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THREE DIMENSIONAL HYPERBOLIC SPACES 

NORBERT J. WIELENBERG 

1. Introduction. Euclidean 3-space is a useful local model of the physical 
world. For two millennia from Euclid to Saccheri, mathematicians tried 
to prove that Euclidean geometry was the only consistent geometry of 
space. The effort continued until early in the 19th century when Bolyai, 
Lobachevsky, and Gauss independently investigated hyperbolic geometry. 
Later Riemann recognized spherical geometry as another non-Euclidean 
geometry and developed Riemannian geometry. By 1900, the axiomatic 
method and the role of a model in geometry were reasonably well under­
stood. This viewpoint was spread by Hubert's Foundations of Geometry 
and played an important part in the development of Einstein's theory 
3f relativity. (See [2], [4], and [11].) A homogeneous and isotropic 3-space 
with a curvature or scale factor which varies with time is a model for the 
large-scale spatial universe. 

The use of the hyperbolic plane to study Riemann surfaces and Fuchsian 
groups was initiated by Poincaré and remains an active research area. 
Three dimensional spaces of constant negative curvature are less familiar. 
The recent work of W. P. Thurston [16] and others in this area is likely 
to have considerable impact in 3-manifold theory. In this paper we intend 
to give an account of some of the geometrical properties of negatively 
:urved spaces. A complete Riemannian manifold of constant curvature 
is the quotient of a simply-connected manifold under the action of a 
discrete, fixed-point free, group of isometries. We will discuss several 
models for the covering space, the action of the isometries, volumes, 
some theorems about the quotients, and some examples. 

2. Hyperbolic models and volume. The basic facts of riemannian geometry 
will be assumed. Let Rw denote Euclidean w-space and let |x|2 = x\ + 
• • • + x%. There are several useful models for hyperbolic «-space of 
curvature -K < 0. (See Wolf [19].) The Poincaré disk model is Bn(K) = 
[x e Rw: \x\2 < l/K] with the metric 
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The Poincaré upper half space model is Hn(K) = {xeRn: xn > 0} with 
the metric 

tax* 

Kxl • 

These metrics are conformally equivalent to the Euclidean metric. That 
is, the inner product on the tangent space at a given point is a constant 
multiple of the Euclidean inner product. So angles in these models agree 
with Euclidean angles. Hyperbolic length is, of course, quite different 
from Euclidean length. Each point of the sphere bounding Bn(K) can be 
considered as a point at infinity for Bn(K), with a similar statement for 
H»(K). 

The geodesies for B2(K) are arcs of circles meeting the boundary circle 
orthogonally or straight lines through the origin. The geodesies for 
H2(K) are semi-circles with center in R = {(jq, x 2 )eR 2 : x2 = 0} or 
half-lines perpendicular to R. Euclid's parallel postulate is replaced by 
the property that given a geodesic / and a point x $ / , there are infinitely 
many geodesies through x not meeting / . Hyperbolic space is not com­
pact and geodesies have infinite length. 

A third model for hyperbolic space is 

n 

{Oo, *i, • -., xn): x{ G R, -xl + 2 A = - * } 

with metric induced by the pseudo-riemannian metric — dx\ + 2£=i dx2-. 
This model might be regarded as a sphere with imaginary radius i y ^ . 

A ball centered at the origin in Bn(K) with Euclidean radius s has 
hyperbolic radius r with 

r = P 2- dt = » lo{.(l + VTs\ 

so that 

=^T-(^F: 
The volume element in B3(K) is 

dv = (i - K\x\2y dxidX2dx* 

so the volume of a ball of radius r is 

i - s i n h ^ t f r ) - *JK r 
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This formula and others were obtained by Taurinus [2] in about 1830 by 
replacing the real radius ^/~K in the formulas for spherical trigonometry 
with the imaginary radius / vGsT. 

As K approaches 0, the volume of a ball approaches Euclidean volume. 
As K gets large, the volume of a ball of a given radius goes to infinity. 
A tourist from Euclidean space visiting a hyperbolic space would find 
that his immediate neighborhood has a rather large volume and that 
the scenery changes rapidly as he moves about. 

3. Isometry groups. If Fis a subfield or a subring of the complex numbers 
C, then PSL(2, F) denotes the projective special linear group of 2 x 2 
matrices with entries from F. That is, 

PSL(2, F) = { ± ( J J ) : a9 b9 c, deF, ad - be = lj 

A subgroup of PSL(2, C) is discrete if no sequence of distinct elements 
converges in the usual topology to an element of PSL(2, C). If Fis discrete 
as a subset of C, then PSL(2, F) and all of its subgroups are discrete 
groups. 

We will deal only with orientation-preserving isometries. The isometries 
of the hyperbolic plane are the linear fractional transformations of the 
complex plane which leave (one of the models of) the hyperbolic plane 
invariant. For the upper half-plane model these are of the form z t-+ 
(az + b)/(cz + d) where a,b,c, deR and ad — be = 1. Since composition 
of these mappings agrees with matrix multiplication, the isometry group 
is the Lie group PSL(2, R). A Fuchsian group is a discrete group of iso­
metries of the hyperbolic plane. The quotient space is a Riemann surface. 

By a theorem of Liouville, the only conformai mappings of a domain 
in Rw for n ^ 3 are Moebius transformations, i.e., products of transla­
tions, rotations, inversions in spheres, reflections in hyperplanes, and 
dilatations. It follows that the isometry group of H3(K) is the Lie group 
PSL(2, C). 

To understand this action we write A(z) = (az -f b)/(cz -f d) where 
a, b, c, deC and ad — be = 1 as 

«* - T + (ir)2 TXz + dlc)* 
where Tc(z) = ( — c/c)z and w* = w/|w|2. If x = (xh x2, x3) and y = 
x/\x\2, then a tedious but elementary calculation shows that 

È dyyyl = L dx\\x\ 
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where 

That is, this inversion in a sphere is a hyperbolic isometry. It is convenient 
to write a point of H3(K) as z + (/' where y = (0, 0, 1) and z is a complex 
number. Defining Tc{z + tj) = Tc(z) + (/ and (z + tj)* = (z + f/)/ 
|z + tj\2 then extends 4̂ to an isometry of H3(K) by replacing z with 
z + tj. Furthermore, A consists of inversion in the sphere |(z + tj) + 
d/c\ = l/|c|, a rotation of R3 leaving C invariant and fixing — d/c, a 
reflection in a plane perpendicular to C through — d/c, and a translation 
of — d/c to a/c. The sphere |(z + tj) + rf/c| = l/|c| is usually called the 
isometric sphere of A. The isometric sphere of A~l is given by |(z + tj) 
— a/c\ — \/\c\. The action of A takes the exterior (interior) of the isome­
tric sphere of A to the interior (exterior) of the isometric sphere of A~l. 

Since similarity mappings of hyperbolic space are also isometries, two 
figures are similar if and only if they are congruent. In particular, the 
lengths of the sides of a triangle are determined by its angles. 

An isometry of H3 without a fixed point in H3 has either one or two 
fixed points on dH3 = C U {oo}. These two cases can be distinguished 
by the trace a + d of the matrix. An isometry with two fixed points is 
called either (i) hyperbolic or (ii) loxodromic and is characterized respec­
tively by (i) a + d is real and \a + d\ > 2 or (ii) the imaginary part of 
a + d is not zero. An isometry with one fixed point is called parabolic 
and is characterized by a + d = ± 2. A hyperbolic or loxodromic trans­
formation is conjugate in PSL(2, C) to a map z i-> pz where p e C and 
\p\ T£ 0, 1. A parabolic transformation is conjugate to the translation 
Z H z + 1 . (See [5] or [9].) 

An elementary argument with fixed points shows that two parabolic, 
hyperbolic, or loxodromic transformations commute if and only if they 
have the same fixed points. 

4. Ideal polyhedra. In the hyperbolic plane the Gauss-Bonnet Theorem 
gives the area of a convex polygon with geodesic sides in terms of the 
angles at the vertices. Since hyperbolic surfaces can be obtained by 
glueing edges of convex polygons in pairs, this also gives formulas for 
the area of hyperbolic surfaces [9]. In a similar way, hyperbolic 3-manifolds 
can be realized by glueing sides of convex polyhedra together in pairs. 
If all of the vertices of the polyhedron are at infinity, it will be called an 
ideal polyhedron. Note that at infinity in H3(K) means either the usual 
point at infinity or a point in C. 

The totally geodesic surfaces in H3(K) are half-planes perpendicular 
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to C and hemispheres with center in C. Ideal polyhedra with totally 
geodesic sides are shown in Figure 1. The volume element in H3(K) is 

dy — ĵ —3/2 dxdydt 
t3 

In Figure 1 the dihedral angles between the vertical planes and the 
hemispheres at the bottom are izjA. The volume of one of these polyhedra 
is 

fl/2 fl/2 foo 
K~3/2\ dx\ dy\ t~3dt, 

J -1/2 J -1/2 J f(x,y) 
where f(x, y) = (1/2 — x2 — y2)l/2. After some calculations, this reduces 
to 2K~3/2 ^ log cot u du. 

A systematic approach to the volume of ideal polyhedra is developed 
by J. Milnor in [16]. Bolyai and Lobachevsky had both developed formulas 
for the volume of tetrahedra in hyperbolic space [2]. Lobachevsky's 
formulas for hyperbolic volume were expressed in terms of the function 
J log sec u du. Milnor gives the name Lobachevsky function to L(6) = 
— f0 log|2 sin t\dt and develops its remarkable properties. Its relationship 
to volumes is given in the following theorem of Milnor. 

THEOREM 1. Consider an infinite hyperbolic cone with base an n-gon on 
a hemisphere and with all vertices at infinity. Let cc\, . . ., an be the dihedral 
angles between the vertical planes and the hemisphere. Then 

0) Z]?=iff* = ^ and 
(ii) The volume of this ideal polyhedron is K~3/2 2?=i L(aì). 

The proof is by induction after establishing the result for n = 3. An 
ideal tetrahedron can be subdivided into tetrahedra with three right 
dihedral angles. The integral of dV over each piece can be written in terms 
of L. Using the identities satisfied by the Lobachevsky function then gives 
the theorem. Note that as K approaches zero, the volume of the poly­
hedron approaches infinity, while as K approaches infinity, the volume 
approaches zero. The same will be true of a hyperbolic manifold obtained 
by glueing the sides of finitely many such polyhedra together in pairs. 

5. Quotient spaces. Henceforth, take the curvature to be — 1 and delete 
K from the notation. Let G be a discrete, fixed-point free, group of isome-
tries of H3. The quotient space H3/G under the action of G is also a space 
of constant curvature, locally isometric to H3, and it is geodesically com­
plete. Its fundamental group is isomorphic to G and H3 is its universal 
covering space. (See Wolf [19].) We discuss some theorems for such spaces. 

THEOREM 2. (Mostow). Suppose Hn\G\ and HnjG2 have finite volume, 
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Gì and G2 are isomorphic, andn ^ 3. Then there is an isometry $: Hn\G\ -+ 
H«/G2. 

This result, known as Mostow's Rigidity Theorem, says that the abstract 
group determines the topology and geometry of the manifold in the finite 
volume case. This is in contrast to fuchsian groups, which have non-trivial 
deformation spaces. The deformation spaces are manifolds whose points 
represent Riemann surfaces of the same topological type but which are 
not necessarily isometric to each ohter. Riemann surfaces are the exception 
rather than the rule in this regard as is shown in Mostow [12]. 

The next theorem says that discrete subgroups of PSL(2, C) are in some 
way uniformly discrete. It also has implications for the topology of the 
quotient manifold. 

THEOREM 3. (Jorgensen [8]). Suppose transformations A and B in 
PSL (2, C) generate a discrete, torsion-free group and A and B do not have 
the same fixed points. Then 

\z(A¥ - 4| + \T(ABA-IB-I) - 2| è 1 

where z is the trace function. 

A horoball B in H3 is a Euclidean ball tangent to C at a point or a region 
{z + (/: / > /0} for some fixed /0 > 0. (The latter region is tangent to 
dH3 at infinity.) A horoball is invariant under the action of a group of 
parabolic transformations with fixed point at the point of tangency. 

A consequence of Theorem 3 is that there is a horoball H at each para­
bolic fixed point x which is precisely invariant under the stabilizer Gx = 
{AeG: A(x) = x} of the point. That is, A(H) = H for AeGx and 
A(H) fi H = 0 for A e G - Gx. So the image of H in the quotient space 
is determined by Gx. To see this, take the parabolic fixed point to be in­
finity and suppose it is fixed by A = (J}). If B does not fix infinity, 
then B = (?J) with c # 0. The trace of A is 2 and the trace of ABA'B1-1 

is c2 + 2; so the inequality says that \c\2 ^ 1. The radius of the isometric 
spheres of B and B~l is l/\c\, which is less than or equal to 1. Consequently, 
{z + tj: t > 1} is precisely invariant under the stabilizer of infinity. 

Consider a discrete parabolic group which is free abelian on two genera­
tors. The quotient of the horoball is homeomorphic to S1 x {z:0 < \z\ < 
1} where S1 is a circle. This can be seen by considering the "infinite chim­
ney" where / > t0 in one of the ideal polyhedra in Figure 1. If the four 
sides of the chimney are equivalent in pairs by two translations which fix 
infinity, then each horizontal cross-section projects into the quotient space 
as a square with opposite edges identified, i.e., a torus. These tori can be 
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viewed as fitting continuously inside of one another to make a solid torus 
with S1 x {0} deleted. 

THEOREM 4. [16,17]. IfH3/G has finite volume, then H3/G is homeomorphic 
to the complement of finitely many disjoint simple closed curves in a closed 
3-manifold. 

The idea of the proof in [17] is as follows. If H3jG has finite volume but 
is not compact, then there is a nested sequence of horoballs at a point of 
dH3 such that the corresponding sequence of volumes of their images in 
H3/G approaches zero. Using Jorgensen's Inequality, it can be shown that 
the point of tangency of the horoballs is a parabolic fixed point. Now there 
is a precisely invariant horoball at this point; so its stabilizer is free abelian 
on two generators. By considering a fundamental polyhedron for the ac­
tion of G, there can be only finitely many conjugacy classes of such para­
bolic fixed points. 

The proof in [16] is similar with a more general property for certain dis­
crete groups called the Margulis Lemma playing the role of Jorgensen's 
Inequality. In any case the problem is to associate the non-compact por­
tions of the manifold with a horoball modulo a parabolic group. This is 
how the complement of finitely many disjoint closed curves arises. In 
general, the curves are knotted or linked with one another. 

A disjoint union L of piecewise linear simple closed curves in a 3-sphere 
S3 is called a (tame) link and S3 — L is a link complement. There is a standard 
way of presenting the fundamental group izi(S3 — L) with meridians and 
longitudes where these correspond to loops which go once around a com­
ponent of the link or run along parallel to it, respectively. 

THEOREM 5. (Riley [14]). If H3jG has finite volume and G is isomorphic 
to 7Z\{S3 — L)for some link L with the meridians corresponding to parabolic 
transformations in G, then H3/G is homeomorphic to S3 — L. 

The next theorem is another way of saying that discrete subgroups of 
PSL(2, C) are uniformly discrete. It also says there is a uniform lower 
bound for the volume of hyperbolic manifolds. 

THEOREM 6. [17]. There exists p > 0 such that H3jG contains a region 
isometric to a ball of radius greater than or equal to pfor all discrete torsion-
free subgroups 6>/PSL(2, C). 

In fact there is a smallest volume. The following results are given in [16] 
as corollaries of theorems of Jorgensen and Gromov. 

THEOREM 7. The set of volumes of hyperbolic 3-manifolds is well-ordered. 
The volume is a finite-to-one function of hyperbolic manifolds. 
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We note that W. Thurston has announced profound existence theorem! 
characterizing 3-manifolds which have a hyperbolic structure. Approxi 
mately, they say that a 3-manifold which could have a hyperbolic structure 
does have a hyperbolic structure. Some examples of topological reason! 
why a 3-manifold could not have a hyperbolic structure would be if it! 
fundamental group was finite, or had free abelian subgroups of rani 
greater than two, or had a non-trivial center. The reader is referred to [16 
for details and further developments. 

Finally, if G also acts discontinuously somewhere in C, then G is callec 
a kleinian group. In this case the volume of H3/G is infinite and the theo^ 
is somewhat different than in the finite volume case. This area was alsc 
investigated by Poincaré and has again been active since about 1964 
See [5], [6], [9], [16]. 

6. Examples. One of the first nice examples was given by Gieseking [10] 
though it was not immediately recognized as (containing) the figure-eighi 
knot group. This example was rediscovered algebraically by Riley [13 
and geometrically by Thurston [16]. Many other examples have been giver 
by Best [1], Jorgensen [7], Riley [14, 15], Thurston [16] and Wielenberg 
[18]. A hyperbolic structure on the complement of the Whitehead link is 
described here. 

Let Z(i) = {m + ni: m and n are integers), the ring of Gaussian integers 
A subgroup of the Picard group PSL(2, Z(/)) is discrete and a finite-inde> 
subgroup will act on H3 with a finite-volume quotient. 

The union P of the two polyhedra in Figure 1 is a fundamental poly­
hedron for a subgroup G of the Picard group. That is, the images of / 
under G tesselate H3 in the sense that their union is H3 and they intersect 
each other only in their sides. The generators of G are 

'=(<) i ) ' M = ( o ? ) a n d a = (-l+M)-
The first two generators act as commuting translations which fix infinity. 
The third is a parabolic mapping which consists of an inversion in the 
sphere \(z + (/) - (1 + 0/21 = 1/VT, a reflection across a plane through 
(1 + i)/2 and perpendicular to the line between the centers of the spheres, 
and a translation of (1 + i)/2 to ( - 1 — 0/2. The sides of P are equivalent 
in pairs under the action of (products of) the generators of G. The edges 
of P also fall into equivalence classes called edge cycles. The dihedral 
angles for an edge cycle sum to 2% and the ideal vertices are parabolic 
fixed points of G. The quotient space H3jG is obtained by glueing corres­
ponding sides of P. By Milnor's Theorem, the volume of H3/G is 8L(^/4) 
= 3.66386 . . . . 

A presentation for G can be read from the edge cycles and G can be 
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shown to be isomorphic (See [18]) to ^ ( S 3 - W) where W is the White­
head link shown in Figure 3. So H3jG is homeomorphic to S3 — W. A 
way to see this directly is due to Thurston and is indicated in Figures 2 
and 3. The image under a of the polyhedron on the right in Figure 1 at­
taches along the hemisphere on the bottom of the polyhedron on the left 
to form an ideal regular octahedron in H3. The top and bottom halves of 
the octahedron are shown in Figure 2 with the lateral sides labeled in pairs 
and with cycles of edges labeled with one, two, or three-headed arrows. 
The projection of the sides into the quotient is a 2-complex which spans 
the Whitehead link. The 2-complex has four 2-cells and three 1-cells and 
is shown in two pieces in Figure 3. The edge cycles of the octahedron cor­
respond to the arrows, with the 3-headed arrow hidden where one com­
ponent of the link crosses itself in the center. At the center over-crossing 
in Figure 3(a) and at each of the overcrossings in Figure 3(b), the surface 
has a "twist" as it passes through. One can think of the components of 
the deleted link as being produced by the deleted vertices of the octahed­
ron. 

It is important to note that the group determines the link complement 
but not the link itself. This is true because different links may have home­
omorphic complements. For example, consider an open disk which spans 
the circular component of W, lies over the over-crossing in the second 
component, and is twice-punctured by the second component. Cutting 
along this disk, making finitely many full rotations, and glueing it back is 
a homeomorphism of link complements. There might be no self-home-
omorphism of S3 which takes W to the other link since the second com­
ponent in the other link may be knotted. So the two links themselves need 
not be equivalent. 
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Figure 1. Side view and top view of a fundamental polyhedron. 
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Halves of octahedron with side and edge identifications indicated. 
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B TÌ C 

Figure 3. Whitehead link with spanning complex. 




