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A NOTE ON FIXED-POINT CONTINUED FRACTIONS 
AND AITKEN'S zl2-METHOD 

JOHN GILL 

ABSTRACT. Limit periodic continued fractions can be accelerated, 
and, in some instances, analytically extended by the use of certain 
modifying factors. This procedure is actually Aitken's J2-method 
when applied to equivalent continued fractions/power series. Both 
acceleration and continuation results are given. 

The continued fraction 

(1) ^r- , ^- . , with complex {an\ and {b„}, 
#1 + o2 "+" * * * 

is called limit periodic if an -> a and bn -> b. 
In accordance with the following procedure, (1) may be conceptualized 

as a composition of linear fractional transformations : 
Let tn(w) = aj(bn + w) for n = 1, 2, . . . , and set 7 \ 0 ) = t^w), 

Tn(w) = Tn_x{tn{w)) for n = 2, 3, . . . . Then ax\bx + • • • + aj(bn + w) 
= Tn(w), and, in particular, the nth approximant of (1) equals Tn(0). 

It is usually the case that each tn has two distinct fixed points, an and 
ßn. When \an\ < \ßn\, an is called the attractive fixed point and ßn, the 
repulsive fixed point of tn. If we assume (1) is limit periodic, then ordinarily 
tn(w) -> t(w) = a/(b + z) with an -+ a, ßn -• /3. Each ŵ can be written 
fn(w) = aM/3w/[(aw + j3n) - w], so that (1) can be recast in fixed-point 
form 

(2) <*i/3i ^2/32 
W ai + ft - a2 + |82~ - • • • 

Over the last ten years several papers have appeared describing and 
investigating a simple modification of (1) that frequently accelerates 
convergence and may analytically continue the function represented by 
(1) (if an = an(z), bn = bn(z)) into a larger domain. See, e.g., [2], [3], 
[7], [8]. The modification requires the use of Tn(/Ltn) in lieu of Tn(0). fin 

customarily takes on fixed point values <x, ß, an+i or ßn+1. Motivation for 
this technique comes from the study of infinite iterations of a single linear 
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fractional transformation, and is somewhat geometrical in nature. See, 
e.g., [5]. 

The purpose of the present paper is to investigate an extension of 
these geometrically motivated ideas into the realm of power series, par­
ticularly those series that are equivalent (see (3), below) to certain limit 
periodic continued fractions. In pursuing this course of action we will 

1) derive Aitken's zf2-method [4] for power series in an unusual fashion, 
2) provide interesting accelerative inequalities for this method, and 
3) illustrate the use of the method to analytically extend a function 

interpreted either as a continued fraction or as a power series. Thus, we 
will relate two simple and important modification procedures for con­
tinued fractions and power series. 

We begin with a description of Euler's equivalent continued fraction 
[6]. 

Ifp„ # Oforn ^ l,then 

1 + pxz + pxp2z
2 + • • • + pip2 • • • pnz

n 

, for n ^ 1. 
(3) _ 1 pxz p2z pnz 

1 - 1 + piz - 1 + p2z - • • • - 1 + pnz 

The continued fraction in (3) is limit periodic if pn -+ p. Henceforth, we 
will assume this to be the case. 

The continued fraction in (3) involves (2), with pnz and 1 being the fixed 
points of tn, n ^ 1. 

Tn(w) = 1 + PlZ + PlP2Z* + • • • + Plp2 - - - pn_lZn-l + PlP\"^nZn . 

If \z\ < l/\Pn\9 thenar = pnz and ßn = 1. If \z\ > 1/lpJ, then ocn = 1 
and ßn = pnz. It has been discovered, with reference to (2), that conver­
gence is accelerated if one employs Tn(a) or Tn(an+i) and the function 
represented by (2) (if an = an(z), ßn = ßn(z)) may possibly be analytically 
continued if one uses Tn(ß) or Tn(ßn+1), [7], [8]. Thus, the modification 
Tn(pn+1z) may serve both purposes in (3). We find that 

Tn(Pn+1z) = i + P l z + p l P 2 z * +... + PlP2... 9n_xz^ + y "ftf, 
1 ~ Pn+lz 

in terms of the series in (3). This is precisely the expression given by 
Aitken's J2-method applied to xn(z) = 1 + pxz + • • • + px • • • pnz

n. 
The following heuristic exposition, which treats (3) as a series, puts 

this situation in perspective. Paraphrasing Henrici's motivational dis­
cussion of Aitken's method [4], we define an iterative procedure, de­
pendent upon an appropriately chosen function / , by setting xx = f(x0), 
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. . . , xn = /(xw_i) = / o / o . . . o/(*0) = Fn(x0)9 where xn -• 5. The 
assumption upon which the method is structured is 

(4) Fn+i(xo) s Ä constant. 
Fn(x0) - 5 

One then infers the familiar form xn=xn - (xn+1 - xn)
2/(xn+2 - 2xM+1 + xM), 

which can be written 

(5) x'„ = x„ + (xn+1 - x„)/(l - X " + 2 ~ _ X " + 1 ) . 
\ *^w+l •*•» / 

Generally, ^ is a much better approximation of s than xM. 
If f(w) = 1 + pzw, then Fn(l) = 1 4- pz + p2z2 + • • • 4- ^zw. / has 

two fixed points, a = 1/(1 — pz) and /3 = oo. It is easy to show that 

(6) Fn{w) - a = Kn(w - a), where K = pz, 

so that Fn+l(a) = a and limwFM(w) = a for w # /3 if |z| < l/|p|. We find 
that (4) is satisfied, since (6) implies (FM+1(u>) — a)/(Fn(w) — a) = K. 
Hence, xn = Fn{\) = 1 + pz + • • • + pnzn, so that xw+/c - xw+/c_i = 
Fw+/r(l) - i w - i ( l ) = p ^ z ^ , and (5) becomes 

o w + 1 z w + 1 1 
Xn = 1 + flZ + • • • + pnZn + - ^ = -y . n y r l-pz 1 - pz 

Thus, Fn+1(a) = x'n = a. If |z| > l/ |p|, then lim xM does not exist, but 
FM+1(a) provides an analytic continuation of 1 + pz + p2z2 + • • • . 

In the more general limit periodic setting, we have/w(w) = 1 4- pnzw, 
with fixed points 1/(1 - pnz) and oo. xn+K - xn+K_x = pxp2 • • • pn+K

zn+K> 
and xn = Fn+l(an+2) = 1 + pxz + • • • + px • • • pnz" + (Pl • • • pw+izw+1)/ 
(1 - i0w+2^)-

At this point one wonders whether more general periodic and limit 
periodic continued fractions are related to Aitken's method in this way. 
If / is a linear fractional transformation having finite fixed points a, 
ß ^ a, then the counterpart of (6) is 

Fn(w) - a _ „nw_ 
K« Fn(w) - ß w - ß ' 

where |AT| < 1, if / i s non-elliptic [1]. 
This equation allows the formulation of (4) as 

Fn+1(w) - a _ f(Fn(w)) - a _ K(a - ß) 
Fn(w) - a Fn(w) - a Fn(w)(l - K) + Ka - ß 

for large n, since Fn(w) -* a if w ^ /3. The periodic continued fraction 
— [-a/b]°° is generated by setting f(w) = a/(b - w). If one looks at 
- [ -2/3]°° one finds a = 1, ß = 2 and Fn{oc) = a for n ^ 1; If 
xx = f(0) and xn = /(xM-i), n ^ 1, we find, from (5), that \x'2 - a\ ^ . 3. 
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Consequently, Aitken's method is not identical to the fixed point modi­
fication method in more general, non-equivalent fraction structures, 
although the two may be related in a less obvious manner. It also appears 
that Aitkin's method is somewhat less effective than the fixed point ap­
proach for limit periodic fractions that are nearly periodic. 

In the discussion that follows we will develop an interesting inequality 
supporting the acceleration of convergence of (3), one that is very similar 
to a result presented by Thron and Waadeland in connection with limit 
periodic continued fractions. Also, we will show how, under certain 
circumstances, the use of the repulsive fixed point ßn+i(z) = pn+ìz an­
alytically extends the domain of convergence of the continued fraction/ 
power series in (3). 

1. Acceleration of Convergence. The principal acceleration result in 
the study of limit periodic continued fractions is due to Thron and Wa­
adeland. It is abbreviated and paraphrased here, since our concern is with 
the general form of the theorem in terms of fixed points. 

THEOREM 2.1 [7]. Suppose an -> a ^ 0, ßn = — 1 — an in (2), where 
M < \ßnl \a\ < \ß\and\a - an\ is "small". Then 

\Tn{a) -T\< G(a) max \an - a\ • \Tn(0) - T\, 

where 

T = lim Tn(0y 
n 

REMARK. G(a) can be quite large for values of a such that a{a + 1) 
is near the ray z = — 1/4 —/?,/? e [0, oo). 

The author considered the case a = 0 in [2]. In abbreviated form, we have 

THEOREM 3 [2]. Suppose ocn -• a = 0, ßn = —\—an in (2). where 
\ocn\ < \ßnl M < 1/31, andmaxm^n\am - am+1\ ^ |an+1| . Then \Tn(an+1)-T\ 
< H - maxw,w |erj . |rn(0) - T\. 

Let us now turn our attention to (3) and develop a theorem similar 
to the two above, but in terms of maxw^w|am - tfw+1| in both cases. 

Clearly, limnTn(pn+1z) = limwrw(0) = T on Ql = {z: \z\ ^ r/\p\ < 
Vlpl} if |0 7e 0, or ö2 = a bounded compact subset of the z-plane, if 
p = 0. Let dn = maxw^|pw+2 - pw+1 |. 

THEOREM 1. If (i) p # 0 and dn ^ ((1 - r)3d - a^lr{\ + r), where 
Gi > 0 and \pn\ ^ difn ^ 1, or 

(ii) p = 0, \pn\( i ) and dn ^ (|pj(l - r)3 - a2)l(l 4- r), where a2 > 0, 
then 

\T„(p„+1z) -T\è M{\ + r) • d„ • \Tn(0) - T\, 
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where M = r/a1 if p ^ 0 or M = l/<72 if p = 0. 

The inequality is valid on An = {z: |z| <: r//?J, where pn = supw,>jpj. 

PROOF. Consider the quotient 

T- Tn(pn+lz) = (pw+1z + pw+ipw+2g
2 + • • • ) - pn+izl(l - pw+i^) 

r - rw(0) pw+1z + pw+1pw+2z
2 + • • • 

(7) = G^(z)-p l(l-pn+lZ) asn^ 
GM(z) 

Let 

Now, 

G^(z) = fl,,(z) + pn+1l(l - Pn+1z). 

GM(z) = pm+1(l + zG^+l\z)), m^n. 

Hence, Dm(z) = Pm+1(l + zG<»+u(z)) - pm+1/(l - pM+1z) 

= Pm+1(z) öm + 1(z) + pm+1z • (1 Jp
m^J){(Tpm+2z) > 

so that 

\DJz)\ ^ \pm+lz\ • \Dm+1{z)\ + \Pm+1z\ • \pm+2 - (0m+1 | /(l-r)2on An. 

Assume, for the moment, that \Dm+l(z)\ ^ Rn on A„. 
Case (i). For p # 0, |Z)m(z)| ^ r/?„ + r<y(l - r)2- Thus, |Z)m(z)| g 

i?„ if R„ = r<5„/(l - r)l Since lim„£>„(z) = 0 on ß ; there exists K > 0 
such that, for fixed m, n (m ^ «), |I>ra+t(z)| ^ /?„. It then follows that 
\Dm{z)\ g i?„ for m ^ « on ûj . From (7), 

T-Tn(p„+1)z) 
T - T„(0) 

P»+ll(l - Pn+lz) I _ j ' 
£>„(z) 

H ^ f • 8n • (1 + r). 

Caw? (ii). For p = 0 and | p j ( i ) , IA„(z)| ^ rRn + \pn+x\dnl(\pn\ • 
(1 - r)2). Thus, |Z)m(z)| ^ Rn if tfw = |Pll+1| dj(\pn\ • (1 - r)3). The 
limwD„(z) = 0 on Q2 and, as before, \Dm(z)\ ^ Rn for m ^ « on fl2. 
From (7), as in case (i), 

T - Tn(pn+1z) 
<?2 T - TM 

This completes the proof of Theorem 1. 

2. Analytic Continuation. The simple modification we have discussed 
can be proven to analytically extend the limit periodic series T = 1 + 
9\z + piP2z2 + • • • provided {pn} converges very rapidly to p ^ 0. 
Thus the equivalent limit periodic fraction is extended. 
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THEOREM 2. Suppose there exists a sequence {jun} with jui = 0 and 
\Pn\ ̂  (e/\p\Y for 0 ^ 6 < \p\ andn ^ 1 and such that pn = p(l + /Vu)/ 
(1 + ^w) ^ 0 for n ^ 1. 77^« rw(^„+1z) analytically continues T beyond 
\z\ < \j\p\ into any simply connected domain D contained in 0 = {z: \z\ g 
R) fi {*: |z - \jp\ ^ r}, w/im? R < e~l and 0 < ö < r < l/\p\, w/*m? 
| l / p „ - 1/pl £öforn> 1. 

PROOF. The hypotheses imply IIUpjIp) = 1 + jun+1, which implies 
\pnz»(nï{pjlp) - 1)| = \pz\» • \fin\ ^ en\z\n. This, in turn, proves |(1 + 
Piz + J W 2 + • • • ) - 0 + p* + p2*2 + • • 01 ^ E \pnzn(nni(pj/p) - 01 
^ S £WMM ^ 1/(1 - € \z\), \z\ < l/e. Therefore 

Tn(Pn+lz) - JZ: 
pz 

l+pxz+ --. + 

£E(e\z\y + 
1 

l-pn+lz 

III pjZ* 

-(l+pz + * 

pnzn 

pnzn \| 

1-Pn+l^ ! - ^ 

where 

ff? p/Z* pwzw 

1 - i0w+iz 1 - pz 

\pnzn(ni(&- pz pz Xf)-') Pz~Pn+lz 

|1 - pz\ - |1 - pw+1z| 

It follows, from the hypotheses, that \Tn(pn+iz) — 1/(1 — pz)\ < M for 
\z\ ^ R and |z - l/p\ ^ r > d > 0. Consequently, {Tn(pn+lz)} is uni­
formly bounded on D a Q. Now, {Tn(pn+iz)} converges to an analytic 
function T in {z: \z\ < l/\p\} fl D- Thus, Stieltjes' theorem [9] implies 
Tn(pn+iz) -+ TinD. 

REMARK. If we had interpreted (3) as a continued fraction, Lemma 2.1 
[8] could have been used to show the boundedness of {Tn(pn+1z)} under 
the hypotheses of Theorem 2. 

Other results given in [8] could have been brought into play here, also. 
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