l — |z|)fl/(z) 
is bounded; moreover the next theorem shows that there are restrictions 
on the way in which (1 — |z|*|/(z)| may tend to a positive limit as z 
approaches a boundary point of the disc. 

THEOREM 7A. Let {z^}, i = 1,2, . . . , be a collection of sequences of points 
from D such that 

(3) \z^\ = | z f | = . . =rM , 

(4) lim rn = 1, and 
W-oo 

(5) f/zere ex/sto a positive constant £ swc/* that for i 7E y, 

|z« - zW| è ç(i _ |Z«)|), 

r/ze« m order that there exist a function f in some space MPja_i/p, p g; 1, 
a > I//?, SI/C/J that 

lim (1 - rj«y(z«>) = w„ 
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/ = 1, 2, . . . , uniformly in i, it is necessary that the numbers w{ satisfy the 
condition 

2 > , | * - i Û K\\f\\Pp^Up 
t 

for some constant K depending only on p and a. 

PROOF. For sufficiently large /i, \f(zjp)\ £ |wf-|/2(l - rn)
a forali /. (We 

may assume that all w{ are different from zero.) There is a constant Kx 

depending only on p and a such that 

\f\z)\ ^Kx 11/11,, a_1/p/(\ - |z|)«+i 

(cf. [5, pp. 430-431]). Let Ini denote the arc with \z\ = rn and 

|0 - argz<0| g W.(i _ 0 m i n ( C / 3 > l/^ll/ll*,-!/,). 

On In h if rw is sufficiently close to one, 

\m\ 
> w,/2(l - r„Y 

- [w,(l - r„) min(C/3, 1/4^11/H,, ._!„)] max|/'(z)| 

^ n>,/4(l - /"„)«. 

Since the arcs I„t ,• are disjoint, if /•„ is sufficiently close to one, 

f \M\*dO* S f l/(z)|Wö 
. J .-J/.,,-
Ul=r„ 

where # 2 is a universal constant. The result follows. 

We are actually able to prove slightly more. 

Let,Fr(0) = max /(|z|exp id). 

Then there is a constant K3 such that 

JV r(0)N0^*3 J" \Äz)\*dO, 
\z\=r \z\=r 

1 < p < oo (cf. [4, p. 103-108]). Hence, we have the following theorem. 

THEOREM 7B. Let Ax and A2 be two positive constants and for each /, let 
{zfî denote a sequence of points such that 

0 ' ) A ^ i i - |z«|)/(l - |zW|) è A2, 

(4') lim |z«>| = 1, i = 1 2, . . . , and 
n—oo 
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(5') there exists a positive constant £ such that 

14° - z.wl ^ C/(i - ki°l) 
/or a// «, /, y, JWC/Z that i ^ y, //ze« in order that there exist a function ft 
Mpia-i/pfor some p ^ 1, a > \/p, such that 

lim(l - \z<p\YJlz}p) = wi9 

i = 1,2, . . ., it is necessary that 

S K I ^ l * K\\f\\ia-V, 

for some constant K depending only on p, and a. 

3. In this section we determine the duals of the Mp> b spaces; we will also 
give some necessary conditions for weak convergence in the Mp> b spaces. 

If X is a locally compact space, then X can be densely imbedded in a 
compact space ßX in such a way that every bounded continuous complex 
function has a continuous extension fß to ßX. The space ßX is called the 
Stone-Cech compactification of X (for a description of the Stone-Cech 
compactification, cf. [3, pp. 82-93]). We will use the symbol ßX to denote 
the Stone-Cech compactification of X\ iff is a bounded continuous func­
tion on X, then/0 will always denote its continuous extension to ßX; if v 
is a point in ßX the symbol fß will express the fact that the function fß 
has been evaluated at v. 

If / is a function in A / ^ , a > 0, then the function F(r, 6) = 
(1 — r)af(r exp id) is bounded and continuous in D and consequently has 
a continuous extension Fß to ßD. We now respresent A / ^ as a space 
of continuous functions on a compact space A formed from ßD — D by 
identifying two points v\ and v2 in ßD — Z> whenever F^ = F$2 for all 
/ e Mooja, that is 

t(l - r>/(z)]£ = [(1 - r)«/(z)]£; 

we give A the weakest topology which makes all functions 
[(1 — r)af(r exp W)]ß continuous. The space A admits the metric d given by 

d{vl9 v2) = Lub|F£ - F^l 

= lublKl - ryf(rcxpidfvi - (1 - rYf(rexpid)]ß2\ 

where the lub is taken over all functions/in Af«,^ such that ||/||oo,a = 1. 
It can be shown that A does not contain an analytic disc. To see this note 

that the function (1 — z)~a is in Af«,^ and that the corresponding function 
{[(1 - r)/(l — z)]a}ß vanishes when v is outside the closure in A of each 
Stolz angle with vertex at z = 1, while this function takes values on some 
curve in the complex plane when v is in some Stolz angle with vertex at 
z = 1. 
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As in [6, pp. 166-168] we may form the fiber Wa above each point exp ice 
in A ; Wa consists of all limit points in A of all nets {z^} which tend to exp ia. 
No point in A which is in the closure of the Stolz angle with vertex at the 
point 1 can lie in the closure of any union of Wa, a ^ 0. 

We denote the half-open interval [0, 1) by /. 

THEOREM 8. The set of linear functionals on MPyb given by 

(6) L(f) = [(1 - r)»Jo f(r exp i0)#r, d)ddfp, 

feMpth where <f>(r, 6) ranges over the space Apf of functions which are 
continuous in r on /, and such that ffî\$(r, 0)\pf remains bounded for 0 ^ r < 
1, and p ranges over ßl — I are woak * dense in the dual ofMp> b. Conversely 
each functional of the form (6) represents a bounded linear functional on 
MPt b such that 

^ (2ic)vp lim sup(p |0 ( r , 0)\*'dO)YP'. 

PROOF. It is easily seen from Holder's inequality that each functional 
of the form (6) is a bounded functional whose norm satisfies the stated 
inequality. To see that functionals of the form (6) are weak * dense in the 
dual of MP)b we let / b e an element of MPtb such that \\fPtb > 0. We will 
construct a functional L of the form (6) such that L(f) ^ 0. Let 

*(r> e) = {o if /(z) = 0. 
We then have, for some pe ßl — I, 

L(f) = lub[(l - ry^\f(z)\Pddfp = 2n\\f\\U > 0. 

The result follows. 

With a slight modification of the above argument we have 

THEOREM 8B. The set of functionals on Mhb given by 

(60 L(f) = [(1 - ry ^AzMr, 0)dOfp, 

fe Mit b, where $ ranges over the space Aoo of functions which remain bounded 
in D and p ranges over ßl — I are weak * dense in the dual of Mltb. 
Conversely each functional L of the form (6') represents a bounded functional 
on Mlt b such that 

\\L\\ g 2TT lim sup |^(r, 0)|. 

If we let 
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Mr to \f{Z) W h e n / # 0 

^ ' ö ) = \0 when / = 0 , 

then (j) need not be continuous in r; however, ^ can be approximated by a 
continuous function. 

THEOREM 9. The set offunctionals on M^^ given by 

(7) L(f) = [(l - &^f(z)dM0)fP, 

fe Moo,a) where fj.r(d) ranges over the measures defined on each circle \z\ = r, 
0 ^ r < 1, which depend continuously on r and which are such that 
ffi\dpir(0)\ is uniformly bounded, and p ranges over ßl — I are weak * dense 
in the dual of M^^. Conversely each functional of the form (7) is in the dual 
ofMoofa and 

'2?r C2.it 

\\L\\ £ l i m sup \dfir(6)\. 
r J O 

PROOF. TO see that the functional of the form (7) are weak * dense in the 
dual of Moofa we let / b e an element of M«,^ such that H/IU^ > 0. Then 
there is a sequence of points {zn} approaching the boundary of D such that 

lim sup(l - \zn\y\f(zn)\ > 0. 

For jur(d) we take a measure which is the Dirac delta measure concentrated 
at zn on each circle \z\ = rn and which depends continuously on r. Then 

2TT 

lim sup(l - ry [2Kf{z)dfjtr(ö) > 0. 

The result follows. 

The MPf a spaces are not complete for a > 0. However, each space Mp> a 

can be imbedded in a complete space Mpt a consisting of equivalence classes 
of Cauchy sequences {fn} of elements from MPia\ two Cauchy sequences 
in MPta{fn} and {gn} are equivalent if \\fn — gn\\p>a tends to zero as n tends 
to infinity. As usual the norm of an element of Jip> a can be defined as 
limw^0|| fn\\ p>a where {/„} is a Cauchy sequence of elements from MPt0 which 
represents / ; clearly this limit does not depend on the choice of Cauchy 
sequence. It should be noted that the elements of Jip,a-\ip

 a r e limits (in 
the norm topology) of Cauchy sequences in M^^ and hence each ele­
ment {/„} of Jip%a-\/P induces the continuous function 

lim[(l - r)*fH(r exp i6)fv 
W-oo 

on J . 

THEOREM 10. Let {zn} be an infinite sequence of points on the unit circle. 

http://C2.it
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Let {fn} be a sequence of functions in a space MPta_1/p, 1 ^ p ^ oo, a > 
\\p, such that for each m lim sup (1 — M)ff|/W(z)| is greater than some posi­
tive constant £ as z tends to zm while for n ^ m (1 — |z|)ö|/w(z)| tends to 
zero as z tends to zm. The set {fm} does not have compact closure in Jt'Pt a-\/p. 

PROOF. The result is rather trivial for/7 = oo. Ifp < oo, there is a se­
quence of points {z^J) from D which tends to zn as j tends to infinite such 
that 

(1 - \z^\Yfn(z^) ^ Ç/2 

provided^ is sufficiently large. As in the proof of Theorem 7A we construct 
an arc I containing the point z^j) such that 

(i - izi)^-ij \m\Pdd 

exceeds a positive constant; on the other hand if m ^ n, 

(i - \z\yp-^ \fjz)\Pdo 

can be made arbitrarily small if j is sufficiently large. Thus the distance 
between each two distinct elements of {fm} exceeds some positive constant. 
Thus the set {/m} cannot have compact closure. 

We give some necessary conditions for weak convergence in MPt h. 

THEOREM 11. If{fn} is a sequence of functions in Mp>a_l/{r 1 S P è oo, 
a > l/p, which is weakly convergent to zero, then 

lim lim sup (1 - r)a\fn(z)\ = 0. 
n-* oo r—1 

PROOF. This result follows immediately from the fact that for each point 
pin ßl — I the functional L on MPja_i/p given by 

L(f) = [(1 - rYf(r exp W% 

fe MPfa_i/p, is continuous. 

THEOREM 12. For each r, 0 ^ r < 1, let E(r) denote a measurable subset 
the circle \z\ = r such that the measure of E{r), \E(r)\, depends continuously 
on r. If {fm{z)} is a sequence from Mp>a„1/pfor some p > 1, a > l/p, which 
converges weakly to zero, then 

lim lim sup (1 - r)a\\ fm(z)dO\ 
m-+ oo r—1 \J E(r) I 

= 0. 

The result follows from the fact that for each point pe ßl — I the func­
tional on MPi a_Vp given by 

file:///m/Pdd
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£( / ) = [(! -&{ f(rcxpid)dd]^ 
JE(r) P 

fe Mp>a_1/p, is bounded. 

THEOREM 13. If {fm} is a sequence of functions in Mp,a-\/pi 1 = 0 ^ oo, 
a > 1, w/?/c/z /j weakly convergent to zero, then 

lim lim sup nx~a \fm(n)\ = 0. 

Let N denote the discrete space of natural numbers. The result follows 
immediately from the fact that for each X e ßN — N the functional on 
Mpa_l/p given by L(f) = [«1_ö/(«)]f is continuous. 

I am indebted to Professors Lee A. Rubel, Thomas Armstrong and 
David Storvick for many helpful suggestions. 
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