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CAMPBELL’S CONJECTURE ON A
MAJORIZATION-SUBORDINATION RESULT
FOR CONVEX FUNCTIONS

ROGER W. BARNARD AND CHARLES N. KELLOGG

Let S denote the set of all normalized analytic univalent functions f,
f(z2) =z + ---,in the open unit disc U. Let f, F,and w be analytic in |z|
< r. We say that f is majorized by F, f < F, in |z| < r, if | f(2)| £ |F(2)| in
|z] < r. We say that fis subordinate to F, f < F, in |z| < riff(z) = F(w(2))
where |w(z)| < |z]in |z| < r.

Majorization-subordination theory begins with Biernacki who showed
in 1936 that if f(0) = O and f < F(Fe S), in U, then f < Fin |z] < 1/4.
In the succeeding years Goluzin, Tao Shah, Lewandowski and MacGregor
examined various related problems (for greater detail see [1]).

In 1951 Goluzin showed that if f/'(0) = 0 and f < F(F € S) then f' < F'
in [z] < 0.12. He conjectured that majorization would always occur for
|zl < 3 — 4/°8 and this was proved by Tao Shah in 1958.

In a series of papers [1, 2, 3], D. Campbell extended a number of the
results to the class %, of all normalized locally univalent (f”(z) # 0) analy-
tic functions in U with order £ a where %; = K is the class of convex
functions in S. In particular in [3] he showed that if f'(0) 2 0 and f <
F(Feq,)then f' < Fin|zl <a+ 1 — (a®2+2a)V2for 1.65 Sa<
where a = 2 yields 3— 4/ 8. Note that ¢ = 1 yields 2— 4/73, the radius
of convexity for S. Campbell’s proof breaks down for 1 = a < 1.65
because of two different bounds being used for the Schwarz function
with different ranges of a. Nevertheless, he conjectured that the result
is true for all @ = 1.

In this paper we combine a subordination result of Ruscheweyh’s, some
variational techniques and some tedious computations to verify the con-
jecture for ¢ = 1, i.e., we show that if f'(0) = 0 and f < F(Fe K) inU
then f’ <« F’ for |z| £ 2— 4/73. We note that our method of proof relies
on the convexity of F in a number of places so that it is unlikely that it
would extend to larger a’s.
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THEOREM. Let f < F with f'(0) 2 0. Then f' < F' in |z| £ 2— /'3 for
all F in K and the result is sharp.

ProoF. Sharpness follows by considering F(z) = z/(1 — z) and f(2)
z2/(1 — z2). A Schwarz function is a function w analytic on U with [w(z)| <
|z]. Let |z] £ 2— 4/3 =rgand w a fixed but arbitrary Schwarz function
with w'(0) = 0. We must show that

F'(w(2))-w'(z)

max mas|— 7 2/ < ],
1z21=r FEK F'(2)

A

Ruscheweyh has proved in [5, p. 277] that if g is in S*, the normalized
starlike functions on U, then 1g(sz)/sg(tz) < (1 — tz/1 — sz)2forall |s| = 1,
|t] < 1. Letting ¢ = 1 it follows that

Sz

< max (1 — s2)?
lzl=r z
(1 —z)?

8(s2)
g(2)

max max
lzlsy g&S*

for |s| < 1. Since F'is convex, zF'(z) is starlike. So, it follows that

(@) F'(w)
Fw@w'@) | _ waz) "
i inal I 2165 e R L I
L zw'(z)  w(2) ’
< max | @ (=w(2)?
T lzi=rg z )
| =2

Therefore the theorem will be proved if for all |z| < ry and all Schwarz
functions w, w'(0) = 0, we have

w'(z) (1 — z)?

This follows from Lemma 1 and concludes the proof of the theorem.

Before we turn to the proof of Lemma 1 we note the parallel between
(1) and the ordinary Schwarz’s lemma. Schwarz’s lemma says that

W@l = [z |
- W@ =

throughout |z| < 1. It weighs information about z and w(z) in a uniform
manner relative to |z| = 1. In our case we weigh information about z and
w(z) relative to one point of |z| = 1, namely z = 1. In such a case we find
that inequality (1) holds only for |z]| =2 — 4/3.

LeMMA 1. Let w, w'(0) = 0, be a Schwarz function. Let p, with p(z) =
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1 +2az + +--,a 20, be a function of positive rgal part in U. Then for all
Izl £2 - /73,

()] I(1 — 2?p'(2) £ 2,

3) W@ = 221 — w2))?| =1

and the results are sharp.

PROOF. Let Py = {p:p(z) =1 + 2az + ---,a = 0, Re p(z) > 0}. Since
a Schwarz function w, w'(0) = a = 0, is associated with the function
p(z) of P; by the relation p(z) = (1 + w(2))/(1 — w(2)) it is easy to check
that (2) and (3) are equivalent.

We first prove that (2) holds for any p in P; with p’(0) = 0. In this case
p has the form p(z) = (1 + w)/(1 — w) with w a Schwarz function satisfy-
ing
@ w(z)| = |z[% ze U.
It follows from Goluzin’s improved Schwarz’s estimate given in [4, Lemma
2] with a = 0 that
(%) w2 = 2r(1 = [w(2)|3)/(1 — 1Y)

for |z| £ r. Thus using (5) and then (4) we have

[P’ = 2% = 2w (2) (1 — 2)7/]1 — w(2)?
S 4r(1 — WA + 21 = rH(1 = |w])?
= 4r(1 + W + N/ — A + (1 - |w?)
< 4r/(l — r)?
whichis £ 2for0 £ r £2 — /3.

We now prove (2) for functions in P; with p'(0) = 2a > 0. The Pfaltz-
graff-Pinchuk result [4, Thm. 7.4] guarantees that a function p, that
maximizes for a given z in U the quantity [(1 — z)2p’(z)| over all p in P,
will have at most three jumps in its representing measure. We apply a
variational method to show that for |z| £2 — 4/73 the function can have

at most two jumps.
Suppose there were ana > Oand a zin |z] £ 2 — 4/73 = rjsuch that

5, 1 + ze
po(Z) = le*j“; Zet ? 0 é Hh<th<tz3< 2z
7=1

3 3
(6) D=1, et =2a >0,
=1 =1
0< Xl, /12, 13,

<1,
and for all pin Py, |(1 — 2)2p'(2)| = |(1 — 2)? py(2)|.
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From (6) we would have ¥3_,2; sin t; =0 and A3=1— 4; — Az
Since 0 < t; < #; < t3 < 2=, two of the ¢;’s say #; and ¢3 would be such
that sin #; # sin ¢3. We could then solve for 4; as a linear function of 2,.

-, _sintg sin 7, — sin ¢ 3)
1 sints—sintl+}‘<sint3—sint1 :
Letting k; = [(1 — 2)¥/z][ze®/(] — ze%)?], j = 1, 2, 3, we would obtain
(1 - 2)2 pé(Z) = 2/11k1 + 2/12](2 + 2/13/(3. Substituting in for A3 and ll
would yield
— 22 pi(z) = _ ko)(Sinfz = sin ts -
(1 = 22 i) = g Gy = k(022 500 4 (= k)|
2k; sin t3 — 2kgsin t,
sin #3 — sin &,
= A}.g + B,

+

where 4 and B are complex constants.
We now prove that A # 0. If 4 were 0 then letting s = (sin ¢, — sin #3)/
(sin t3 — sin t;) we would have
|

S
ko= gkt sk

that is, k3 would lie on the line through k; and k,. We note that k;, &,
and k3 lie on the curve A(eit), 0 < t < 2z, where h(e?) = [(1 — z)?/z]
-[zeit/(1 — zeit)2]. However, h(eit),0 <t < 2x, is simply the fixed (1 — z2)?%/z
scalar multiple of the image of |{| = r under the Ko6be function (1 — )2
The K6be function maps all circles || = r < 2— 4/73 onto convex analy-
tic curves containing no straight line segments. Thus k3 can not lie on the
line through &; and k,. Consequently A is non-zero.

Since A4 is non-zero the image of (0, 1) under the map 44 + B would
be a straight line segment containing the point (1 — z)2 p((z) in its interior.
By continuity we could vary A to obtain a p; in P; such that [(1 — z)?
-p1(2)] > |(1 — 2)? p(2)| contradicting the extremal property of p,. (Note
that although the a; of p;(z) = 1 + 2a;z + --- may not equal the a of
po(2), nevertheless, by continuity a; will be real and positive.)

Letting k(z) = z/(1 — z)? we have shown for any z in |z| £ 2—4/3
that if py(z), py(0) = 2a > 0, maximizes |zp'(z)/k(z)| over P; then

_ . (1 + eM2) _ o (1 + e?z)
p2) = lﬁ—— e'fiz) +( )')(l + ez z)’ 0

IIA

A

IIA

17

and therefore proving (2) reduces to showing that

|2 k(e™z) + (1 = 2) k(e2)| = [k(2)], |z] = ro,
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forall 0 £ 2 <1 and all t,, t; in [0, 27] with 2e"t + (1 — A)e™2 = a.
Letting ¢2 = —(tl + t2)/2, ¢1 = (tl - fz)/z and z = e exp(i¢)’ we can
rewrite the above inequality as

|Ak(e41g) + (1 = 2) k(e 18) | < |k(e28)|

for all 0 < 2 =1 and all ¢, ¢, in [0, 27] with 2t + (1 — 2) e =
ae'2, But

Mk(ehg) + (1 — D) k(e g = 5[(1 j‘::'fbllg)Z + 8 :Qiﬁ:gz]
_ é[aeisbz + E2e7#2 — 2£]
O T S

Thus it suffices to show

§lae + G272 — 2¢)
MaX | (| eing — e-Wig + E22 k(eg) | = |

a quantity which depends only on the independent variagles a and ¢,.
Since the maximum is taken on the boundary we let & = ree, ro = 2 —
v/ 3, ¢» = ¢ and square the above expression to obtain

lae¥ — 2& + (2a cosgp — ae$)E2A1 + rg — 2rgcos(¢ + O)I?
[1 + r§ + 2r3cos20 + 4aricosi) — dra cos(¢p + 0))?

which, upon noting that 1 + r§ = 4ry, 1 + r§ = 4ry — 2r§ + 4r3, be-
comes, after a fairly long computation,

[1 + a?(3 + cos?(f — ¢)) —4a cos(6 — )] [2—cos(f + g[;)]2

O [a%cos2g + 3 + cos?0 — 4a cosl cosg)?

Since the denominator of (7) is (a cos ¢y — 2 cos )2 + 3(1 — cos? ), we
see that it never vanishes. Therefore, the quantity in (7) being < 1 is
equivalent upon cross multiplication to

h(a) = (—cos*p)a* + (8cos3) cosf)a’
+ [RP — 2(cos?¢))Q — 16c0s2) cosZ)la?
+ [8 Ocosf cos¢) — 4Pcos(0 — J)la + [P — Q7]
= Ayat + Axa® + Aya® + Aa + Ay =0
where R = 3 + cos?(f — ¢)), P = (2 — cos(f + ¢))%, QO = 3 + cos?4,

and M = cos?) + 3 + cos?) — 4cosf cosg.
Factoring out the P and expanding M2 we see that

h(1) = — cos*) + 8cos3)cosf + RP — 2Qcos%) — 16cos?f cos?)
+ 8Qcosf cos¢y — 4Pcos(f — ¢) + P — Q2
— M2 + P(2 — cos(8 — ¢))>

®
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Since M = (2 — cos(f — $))(2 — cos(f + ¢)), we conclude that A(1) = 0.
Thus h(a) = (1 — a)(H(a) where
H(a) = [(cos*¢)a’® + (cost) — 8cos3¢ cosh)a?
+ (cost) — 8cos3 cosd — RP + 2Qcos%)
+ 16cos?0 cos?p)a + P — Q7
= (cos*¢)(a® + Bya® + Bja + By) = (cosi¢y)hy(a).
It suffices to show H(a) < 0. Note that
H@0) = P—Q%=(2—cos( + ¢))?>— (3 +cos2)?
= (5—cos(0+ ¢) +cos20)(— 1 —cos(f — ¢)) — cos?0) <0
while
H(1) = 3cosg— 16cos3¢cosf) — RP +2Qcos?¢) + 16cos?g cos?)
+ P — Q?=2[cos*¢)— 4cos3¢ cosf + P — Q2 — 2Pcos(6 — ¢)
+4Qcosf cos¢] + [cost)— 8cos3g) cosh — P + Q?
+4Pcos(f — ) — 8Qcosf cosgh— RP + 2Qcos%)
+ 16c0s20 cos?(].

The term in the last set of square brackets is M2 — P(2 — cos(0 — ¢))?
= 0 exactly as before. Note that we can rewrite what is left as

— cos¢) +4cos3g) cosf + 2Pcos(6 — ¢) — P + Q% — 4Qcosf cos¢
= — (1 —sin%})2 4+ 4(1 —sin%p)cos¢ cosf + (2cosh cos¢y +sinf singy— 1)
-(2—cosf cos¢y +sinf sing)? + (4 — sin?0)2 — 4(4 — sin%0)cosf cos¢
= 15+2 sin?¢)—sin*) — 8 sin%f + sin*f — 12cosf cos¢)+ 4 sin% cosf cos¢)
— 4 sin%) cos¢) cosf + (2cosf cos¢+ 2 sinf sing—1) - (5 —sin2)
— sin?¢)+ 2 sin? sin?¢)— 4cosf cos¢)+ 4 sinfsing) — 2cosf cos¢ sinf sing)
= 10+ 3 sin%)—sin%)— 7 sin? +sin*d + 2cosf cos¢
+ 2 sin2f cos¢) cosf — 6 sinZ¢) cosf) cos¢) —4cos? cos?() sinf sing
—8c0s20 cos?) + 6 sind sing)— 2 sin3f sin¢)— 2 sin%¢ sing
+4 sin3f sin3p)+ 6 sin%f sin¢+ 2cosf cos¢ sinf singy = 2+ 11 sin%¢)
— sin“) +sin*@ + (2cosf cos¢) - (1 +sin20 — 3 sinZ) +sing sing)
+2 sing sing(1 —sinfsing + sin?6 + sin¢)) + [8 — 8 sin%¢)— 8 sin%)
— 8cos26 cos?¢y+ 8 sin?f sin%¢)] + [4 sinf sing)—4 sin3g sing
— 4 sin3¢ sinf — 4cos?0 cos?¢ sinf sing+4 sin39 sin3¢].

Since each of the terms in square brackets is identically zero, we can
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conclude H(1) is nonpositive upon noting the expansion of the following
nonnegative expression.
3 sin2¢)+ (sing) +sin30)2 + (1 + cos?6) sin*f + 2(1 — cosf cos¢) sin?g)
+2[1 —cos(8 + ¢)] sinZ)+[1 +cos(8 — )]2+ (cosd — cos¢h)? sinZg)
+(cosf + cos¢)? sin%0 + 2 sin?gy cos2) = 1 + 10 sin?¢)+ cos?f sin%)
+2 sin*0 4 cos20 sin?0 + [cos?0 sin¢)+ cosZ) sin?f + cosfcos)
+sin2¢ sin%0] — 2 sin?¢) sin%0 + 2 sin¢ sin30 + 2 sinf sin’y
+2 sinf singy— 6¢osf cos¢) sin%)+ 2 sinf singy cosf cosg
+2cosf cos¢) sin20 + 2cosf cosg. = 2+ 11 sin?¢)—sin%)
+sin%f +sin%0 + 2 sinf singy(1 + sin2¢) + sin2) — sin) sinf)
+2 cosf cosg(1 +sin%0 — 3 sin2¢) + sinf sing))
where in the second equality we observe that sin%f + sin2f cos?f = sin?6,
while the term in brackets is identically 1.
Recall #y(a) = a3 + B,a® + Bia + B, where
B, = 1 — 8sec¢ cosf
B; = 1 — 8sec cosf — RPsect) + 2Qsec?) + 16cos?f sec?()
and By = sec*(P — Q?).
Now, 71(0) = By = sect[(2 — cos(d + ¢))? — (3 + cos?6)?]. So By <0
if and only if (2 — cos(6 + ¢))? < (3 + cos?0)?
ifand only if 2 — cos(@ + ¢) < 3 + cos?
if and only if —cos(f + ¢) =1 + cos?0

which certainly holds as —cos(@ + ¢) =1 < 1 + cos?0. Hence
h(0) < 0.

Now, we will assume that 4;(1) < 0. This will be proved later. Then,
from the properties of a cubic, A, will have 3 roots, ry, ry, and r;, with
rp 2 1. Sincery + r; + r3 = — B, = 8secgy cosf — 1, we consider two
cases.

Case 1. Bzg —1. Then —Bzé 1 and 1 = —Bz=r1+r2+r3g
1 4+ ry + rzand so ry + r3 = 0. Since #,(0) <0 and A,(1) < 0, we con-
clude that A; has no roots in (0, 1). Therefore Ay(a) < 0for0 <a =1
and we are done.

Cask II. B, < —1. Assume that r, € (0, 1). Then ry(r§ + Bory + B;) =
— B, and I'% + Bory + By = —-Bo/rz > —By. Hence 0 < By + B; — ry +
rfand thus
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(9) B() + Bl > r2(1 - rz) > 0.

However, using (8) and the fact that #(1) = 0 we can solve for By + B; to
obtain By + By = —(A4; + 2A4)/Ay = (2sec*))T where T = P — Q% —
2Pcos(f — ¢) + 4Qcosf cos. Now, if we expand the expression for
— T and express most of the quantities in terms of sinf and sin¢), we obtain

—T = [3 + sin%0 + 9sin%) + sin*d + 2sinf sing(1 — sinf singy + sin2g
+ sin?¢)] + 2(cosf cos)[—1 + sind sing + sin20 — sin2().
Upon performing the same expansion of the nonnegative expression

4sin%¢) + (sing + sin®0)? + sin*0 cos2d + (1 — cosf cosg)?
+ 2[1 — cos(d + I + sin%) + cosf cos¢h) + cos?f sinZ¢)
+ (1 + sinf cosg sin?)

we see that they are the same. Hence — T = 0 and this contradicts (9) so
that B, cannot be < — 1. Hence only Case I holds.
Upon proving A;(1) = 0, we will have 2(a) <0 for 0 <a =<1 as
claimed. Accordingly we note that
h(1) =1+ By, + B, + B,
= 2 — 8secghcos + B; + By
= 2sec¢[cost — 4cos3gcosd + T1.
Letting S = cosy) — 4cos®cosf) + T and expanding as before we see that
S = 2 + sin?) + 1lsin%) + sin*@ — sin*) + 2(1 — sinf sing + sin2
+ sinZy) sinf singy + 2(1 + sinf sing + sin%) — 3sin%¢) cosh cosg.
Likewise, upon expanding the nonnegative expression
3sin?) + (sing + sin30)? + (1 + cos?@)sin*d + 2(1 — cosf cos¢) sin%¢)
+ 2[1 — cos(d + ¢)Isin%) + [1 + cos(6 — ¢)]? + (cosfd — cos¢y)? sin%)
+ (cosf + cos¢h)? sin2d + 2sin?g cos?d,

we see that —.S = 0 and hence /;(1) = 0 as we claimed.
The sharpness result of the lemma follows by choosing w = z2.
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